
October 23, 2006 17:23 WSPC/123-JCSC 00310

Journal of Circuits, Systems, and Computers
Vol. 15, No. 3 (2006) 331–349
c© World Scientific Publishing Company

POWER-CONSTRAINED SYSTEM-ON-A-CHIP TEST
SCHEDULING USING A GENETIC ALGORITHM

HAIDAR M. HARMANANI and HASSAN A. SALAMY

Computer Science and Mathematics Division,
Lebanese American University,

Byblos 1401 2010, Lebanon

Revised 10 January 2006

This paper presents an efficient approach for the test scheduling problem of core-based
systems based on a genetic algorithm. The method minimizes the overall test application
time of a system-on-a-chip through efficient and compact test schedules. The problem
is solved using a “sessionless” scheme that minimizes the number of idle test slots. The
method can handle SOC test scheduling with and without power constraints. We present
experimental results for various SOC examples that demonstrate the effectiveness of our
method. The method achieved optimal test schedules in all attempted cases in a short
CPU time.

Keywords: Core-based systems; embedded core testing; genetic algorithms.

1. Introduction

Traditional systems were designed using printed circuits boards that contain VLSI
chips and the wiring among them. However, advances in modern VLSI technol-
ogy allow to incorporate a complete system including processors, memories, buses,
and interfaces on a single chip using the system-on-chip (SOC) methodology. The
SOC methodology provides high-performance complex digital systems with reliable
interconnects and a low cost solution using cores.1 Cores are predesigned and pre-
verified intellectual properties (IP) that are embedded within a chip. Cores maybe
soft, firm, or hard. A soft core consists of a synthesizable HDL description that can
be retargeted to different semiconductor processes while a firm core contains more
structure. Finally, a hard core includes layout and technology-dependent timing
information and is ready to be dropped in a system.

It is widely recognized that testing embedded cores is a major bottleneck.
Core-based designs are usually tested after assembly, at the end of the system
implementation. Different DFT and test issues exist if the embedded core is soft,

331

October 23, 2006 17:23 WSPC/123-JCSC 00310

332 H. M. Harmanani & H. A. Salamy

firm, or hard. Vendors supply the core and its tests while the user provides the
test access to the core.1 Typically, the core test problem is solved by surrounding
a hard core with test logic, known as a test-wrapper or a test collar. Each input
and output terminal of a core, provides functions for a normal mode, external test
mode, and an internal test mode. During external test mode, the wrapper element
drives the host chip in order to test the interconnect while during internal test
mode the wrapper element tests the core by observing the core output.1 Usually,
a combination of BIST and external testing must be used to achieve a high-fault
coverage.

A major challenge in testing embedded cores is test scheduling which deter-
mines the order in which various cores are tested. Test scheduling for SOC, even
for a simple SOC, is equivalent to the NP-complete m-processor open shop schedul-
ing problem.2,3 An effective test scheduling approach must minimize the test time
while addressing resource conflicts among cores arising from the use of shared Test
Access Mechanisms (TAMs), on-chip BIST engines and power dissipation con-
straints. Obviously, the minimal test time would be achieved by maximizing the
simultaneous test of all individual functions or cores; however, design constraints
may prevent this full parallelism. For example, power consumption is an important
factor that may impact the test parallelism. Power dissipation during testing is a
function of time and depends on the switching activity resulting from the applica-
tion of test vectors to the system.4 The SOC in test mode can dissipate up to twice
the amount of power they do in normal mode, since cores that do not normally
operate in parallel may be tested concurrently to minimize testing time.5 Power-
constrained test scheduling is therefore essential in order to limit the amount of
concurrency during test application to ensure that the maximum power rating of
the SOC is not exceeded.

