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This paper presents an evolutionary algorithm to solve the datapath allocation problem
in high-level synthesis. The method performs allocation of functional units, registers,
and multiplexers in addition to controller synthesis with the objective of minimizing the
cost of hardware resources. The system handles multicycle functional units as well as
structural pipelining. The proposed method was implemented using C++ on a Linux
workstation. We tested our method on a set of high-level synthesis benchmarks, all
yielding good solutions in a short time. An integration path to Field Programmable
Gate Arrays (FPGAs) is provided through VHDL.
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1. Introduction

The enormous progress in VLSI and CAD technology to support automated high-
level synthesis has helped to shorten the time to market digital integrated circuits.
High-level synthesis is the process of transforming a behavioral description into
a structural one. From the input specification, the synthesis system produces a
description of a datapath, that is, a network of registers, functional units, multi-
plexers and buses. The synthesis must also produce the specification of the control
path. There are many different structures that can be used to realize a given behav-
ior. One of the main tasks of high-level synthesis is to find the structure that best
meets the constraints while minimizing other costs. For example, the goal might be
to minimize area while achieving a certain required processing rate.1

The system to be designed is usually represented at the algorithmic level
by a hardware description language such as Verilog or VHDL. The algorithmic
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description is parsed and represented by a Data Flow Graph (DFG) that preserves
data and control flow information. The nodes in such graphs represent the opera-
tions that are performed on the data (edges) coming into them. Arcs or edges leav-
ing the nodes correspond to the results produced by the operations represented by
the nodes. High-level synthesis involves two NP-complete optimization problems.2

The first is a scheduling problem that involves assigning the operators in the DFG
to control steps that represent the clock cycles in the final design. The second
is an allocation problem which is concerned with assigning operations and values
to hardware so as to minimize the amount of hardware needed. Thus, registers
are allocated for variables, operations are assigned to functional units (FUs), and
connections which are multiplexers, buses, or a combination of both, are estab-
lished between them. The allocation phase is constrained by the schedule that it
implements.

There has been during the last decade a growing interest in algorithms that are
based on the principal of evolution. A common term refers to such techniques as
evolutionary computation3; genetic algorithms and evolutionary programming are
among the best known approaches within this class. An important advantage of
evolutionary computation is that they only need an evaluable objective function.
They do not need special pre-knowledge about the problem space. Furthermore,
they are global in scope, and can handle nonlinear, discrete, continuous or mixed
search spaces, thus making them especially suitable for tackling difficult and com-
plex optimization problems. Though they do not always find the optimum solution,
they usually find a good approximation, surprisingly quickly.

This paper presents an evolutionary algorithm to solve the datapath allocation
problem, described as follows:

Given a behavioral description of a digital circuit and a set of design con-
straints, use an evolutionary approach in order to generate a datapath and
a controller pair that: (1) implements the original behavior and (2) meets
the initial design constraints.

The work is motivated by the following issues:

• Rapid exploration of the complex design space using an evolutionary computation.
• A global optimization method that is based on a realistic technology library.
• Bridging the gap between behavioral and logic synthesis. This is accomplished

using VHDL as an interface vehicle and targeting a FPGA family for rapid
prototyping.

The rest of the paper is organized as follows. Section 2 describes our evolutionary
datapath synthesis along with our chromosomal representation, the genetic opera-
tors, and the cost function. Section 3 discusses the bridge to lower level synthesis.
Experimental results are presented and discussed in Sec. 4. Finally, we conclude
with remarks in Sec. 5.
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1.1. Related work

There has been various deterministic approaches to solve the datapath synthe-
sis problem.4–9 However, fewer probabilistic methods were reported. For exam-
ple, Devadas10 used a simulated annealing approach to solve the simultaneous
cost/resource constrained allocation of functional units, registers, and intercon-
nects by improving one solution at a time. In fact, a simulated annealing approach
is similar to a genetic algorithm approach with a population of size one; however,
genetic algorithms perform a multidimensional search by maintaining a population
of potential solutions. Wehn11 proposed a scheduling and allocation approach based
on genetic algorithms. The system formulates the scheduling/allocation problem as
a quadratic assignment problem and applies GA to find an assignment based on a
given cost function. The system uses a special crossover operator in order to avoid
illegal solutions.