1.1. Related work

There has been various approaches for the test scheduling problem in core-based
systems. Craig et al.6 solved the general test scheduling problem by representing
the circuit under test as a directed graph. A node in the graph represents a group
of flip-flops that forms a BILBO while the edges represent the combinational logic
among each group of flip-flops. This graph is referred to as a register adjacency
graph. Graph coloring or clique partitioning algorithms can be used to obtain the
minimum number of test sessions. Sugihara et al.7 formulated the test schedul-
ing problem for core systems as a combinatorial optimization problem which is
solved using a heuristic method. The authors make two restrictive assumptions:
(1) Every core has its own BIST logic and (2) external testing can be carried out
for only one core at a time. That is, there is only one test access bus at the sys-
tem level. Chakrabarty3 solved the test scheduling problem for core-based systems
using an optimal formulation by mapping the problem to the m-processor open shop
scheduling problem, an NP-complete problem. The finish time of the schedule is the

October 23, 2006 17:23 WSPC/123-JCSC 00310

Power-Constrained SOC Test Scheduling Using a Genetic Algorithm 333

latest completion time of the individual processor schedule while the length of the
job is taken as the amount of time for test to execute. The problem is solved by
minimizing the test finish time using a mixed integer linear programming (MILP)
approach. For large instances where the MILP model is infeasible, the authors use
a heuristic algorithm. The method was later extended by Iyengar et al.8 to include
TAM optimization with core level wrapper optimizations. Larsson et al.9 analyzed
test scheduling with power and test resource constraints where an integrated SOC
test framework is presented by analyzing the problem of test access mechanism
design along with test scheduling. Flottes et al.10 presented a heuristic approach
for test scheduling for SOC with power constraints. The advantage of the method
is that it can handle large size problems in short time. Ravikumar et al.11 proposed
a method to solve SOC test scheduling problem under power constraints. Huang
et al.12 used a bin packing-based method to allocate test resources and to schedule
test sets in order to achieve optimal concurrent SOC test. The objective is to min-
imize test application time for different TAMs under the constraint of peak power
consumption.

1.2. Problem description

This paper presents an efficient approach to SOC test scheduling based on test time
and power constraints. Given a set of cores {C1, C2, . . . , Cn} with corresponding test
times {T1, T2, . . . , Tn} and test powers {P1, P2, . . . , Pn}, the problem we address in
this paper is to minimize the overall test time by optimally determining the start
times for the various cores in the test sets such that the peak power during testing
does not exceed a specified value, Pmax. The method is based on an efficient genetic
algorithm and is motivated by the following:

• Test scheduling is necessary to reduce test time which is important to reduce
design and test cost.

• Test scheduling is an intractable problem. This work is based on an efficient and
fast genetic algorithm that initiates test as soon as resource and power constraints
allow it.

We assume that the test access architecture has been determined, and the cores
have been assigned to test buses. No restrictions are placed either on the sharing
of BIST logic among cores or on the use of multiple test buses for external testing.

The remainder of the paper is organized as follows. Section 2 introduces the
test scheduling problem while Sec. 3 formulates the genetic SOC test scheduling
problem and describes the chromosomal representation, the genetic operators, and
the cost function. The genetic test scheduling algorithm is described in Sec. 4 while
experimental results are presented in Sec. 5. Finally, we conclude with remarks
in Sec. 6.

October 23, 2006 17:23 WSPC/123-JCSC 00310

334 H. M. Harmanani & H. A. Salamy

2. Test Scheduling

The test scheduling problem is a combinatorial optimization problem that has been
reduced to bin-packing, m-processor open shop scheduling and graph coloring, which
cannot be approximated in bounded limits. One classical approach to solve the test
scheduling problem is by organizing tests for the target cores into test sessions. A
test session brings together the tests of compatible modules. This compatibility is
checked with respect to the test resource sharing needs. Individual tests may be
conflicting because:

(1) They share common test resources such as a test bus or a test response com-
pactor.

(2) The power consumption during simultaneous testing exceeds the device power
allowance.

Sessions-based test scheduling techniques assume either equal length test sessions
or unequal length test sessions. During “equal length test sessions” test scheduling,
cores are arranged into sessions where the length of each session is set to the longest
test time in all sessions. On the other hand, in “unequal length test sessions” test
scheduling, cores are arranged into sessions where the length of a specific session is
the time taken to test the core requiring the longest time in that session. Recent
techniques in test scheduling arrange cores for testing without sessions where a test
is initiated as soon as possible and at any time if the resource sharing and power
constraints are not violated. These techniques, labeled as “sessionless”, partition
testing with run to completion.9,10

In order to illustrate the test scheduling problem, we use the example in Fig. 1
that shows four cores Ci(pi, ti), C0 (100, 100), C1 (75, 75), C2 (75, 50), and

C0

C1 C3

C0

C1

C2 C3

C0 C2 C3

C1

C0

C2C1

C3

C2 100 200 300

100 150 200

100 175

Idle slot

Fig. 1. Compatibility graph and solution representations.