Ly12 used a simulated evolution approach where scheduling and allocation are
performed independently. The approach is based on an analogy with the process of
natural evolution but it is different from GA. The method explores the design space
by repeatedly ripping parts of a design in a probabilistic manner and then recon-
structing these parts using application specific heuristics. Martin13 used genetic
algorithms in order to solve the scheduling problem. Dhodhi14 proposed a prob-
lem space genetic algorithm for datapath synthesis where the problem is altered
using a genetic algorithm and then transformed into solution space by means of a
heuristic thus avoiding unfeasible solutions. Blickle15 used an evolutionary approach
for system-level synthesis in order to optimally map a task-level specification onto
a heterogeneous hardware/software architecture. Recently, Mandal16 proposed a
technique for datapath allocation using a genetic algorithm. The approach is based
on force directed datapath binding.

2. Evolutionary Datapath Synthesis

The allocation method starts with a scheduled data flow description of a circuit.
The scheduling can be accomplished using any method; however, we use the method
reported by Paulin et al.7 In what follows, we describe our evolutionary algorithm
that solves the datapath allocation problem with reference to the scheduled data
flow graph of the simple biquad filter, shown in Fig. 1.

2.1. Problem formulation

Given a scheduled data flow graph (DFG), a node corresponds to (1) an opera-
tor that must be assigned to a functional unit during the clock cycle in which it
is scheduled and (2) a value that must be assigned to a register for the dura-
tion of its life time.a In order to optimize the datapath cost, functional units

aThe life span of a variable is the interval between the time the variable was first introduced and
last used.
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Fig. 1. Simple biquad DFG.

can be reused by different operations at disjoint clock cycles while variables with
nonoverlapping life time can share the same register. Thus, the optimization prob-
lem has multiple objectives; i.e., to minimize functional units, registers, and the
number of buses or multiplexers. We consider here design optimization as the
combined minimization of area and maximization of performance. Optimization
is motivated not only by the desire of maximizing the circuit quality, but also by
the fact that synthesis without optimization would yield noncompetitive circuits
at all.17

The basic idea of our algorithm is to merge data flow variables, operations and
connections variables simultaneously in a single merging process using the genetic
operators defined shortly. The motivation is as follows. In most of the existing
allocation techniques, there is a lack of merging coordination, i.e., merging of vari-
ables, operations and connections are performed in separate. However, the merging
order may adversely affect the cost— doing register merging first may increase the
overhead of operation merging, and vice versa.

The specific objective of our scheme is to allow the mapping of DFG nodes into
genes that are the building blocks of our datapath. Genes are merged in order to
explore the reuse of registers and functional units while minimizing the number
of multiplexers inputs. There are two conditions that should be satisfied for the
successful merging of two DFG nodes:

(1) There is no conflict in the use of the two operators, that is, they are assigned
to different clock cycles in the schedule.

(2) The merger of the nodes results in a module that exists in the library.

Formally, two nodes that can be merged under the above conditions are called
compatible.
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2.2. Chromosomal representation

A chromosome in the population encodes all the information that needs to be opti-
mized. Each chromosome represents a candidate datapath solution that implements
the original DFG. The chromosomal representation consists of a vector whose length
is equal to the number of nodes in the DFG.

In order to perform the encoding, we number the DFG nodes one level at a
time, top–down and left to right as shown in Fig. 1. The numbering ensures that
different hardware instances for the same resource are numbered differently. Next,
each DFG node is encoded as a gene in the chromosome. Thus, a gene or, to be
precise, its position in the chromosome represents (Fig. 2):

• The actual hardware resource (ALU or a multiplier).
• The registers that are at the input and output ports of the hardware resource.
• The connectivity data that is stored with each gene so that the chromosome is

an exact representation of the DFG.
• The DFG primary inputs and outputs are stored in a special look-up table.

Figure 3 illustrates the correspondence between a gene and datapath hardware
resources while Fig. 4 shows the datapath after the merger of two nodes, node 3
and node 6. Whenever two nodes are merged and assigned to the same hardware
resource, the index of the genes are updated as follows:

• The functional unit fields in the corresponding genes are assigned the same index.
For example, in Fig. 4, gene 3 and gene 6 have both the number 3 in the functional
unit field indicating that both genes share the same adder.

• If the life spans of the output registers that correspond to the merged nodes
do not overlap, then the corresponding register indexes are assigned the same
index as well. Otherwise, they maintain their original numbering. In Fig. 4, the
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Fig. 2. General chromosome representation.
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Fig. 3. Sample chromosome mapping. The shown chromosome corresponds to a datapath where
there is no resource sharing. Thus, each gene (example gene 6) corresponds to an operator and
inputs and output registers.