October 23, 2006 17:23 WSPC/123-JCSC 00310

Power-Constrained SOC Test Scheduling Using a Genetic Algorithm 335

C3 (125, 50) with a peak power constraint of Pmax = 175. Figure 1 also shows
the compatibility relationship among the above four cores where an edge between
two cores indicates that the two cores can be tested simultaneously. The “unequal
length test session” divides the cores into three sessions as shown in Fig. 1(a) where
the total testing time based on this approach is 200. The “equal length test session”
schedules the tests of the four cores into three sessions as shown in Fig. 1(b) where
the total testing time for a session is equal to the longest test time among all cores
in the session and the total testing time of the system is the sum of testing time of
all sessions, that is 300. Finally, the “sessionless” scheme schedules the cores with
a total test time of 175 as shown in Fig. 1(c).

3. Genetic Core Test Scheduling Formulation

The genetic test scheduling method starts with a compatibility graph of a set of
cores and generates through a sequence of evolution steps a set of compact and
optimal test schedules. In what follows, we describe our genetic algorithm for core
test scheduling in reference to Fig. 1.

3.1. Chromosomal representation

In order to solve the SOC test scheduling problem, we propose the chromosomal
representation shown in Fig. 2(a). The representation is based on a vector where
every gene corresponds to a core with a specific test start time, Si. The core test
finish time, Fi, is equal to the test start time plus the core test time, Ti, that is,
Fi = Ti + Si. Note that the test start time, Si, is not constant and it changes to

0 1 n2

...

...

Core number Test starting time

of each core

S0 S1 S2 Sn

(a)

0 0 75 125 C0

C2C1

C3

0 1 2 3

100 175

Fig. 2. (a) Chromosome representation, (b) Sample chromosome and (c) Corresponding test
schedule.

October 23, 2006 17:23 WSPC/123-JCSC 00310

336 H. M. Harmanani & H. A. Salamy

the end times of other cores as the solution evolves. Figure 2(b) shows a sample
chromosome using the compatibility graph shown in Fig. 1. The corresponding test
schedule is shown in Fig. 2(c).

3.2. Initial population

The quality of the final solution is affected by how the initial population has been
constructed. The initial population is chosen based on three categories. The first
category, which constitutes 30% of the total population, is based on the worst
possible schedules; that is serial schedules where cores’ tests are serialized. The order
of the cores in the serial schedules is random. The second category constitutes 40%
of the population and is based on a random perturbation of the chromosomes in the
first category using the crossover operator. Finally, the last category is generated
pseudo-randomly. Thus, the algorithm randomly selects a core and then randomly
picks a compatible core from the compatibility graph in order to guarantee the
chromosome feasibility.

3.3. Selection and reproduction

Within each generation, individuals are selected for reproductions using the genetic
operators. In order to keep the population size fixed, we select a constant number
of individuals from the current population and from the generated offspring. Thus,
if M is the size of the initial population and M/2 is the number of offspring created
in each generation, we select M new parents from M + (M/2) individuals. The
new generation is selected using a simple selection procedure that ensures a mix
of “good” and “bad” chromosomes. Thus, during every generation the algorithm
selects 70% of the best chromosomes while the remaining chromosomes are chosen
randomly from the remaining population.

3.4. Genetic operators

In order to explore the decision space, we use two genetic operators, mutation and
crossover that are applied iteratively with their corresponding probabilities. The
genetic operators are followed with a deterministic compaction operation, Fill Gap,
that compacts the chromosomes by filling the gaps or the idle slots among the
genes. The algorithm for the Fill Gap operation is shown in Fig. 3.

3.4.1. Mutation

Mutation is an important operator that introduces incremental changes in the off-
spring by randomly changing allele values of some genes. The algorithm randomly
chooses a corei and changes its test starting time Si to the test end time Fj of
another randomly chosen corej (i �= j) or to 0.

October 23, 2006 17:23 WSPC/123-JCSC 00310

Power-Constrained SOC Test Scheduling Using a Genetic Algorithm 337

Fill Gap(Chromosome Vold, Chromosome Vnew)
{

∀ cores in Vold

i ← 0
core(ti, fi) ← V[i]
List1 = All cores in Vnew and Vold whose start time > ti in increasing order
List2 = All cores in Vnew and Vold such that: start time ≤ ti < end time, in

increasing order
if List2 is empty and List1 is not empty

subtract fi − ti from all nodes in List1
else (if List2 �= φ and List1 �= φ) {

max1 = Largest end time in List2
for(all nodes u ∈ List1)

max2 = Largest end times in List2 ≤ start time (u)

if (max2 == 0)
max2 = ti

if start-time(u) < max1)
if (fi − max2 > 0)

start time(u) = start time(u) − (fi − max2)
else

if start time(u) > max1)
if (fi − max1 > 0)

start time(u) = start time(u) − (fi − max1)
else

max3 = Largest end time in List1 and List2 <= start time(u)
start time(u) = start time(u)−max3

Vnew ← core(ti, fi); i ← i + 1
}

Fig. 3. Fill gap operation pseudo-code.

12500

0 0 75 175

75

0 1 2 3

0 1 2 3
C0

C2C1

C3

100 175

(a) (b)

Fig. 4. Chromosome (a) Before and after mutation and (b) Solution graphical representation.

In order to illustrate the mutation operator, consider the example shown in
Fig. 4(a). Assume that C3 is randomly chosen to undergo mutation and assume
that the test start time of C3 is randomly changed to the test end time of C2. The
chromosome after mutation schedules core C3 at t = 125. The graphical represen-
tation of the schedule after mutation is shown in Fig. 4(b).

October 23, 2006 17:23 WSPC/123-JCSC 00310

338 H. M. Harmanani & H. A. Salamy

75

175

point 1
crossover

point 2
crossover

point 1
crossover

point 2
crossover

12575

150

point 1
crossover

point 2
crossover

175

100

1750 100

0 75 175 0

50

0

50 0075

00

75

0

0

0 1 2 3

1 2 3 1 2 3 1 2 3

1 2 31 2 3

0

0

0

0

Xover FillGap

(a)

C1C2

C0 C3

C2

C0 C3C1

0 100 225175

750 225175

C2

C0

C1

C0

C2

C3

C1

C3

0

0

75

50 100

225175

125 225

C2C1

C3C0

75 125 175

C1C2 C3

C0

0

0

50 125 200

Xover FillGap

(b)

Fig. 5. (a) Parents chromosomes before and after crossover and (b) Corresponding test schedules.

3.4.2. Crossover

Crossover is the main genetic operator as it provides a mechanism for the offspring
to inherit the characteristics of the parents. We use a two-point crossover that ran-
domly chooses two chromosomes that are split into three segments of contiguous
genes. The offspring are created by taking alternative segments from the two par-
ents. To illustrate how the crossover operator works, consider the chromosomes in
Fig. 5(a). The algorithm selects two random cut points as shown and the genes
between the cut points are exchanged. The test schedules corresponding to the
offspring are shown in Fig. 5(b).

3.5. Objective function

The fitness of an individual is crucial for the transmission of its gene information
to the next generation. Given a set of cores {C1, C2, . . . , Cn} with corresponding
test times {T1, T2, . . . , Tn} and test powers {P1, P2, . . . , Pn}. If the peak power
dissipation is estimated as the

∑
Ci

Pi, then the objective function is to minimize
the overall test time by optimally determining the start times for the various cores
in the test sets and such that the peak power is not exceeded during testing.

4. Genetic Test Scheduling Algorithm

Each chromosome represents an intermediate test core schedule that has a different
cost. During every generation, chromosomes are selected for reproduction, resulting

October 23, 2006 17:23 WSPC/123-JCSC 00310

Power-Constrained SOC Test Scheduling Using a Genetic Algorithm 339

in new test schedules. The algorithm must ensure the following:

(1) Selected cores that are tested concurrently are compatible.
(2) The peak power of cores that are tested concurrently does not exceed the peak

power.

Two test sets are conflicting if (i) they share resources such as an external bus for
example; (ii) they share BIST test set for cores that share a BIST resource or they
are the external and BIST components of a core’s test set. Cores compatibility is
solved using a compatibility graph where nodes represent tests while edges indicate
compatibility among nodes.