Fig. 4. Sample chromosome for the biquad example after the merger of gene 3 and gene 6. This
is illustrated through the merger of functional units indexes. Registers are not merged due to
variables life span overlap.
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life spans of the output registers for gene 3 and gene 6 overlap. Therefore, the
registers cannot be shared and the indexes of the register fields are not updated.

• The multiplexers of the corresponding nodes are updated accordingly in order to
maintain the original data flow.

2.3. Initial population

At the beginning of each run, an analysis of the DFG is performed. Thus, compati-
bility relations among DFG nodes as well as registers life spans are analyzed. Com-
patibility relations are stored in a compatibility graph, Gcomp(V, E), that consists of
vertexes V denoting operations and edges E denoting the compatibility relations
among DFG nodes. Nodes that are connected with edges in the graph correspond
to a partial binding. The variables life spans are stored in a two-dimensional matrix
and are used later during register merger and allocation. The compatibility graph
for biquad example is shown in Fig. 5(a).

The initial population is then generated based on problem specific data in two
steps. First, chromosomes are generated through random enumeration of partial fea-
sible bindings that are directly derived from the compatibility graph Gcomp(V, E).
Then, the remaining chromosomes in the initial population are generated through
random perturbation of the population using the crossover and mutation operators.
The number of chromosomes in each of the above sets of the initial population is
specified by the user.

2.4. Technology library

Minimizing the number of components is not sufficient to guarantee a good design
since some components may be more expensive than others under a given tech-
nology. We use a technology library as an input to our system. The technology library
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Fig. 5. (a) Compatibility graph for the biquad example and (b) sample population of size 8.
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Table 1. 0.35 µm 8-bit
ASIC component costs.

Component Area µm2

Adder 2912
Multiplier 17 648
Register 3056
Mux (2:1) 1016
Mux (4:1) 2184
Mux (8:1) 4952

provides information about the layout area of every individual component along
with the delay propagation and was generated based on 0.35µm technology from
austria microsystems18 with some component costs shown in Table 1. The library
components are parametrized by their bit length. This provides a good estimate
of the datapath cost and controller cost during optimization. The controller cost
is estimated dynamically during the allocation process, subject to the allocation of
registers and multiplexers.

2.5. Objective function

The objective function measures the fitness of each chromosome in the population.
The fitness of an individual is obviously crucial for the transmission of its gene
information to the next generation. The register-transfer level (RTL) structure is
based on a datapath and a controller pair. Datapath components are registers,
multiplexers, and functional units. Thus, the cost of the datapath is simply the
sum of the cost of individual components given as follows:

Adatapath =
∑

i

Afu(i)Nfu(i) + ArNr +
∑

j

Mmux(j)Mj ,

where Nfu(i) is the number of functional units of type i; Afu(i) is the area of
functional units of type i. Nr is the number of registers while Ar is the area of
a register. Finally, Mmux(j) is the number of multiplexers of type j with Mj the
corresponding area.

The cost of the controller is a bit more complex and depends on the style one
uses. If we assume a PLA implementation, the controller area maybe computed
as: AreaController = WidthPLA ∗ HeightPLA. Based on the area estimation model
discussed by Gajski et al.,19 the width could be estimated as the sum of the width
of the input AND array, the width of product-term buffers, and the width of the
OR array. The height of the PLA is computed as the sum of a latch height, a buffer
height, and the height of the AND–OR plane. Thus, the PLA area reduces to:

ACont. = ((n + m) ∗ Max(lw, bw) + Wp) ∗ (lh + bh + r ∗ p) ,

where n and m are the number of PLA inputs and outputs, respectively; Wp is
the width of the product-term buffers; bh, bw are the height and width of a buffer;
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lh, lw are the height and width of a latch; r is the transistor pitch while p is the
number of distinct product terms. It should be noted that the above controller cost
gives an upper bound on the controller area since many optimization procedures
such as folding maybe applied in order to further optimize the cost.

Based on the above, the fitness of chromosome i is given as follows:

fitness(i) =
1

α ∗ Adatapath + (1 − α) ∗ ACont.
, (1)

where α is a parameter that controls the desired trade-off between datapath and
controller area.

2.6. Selection and reproduction

There are many approaches for selecting parent chromosomes for reproduction.
We use the commonly used technique, roulette wheel selection, where the selection
is based on spinning the roulette wheel N times where N is the population size.
A random number between 0 and 1 is generated and compared with the respec-
tive cumulative probability q for the individual under consideration. If the random
number falls in the interval qi−1 < r ≤ qi, or if it is less than the cumulative prob-
ability of the first individual when considering it, then the individual is selected.
It is very clear from the selection process that some “healthy” individuals maybe
selected more than once while weaker individuals have a very small chance of getting
selected.

2.7. Genetic operators

In order to explore the design space, we use two genetic operators: mutation and
crossover. The genetic operators are applied iteratively and by taking turns with
their corresponding probabilities. It should be noted that we have also experimented
with an inversion operator; however, its impact on the optimization process was
not noticeable. It is clear that in order to obtain a meaningful coding, one has to
make sure that the binding suggested by the operators is feasible. Therefore, we
repair unfeasible bindings by breaking apart genes that cause conflicts.

2.7.1. Mutation

Mutation is a generic operator that is used for finding new points in the search space.
Thus, it selects a DFG node at random and replace it with a different function.
We propose a novel mutation operator based on a shift right fashion, as illustrated
in Fig. 6(a). We select two cut-points randomly between 1 and L where L is the
number of DFG nodes. We next perturb the values, except those between the cut-
points, by shifting the genes to the right, subject to the mutation probability Pm.
While shifting, we ensure that nodes that are being merged are compatible.
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Chromosome 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 1 3 4 2 5 6 7

Point 2
CutCut

Point 1

Offspring

1 2 3 4 5 6 7 8

Offspring 1

1 1 3 4 2 5 6 8

1 2 3 4 5 5 7 8Offspring 2

1 3 4 2 6 6 81

Chromosome 2

Chromosome 1

(a) (b)

Fig. 6. (a) Mutation operator and (b) crossover operator.

2.7.2. Crossover

In order to increase the number of optimal solutions, one needs to overcome the
information loss that occurs when the GA converges to a solution. This was done
through the use of multiple point uniform crossover. Crossover is a reproduction
technique that mates two parent chromosomes and produces two child chromo-
somes. Given two chromosomes, we apply multiple-point uniform crossover with a
high probability Pc. Thus, two offspring are created from two parents by selecting
each gene from either parent with probability Pc (Fig. 6(b)). It should be noted it
has been shown that uniform crossover is capable of generating more diverse new
offspring than the traditional one-point or two-point crossover.3

2.8. Algorithm

Every chromosome represents an intermediate datapath that has different number
of registers, multiplexer inputs, functional units and controller cost. During every
generation, chromosomes are selected for reproduction, resulting in new datapaths.
This is accomplished by merging compatible nodes within each chromosome. The
algorithm, shown in Fig. 7, ensures the following:

(1) The merged nodes are compatible. This is done simply by checking if the nodes
that are being merged are connected in Gcomp.

(2) Variables whose life spans do not overlap are merged thus reducing the number
of registers in the resulting datapath.

(3) As nodes are merged, inputs are allocated to new multiplexers that are con-
nected to the input ports of the resulting ALU.

2.8.1. Functional unit allocation

Every time we merge two genes in a chromosome, we are reducing the datapath cost
by the cost of one ALU. Assuming that the combined operation set of the genes
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Evolutionary Synthesis(Scheduled DFG)
{

� Read the scheduled DFG and the resource library. Build the DFG.
� Get the population size (N) and the number of generations (Ng) from the user.
� Generate an initial population, current pop.
� Evaluate(current pop)
� Keep the best()
for i = 0 to Ng do
{

� Select two chromosomes from current pop for mating based on their fitness.
� if (i % 2 == 0) apply crossover with probability Pxover

else apply mutation with probability Pm

� Perform register alignment and apply the Left Edge Algorithm in order to optimize
the number of multiplexers inputs as well as the number of registers.

� Evaluate the cost and the fitness for each chromosome using Eq. (1).
� Save the fittest current solution.
� Repeat the above for the entire current pop forming a new population, new pop.
� current pop ← new pop

}
� Generate VHDL description for the scheduled DFG
� Generate VHDL description for the datapath and the controller
return;

}

Fig. 7. Evolutionary synthesis algorithm.

already exists in the library, the cost of a chromosome is reduced by Cost(ALU1)+
Cost(ALU2) − Cost(ALU1 ∪ ALU2).