The algorithm, shown in Fig. 6, starts by randomly selecting an initial popu-
lation of chromosomes. During every generation, tests start times within genes are
evolved through a sequence of genetic operators. The genetic operators randomly
set the test start time of a selected core to the finish time of a randomly chosen core.
In order to obtain meaningful and feasible schedules, the mutation operator uses a
constructive approach that minimizes the generation of unfeasible test schedules.
However, unfeasible solutions that result from the crossover operator are punished
with a prohibitive cost. The reproduction process replaces half of the population

Genetic TestScheduling()
{

M = Population size.

N0 = Population size
2

Ng = Number of generations
Read the SOC blocks to be test scheduled
Read the system’s power and test compatibility constraints
Get the population size and the number of generations (Ng)
Generate an initial population, current pop
for i = 1 to M

evaluate(current pop)
Keep the best()
for i = 0 to Ng do
{

for j = 0 to N0 do
Select two chromosomes from current pop for mating
apply crossover with probability Pxover

for k = 0 to N0 do
Select a chromosome from current pop
apply mutation with probability Pm

Apply Fill Gap() to offspring
Evaluate the population fitness.
new pop = select(current pop, offspring)
current pop ← new pop

}
}

Fig. 6. Genetic SOC test scheduling algorithm.

October 23, 2006 17:23 WSPC/123-JCSC 00310

340 H. M. Harmanani & H. A. Salamy

and the best chromosomes are maintained for the next generation. The algorithm
repeats the above process for the maximum number of generations.

5. Experimental Results

5.1. Parameters

Various GA parameters are important in achieving good results. Given a sufficient
population size and number of generations, a good and a suboptimal test schedule
can be found, however execution time is directly proportional to both parameters.
We have experimentally determined that for the problems we attempted, a popu-
lation size of 150 and a generation number of 200 were sufficient to achieve a good
solution. We have also determined experimentally the crossover probability, Pxover,
to be 0.35 and the mutation probability, Pm, to be 0.65.

5.2. Benchmark results

The proposed algorithm was implemented using the Java language on a Pentium
Centrino with 2.13GHz clock and 1 GB of RAM. The method was tested on various
benchmark examples from the literature and we compare our work to Refs. 3, 5, 10
and 13. Detailed results comparisons are shown in Tables 7 and 8.

5.2.1. System S
The System S SOC example was initially reported by Chakrabarty4 and used later
by others for comparison purposes. The data for this example are shown in Table 1.
Our system found the optimal test schedule, shown in Fig. 7, with a total testing
time of 1 152 180 cycles compared to 1 204 630 in Ref. 4. We assume in this example
that each core has its own dedicated BIST.

The System S SOC example is next modified by adding an additional core, C7.
Core C7 is tested entirely using BIST while cores C3, C4, C5, and C7 share BIST
resources. The optimal test schedule that was achieved by our system is shown in
Fig. 8 with a total testing time of 1 182 350 cycles. On the other hand, the shortest
task algorithm in Ref. 3 was not able to reach the optimal solution and it results in
a schedule with a total testing time of 1 213 330 cycles. Figure 9 shows the speed of

Table 1. Test data for the cores in system S.

Core/number External test time BIST test time

C880/1 377 4096
C2670/2 15 958 64 000
C7552/3 8448 64 000
S953/4 28 959 217 140
S53785 60 698 389 214
S1196/6 778 135 200

October 23, 2006 17:23 WSPC/123-JCSC 00310

Power-Constrained SOC Test Scheduling Using a Genetic Algorithm 341

0 38921

0 8448 537423778437407 114440 115218

0

8448 14848

0 6400

BIST Schedule

External Test Schedule

37407 59121

C

0 409

C

C

C

C

C

C

C1 C6

3 C 4 C 2 C 5

4

1

2

6

3

5

38921

Fig. 7. Test schedule for System S where each core has a dedicated BIST.

0 8448

0

BIST Schedule

External Test Schedule

7291421714 111835

7030169146 117831

118235

101873

69523

0 38921

0 6400

0 409

C

C

C C

CC C

C

C

C

C45

6C1

357

3

4

6

2

1

Fig. 8. Test schedule for System S with seven cores.

October 23, 2006 17:23 WSPC/123-JCSC 00310

342 H. M. Harmanani & H. A. Salamy

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 180000

0 10 20 30 40 50 60 70 80 90

Fi
tn

es
s

Generation

Fig. 9. Curve depicts the fitness of the best chromosomes in a population of 150 for the SOC
example used in System S.

convergence for our algorithm in the case of the System S example. The example
was scheduled in 0.901 CPU seconds.

5.2.2. d5018 system-on-chip

The d5018 system, whose details are shown in Table 2, is an example SOC that
consists of eight ISCAS benchmark cores. The example was solved in Ref. 3 using
the shortest-task-first. While the total testing time obtained using the shortest-
task-first is 7851 cycles, the total testing time obtained using our approach is 6809
cycles. The schedule for the d5018 example obtained by our approach is shown in
Fig. 10 and was test scheduled in 1.114 seconds.

The d5018 SOC example is next test scheduled by considering power constraints.
Iyengar et al.14 test scheduled this example using an MILP formulation in 7985
cycles with a power constraint of Pmax = 950. The power-constrained test schedule

Table 2. Test data for the d5018 system.

Core BIST test time External test time Power in BIST mode (mW)

1 256 134 54
2 2048 2543 159
3 2048 1357 453
4 256 454 57
5 256 1903 324
6 256 242 72
7 2048 — 792
8 1024 176 75

October 23, 2006 17:23 WSPC/123-JCSC 00310

Power-Constrained SOC Test Scheduling Using a Genetic Algorithm 343

C C
3 4C 8 C6C 5C1

BIST Schedule

External Test Schedule

6809

C1 C

C2C

C6

8

7

C 2 C 3 C 4 C 5

2048 4752

44692304

2677 4034 4488 6391134

3701

Fig. 10. Test schedule for d5018.

BIST Schedule

6809

External Test Schedule

C C

CC

C C

6C

8

2

38

C56C7

C 2 C 3 C 4 C 5

C14C

1

Fig. 11. Power-constrained test Schedule for d5018.

for d5018 using our approach is shown in Fig. 11 where the total testing time is
6809 cycles. The example was test scheduled in 1.785 CPU seconds.

5.2.3. Muresan system-on-chips

The Muresan simple example, whose characteristics are shown in Table 3, was first
presented by Muresan et al.5 and was test scheduled in 31 000 000 clock cycles. The
authors improved the “unequal length session approach” by allowing several cores
to be tested sequentially within a session. The example was test scheduled based on
our genetic approach using a “sessionless” scheme in 23 000 000 clock cycles, which

October 23, 2006 17:23 WSPC/123-JCSC 00310

344 H. M. Harmanani & H. A. Salamy

Table 3. Test data for SOC example used in Muresan SOC.5

Core Pi Di Share test with

1 6 16 000 6 7 8

2 5 10 000 4 5 6 7
3 4 9000 6 7 9
4 2 7000 5
5 8 4000 2 4 7
6 2 3000 1 2 3
7 2 2000 1 2 3 5
8 2 1000 1
9 1 3000 3

0 1 6 17

12

power

1

8

62
4

3
9

5

7

21 23 Test Time

Fig. 12. Power constrained test schedule for the Muresan SOC example.5

is the optimal test schedule (Fig. 12). The example was test scheduled in 0.475
CPU seconds.

5.2.4. Muresan II

The Muresan II SOC example, whose characteristics are shown in Table 4, was
early reported in Refs. 5, 13, and 15. We compare our approach with the improved
approach used in Ref. 5 for the same example. For a power constraint of Pmax = 12
units, the test schedule proposed by Muresan et al.5 leads to a total testing time
of 29 cycles, while in our “sessionless” approach we reach the schedule shown in
Fig. 13 with a total testing time of 25 cycles. The example was test scheduled in
0.284 CPU seconds.