2.8.2. Mux allocation

When two genes are merged and assigned to the same chromosome cell, there exist
two possible configurations to assign the input ports to the multiplexers, left or
right mux. For noncommutative operations such as subtraction, the configuration
is unique. In order to obtain a good MUX cost estimation, we use incremental
registers alignment. Thus, when considering two genes for merger, we assign the
noncommutative operations to the multiplexers at the input ports of the resulting
gene first. The reason is that these signals cannot be swapped in order to explore
sharing possibilities with other signals. The remaining assignment is done so as to
reduce the number of multiplexer inputs, right or left, through register alignment.

2.8.3. Registers allocation

A DFG node corresponds to a value that must be assigned to a register for the
duration of its life time. Thus, registers can be merged if their life spans do not
overlap. Merging two or more genes implies merging their output registers as well.
It is possible to have several binding with the same functional units cost but differ
in register configurations. In order to minimize the number of registers, we apply
locally the left edge algorithm (LEA)20 incrementally at the output ports of the
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Fig. 8. GenSys design flow.

resulting gene. The LEA running time is extremely fast since we consider a small
set of registers at a time.

3. VHDL Post Synthesis Module

The VHDL generator automatically generates the resulting structural datapath and
controller in VHDL. Thus, the VHDL generator describes the datapath in terms of
structural components available in the design library in addition to the controller.
The above process involves:

• Creating the two main components: the datapath and the controller.
• Creating the controller by extracting necessary control signals from the datapath.

Feedback latches are added in the finite state machine.
• Creating the datapath by collecting sub-components such as registers, functional

units, and multiplexers selected by the allocator.
• Expanding the above components at the register-transfer or logic level, depending

on the output option. Thus, creating a simulateable design.

The advantages of the VHDL output is that it can be used to verify the func-
tionality of the generated architecture. Furthermore, since we are targeting Field
Programmable Gate Arrays (FPGAs), then a hardware implementation can be eas-
ily implemented. Thus, providing an integration path to production CAD synthesis
tools. Currently, we are targeting the Altera Flex 10K FPGA family. These devices
were chosen primarily due to the sufficient gate count of the family. It should be
noted that the simulation of the design can be carried out. In our case, it was shown
to be correct through comparison with the scheduled VHDL DFG.
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The datapath is described hierarchically using components that are lower level
entities contained in top-level entity descriptions. Each component requires a model
that describes its behavior to the simulator and synthesis tools. These models
are generated dynamically for each instance of the hardware components in the
datapath.

The datapath controller is described using a finite state machine (FSM) model
that has two processes. The first process declares the state register while the sec-
ond process declares the combinational part of the design. Each state in the FSM
corresponds to a clock cycle. The controller has a partially asynchronous operation
using the reset signal. Depending on the value of the state and the rising clock edge,
the appropriate micro-operations are executed.

Each state specifies the next state and a set of control signals. The present state
is usually encoded as binary values pk · · · p1p0 where k ≤ �log2� − 1 and m is the
number of states. The next states are encoded as binary values rk · · · r1r0. Each
output signal, ci, controls a functional unit, a storage element, or an interconnect
component in the datapath. The next state are determined based on the next
contiguous clock cycle, as implied by the schedule, except in the case of loops and
branches. The control signals are determined during allocation.

4. Experimental Results

4.1. Parameter tuning

In order to apply an evolutionary algorithm successfully to a specific optimization
problem, several parameters have to be adjusted. Most important are the control
parameters such as crossover rate, mutation rate, population size N , and the number
of generations Ng. We have performed experiments on a set of problems with a
crossover rate of 1.0, 0.9, 0.8, 0.7, and 0.6, and a mutation rate of 0.2, 0.15, 0.1, 0.05,

and 0.009. The population size was varied between 50 and 200 and the number
of generations between 50 and 500. It was determined experimentally that for the
problems at hand, a population size between 150 and 200 and number of generation
between 200 and 250 was sufficient to arrive at good solutions. The Pxover = 0.9 and
Pm = 0.15 performed quite well. Figure 9 depicts the fitness of the best chromosome
in a population of 500 such chromosomes as well as the mean fitness of all parents,
the minimum and maximum, as a function of the number of generations. It is clear
how quickly our method converges to a good solution before it saturates in less than
150 generations. Figure 10(a) illustrates the improvement in the datapath cost as
the population size is steadily increased while Fig. 10(b) shows the variation in time
as the the number of generations is increased.