5.2.5. Flottes system-on-chip

The Flottes SOC example, whose details are shown in Table 5, was first reported in
Ref. 10. The example includes fourteen cores with a power constraint of Pmax = 30.
The testing time obtained in Ref. 10 for this example is 52 000 while our method lead

October 23, 2006 17:23 WSPC/123-JCSC 00310

Power-Constrained SOC Test Scheduling Using a Genetic Algorithm 345

0

power

8 14 2524

12

4
5
6

15 Test Time1910

t
t

t

t
t

t

t

6

9

5
8

2

3
7

t

t1

4

10
t

Fig. 13. Test schedule using a sessionless scheme for the Muresan II SOC example.5

Table 4. Test data for the Muresan II SOC.5

t1(9, 9, t2, t3, t5, t6, t8, t9) t6(2, 4, t1, t7, t8, t9)
t2(4, 8, t1, t3, t7, t8) t7(1, 3, t2, t3, t4, t6, t8, t9)
t3(1, 8, t1, t2, t4, t7, t9, t10) t8(4, 2, t1, t2, t4, t6, t7, t9, t10)
t4, (6, 6, t3, t5, t7, t8) t9(12, 1, t1, t3, t5, t6, t7, t8, t10)
t5(5, 5, t1, t4, t9, t10) t10(7, 1, t3, t5, t8, t9)

Table 5. Test data for Flottes SOC example.10

Core Test length Power consumption Share test with

1 20 000 11 3 6 14
2 11 000 9 9 12 13
3 10 000 11 1 9 12
4 19 000 6 7
5 10 000 16 —
6 4000 15 1
7 16 000 10 4 12
8 7000 2 —
9 16 000 9 2 3

10 6000 6 —
11 9000 7 —
12 3000 3 2 3 7
13 7000 15 2
14 5000 8 1

to the the schedule shown in Fig. 14 with a total testing time of 46 000. Figure 15
shows the speed of convergence for our algorithm in this case which was test sched-
uled in 4.063 CPU seconds.

5.2.6. ASIC Z

The ASIC Z example, whose details are shown in Table 6, was reported by Zorian.13

The example consists of four RAM’s, two ROM’s and three random logic blocks.

October 23, 2006 17:23 WSPC/123-JCSC 00310

346 H. M. Harmanani & H. A. Salamy

46000

1

2 10

11

84

127 14 13 6 5

39

Fig. 14. Test schedule for Flottes SOC example.10

 400,000

 500,000

 600,000

 700,000

 800,000

 900,000

 1,000,000

 1,100,000

0 20 40 60 80 100 120 140 160

Fi
tn

es
s

Generation

Fig. 15. Curve depicts the fitness of the best chromosomes in a population of 150 for the Flottes

SOC example.10

Table 6. Test length and power data for ASIC Z system.

Block Power (mW) Test length

RL1 295 134
RL2 352 160
RF 95 10
RAM1 282 69
RAM2 241 61
RAM3 213 38
RAM4 96 23
ROM1 279 102
ROM2 279 102

October 23, 2006 17:23 WSPC/123-JCSC 00310

Power-Constrained SOC Test Scheduling Using a Genetic Algorithm 347

RL2

ROM1

ROM2

RAM2 RAM3

RL1 RAM1

R
A

M
4 RF

163 242

262

Fig. 16. Power-constrained test schedule for ASIC Z.

The maximum power dissipation limit, Pmax, is 900mW. The test schedule obtained
using our method is shown in Fig. 16 with an optimal test time of 262 cycles. The
example was test scheduled in 0.6 CPU seconds.

6. Conclusion

We have presented a fast and efficient method for the test scheduling problem
of core-based systems using a “sessionless” scheme. The method is based on a
genetic algorithm that explores the decision space in a very short time. The method
minimizes the overall test application time of a SOC through efficient and compact
test schedules and handles SOC test scheduling with and without power constraints
(Tables 7 and 8). We presented experimental results for various SOC examples that
demonstrate the effectiveness of our method. The method achieved optimal test
schedules in all attempted cases.

Table 7. Test scheduling results without power considerations.

Difference to
Design Number of cores Approach Test time optimum (%)

System S 6 Optimal 1 152 180 —
Chakrabarty 1 204 630 4.5
Larsson 1 152 180 0
Ours 1 152 180 0

System S 7 Optimal 1 182 350 —
Chakrabarty 1 213 330 2.62
Ours 1 182 350 0

d5018 8 Optimal 6809 —
Chakrabarty 7851 15.30
Ours 6809 0

October 23, 2006 17:23 WSPC/123-JCSC 00310

348 H. M. Harmanani & H. A. Salamy

Table 8. Test scheduling results with power considerations.

Difference to
Design Number of cores Approach Test time Pmax optimum (%)

Muresan I 9 Optimal 23 000 000 12 —
Muresan 31 000 000 34.78
Flottes et al. 23 000 000 0
Ours 23 000 000 0

Muresan II 10 Optimal 25 12 —
Muresan 29 16
Larsson 26–28 4–12
Flottes et al. 25 0
Ours 25 0

Flottes 14 Optimal 46 000 30 —
Flottes et al. 52 000 13
Ours 46 000 0

d5018 8 Optimal 6809 950 —
Iyengar 7985 17.27
Flottes et al. 6809 0
Ours 6809 0

ASIC Z (1) 9 Optimal 262 900 —
Larsson 262 0
Ours 262 0

ASIC Z (2) 9 Optimal 300 900 —
Zorian 392 23
Chou et al. 331 9
Larsson 300 0
Ours 300 0

References

1. M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits (Kluwer-Academic Publishers, Dordrecht, 2000).

2. T. Gonzales and S. Sahni, Open shop scheduling to minimize finish time, J. ACM 23
(1976) 665–679.

3. K. Chakrabarty, Test scheduling for core-based systems using mixed-integer linear
programming, IEEE Trans. Computer-Aided Design 19 (2000) 1163–1174.

4. K. Chakrabarty, Test scheduling for core-based systems, Proc. Int. Conf. Computer-
Aided Design (ICCAD) (1999), pp. 391–394.

5. V. Muresan, X. Wang, V. Muresan and M. Vladutiu, A comparison of classical
scheduling approaches in power-constrained block-test scheduling, Proc. Int. Test
Conf. (2000), pp. 882–891.

6. G. L. Craig, C. R. Kime and K. K. Saluja, Test scheduling and control for VLSI
built-in self-test, IEEE Trans. Comput. 37 (1988) 1099–1109.

7. M. Sugihara, H. Date and H. Yasuura, A novel test methodology for core-based system
LSIs and a testing time minimization problem, Proc. Int. Test Conf. (1998), pp. 465–
472.

8. V. Iyengar, K. Chakrabarty and E. Marinissen, Test wrapper and test access mech-
anism co-optimization for system-on-a-chip, Proc. Int. Test Conf. (2001), pp. 1023–
1032.

http://www.worldscientific.com/action/showLinks?crossref=10.1145%2F321978.321985&isi=A1976CH75600007
http://www.worldscientific.com/action/showLinks?crossref=10.1109%2F12.2260&isi=A1988P854500009
http://www.worldscientific.com/action/showLinks?crossref=10.1109%2F43.875306&isi=000089953200007

October 23, 2006 17:23 WSPC/123-JCSC 00310

Power-Constrained SOC Test Scheduling Using a Genetic Algorithm 349

9. E. Larsson and Z. Peng, An integrated system-on-chip test framework, Proc. Design
Automation Test Europe (2001), pp. 138–144.

10. M.-L. Flottes, J. Pouget and B. Rouzeyre, Power-constrained test scheduling for SoCs
under a no session, SoC Design Methodologies, eds. M. Robert, B. Rouzeyre, C. Piguet
and M.-L. Flottes (Springer, 2002), pp. 401–412.

11. C. Ravikumar, G. Chandra and A. Verma, Simultaneous module selection and
scheduling for power constrained testing of core-based systems, Proc. VLSI Design
(2000).

12. Y. Huang, W.-T. Cheng, C.-C. Tsai, N. Mukherjee, O. Samman, Y. Zaidan and
S. Reddy, Resource allocation and test scheduling for concurrent test of core-based
SoC design, Proc. ATS (2001), pp. 265–270.

13. Y. Zorian, A distributed BIST control scheme for complex VLSI devices, Proc. 11th
IEEE VLSI Test Symp. (1993), pp. 4–9.

14. V. Iyengar and K. Chakrabarty, System-on-a-chip test scheduling precedence rela-
tionships, preemptive, and power-constraints, IEEE Trans. Computer-Aided Design
21 (2002) 1088–1094.

15. R. Chou, K. Saluja and V. Agrawal, Scheduling tests for VLSI systems under power
constraints, IEEE Trans. VLSI Syst. 5 (1997) 175–185.

http://www.worldscientific.com/action/showLinks?crossref=10.1109%2F92.585217
http://www.worldscientific.com/action/showLinks?crossref=10.1109%2FTCAD.2002.801102&isi=000177777100009