4.2. Benchmark results

We implemented the described allocation method on a Pentium 266 PC running
Linux. The synthesis system, GeneSys, is shown in Fig. 8. We tested our method
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Fig. 9. Curves depict the best, worst and average fitness of all parent chromosomes in a popula-
tion of 500 chromosomes for the elliptic wave filter benchmark. Note the quick convergence to a
sub-optimum solution in less than 150 generations.

on a suite of design examples that include the differential equation example, the
fifth order elliptical wave filter, the Facet example, the AR filter, and the dis-
crete cosine transform (DCT) benchmark example. We compare our results to
PSGA Synth,14 ADaPAS,11 HAL,7 simulated evolution method (SE),12 Splicer,21

Facet,22 MABAL,23 Salsa,6 and GABIND.16 All synthesis results have been pro-
duced for the 0.35µm component library from austria microsystems18 with some
component costs shown in Table 1 for illustration purposes. Please note that the
controller cost was not included since, to our best knowledge, no one has reported
in the literature controller cost. Thus, it was difficult to compare.

For all attempted circuits, the system found the best results as implied by the
schedule. The method is very fast and all reported results were produced in at
most 1.87 CPU minutes including scheduling time. In what follows, we present and
discuss these examples.

4.2.1. The facet example

This is one of the earliest examples, and was first introduced by Tseng et al.22 The
DFG has eight nodes. Results comparisons are shown in Table 2. For this example,
our system generated two different solutions that differ with the functional units
binding. The second binding slightly outperform all other systems.

4.2.2. The differential equation example from HAL

This example solves a second order differential equation, and was first introduced
by Paulin et al.7 The DFG has 10 nodes. Results comparisons are shown in Table 3.

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

05
.1

4:
34

7-
36

6.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

ar
m

an
 H

am
an

 o
n 

11
/0

4/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



June 29, 2005 14:14 WSPC/123-JCSC 00236

An Evolutionary Algorithm for the Allocation Problem in HLS 361

 45

 50

 55

 60

 65

 70

 75

 80

 85

 20  40  60  80  100  120  140  160  180  200  220

D
at

ap
at

h 
C

os
t

Population Size

(a)

0

 20

 40

 60

 80

 100

 120

 140

 160

0 5 10  15  20  25  30  35

G
en

er
at

io
n 

N
um

be
r

CPU Time (s)

(b)

Fig. 10. (a) Population size versus design cost and (b) number of generation versus CPU time
for the elliptic wave filter benchmark.

Table 2. Results comparisons for the facet benchmark.

System ALUs # Reg # Mux # Mux in CPU time (s) Cost

Ours 1 (/)(−&+)(∗|+) 7 5 10 3.51 70 391
Ours 2 (+/)(−&+)(∗|) 6 5 10 2.86 67 332
HAL (/)(−&+)(∗|+) 7 6 13 n/a 72 137
Facet (/)(−&+)(∗|+) 8 7 15 n/a 76 357
Splicer (/)(−&+)(∗|+) 7 4 8 1.4 69 227
GABIND (/)(−&+)(∗|+) 6 5 11 28 67 917
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Table 3. Results comparisons for the differential equation benchmark.

System ALUs Regs Mux Mux in CPU time (s) Cost

Ours 1 (*)(*)(+)(−)(>) 5 6 13 7.78 66 527
Ours 2 (*)(*)(+−)(>) 5 6 13 4.72 64 115
PSGA Synth (*)(*)(+)(−)(>) 5 6 13 n/a 66 527
HAL (*)(*)(+)(−)(>) 5 6 13 140 66 527
GABIND (*)(*)(+)(−)(>) 5 — 8 38 64 255
Splicer (*)(*)(+)(−)(>) 5 5 11 1245 66 001

Table 4. Results from the AR filter benchmark.

Clock
Design characteristics cycles ALUs Regs Mux Mux in

Nonpipelined multicycled 11 4(*), 2(+) 8 12 46
multipliers 15 3(*), 2(+) 9 10 45

18 2(*), 2(+) 8 6 36
34 1(*), 1(+) 7 4 35

Pipelined 11 4 (*), 2(+) 8 12 43
multipliers 13 2 (*), 2(+) 8 8 39

16 2(*), 1(+) 10 6 42
20 1(*), 1(+) 9 4 38

Table 5. Results from the fifth-order elliptic wave filter benchmark.

Design Clock
characteristics cycles ALUs Regs Mux Mux in

Nonpipelined multicycled 17 3(*), 3(+) 10 8 32
multipliers 18 2(*), 3(+) 9 8 28

19 1(*), 3(+) 9 5 28
21 1(*), 2(+) 8 5 24

Pipelined 17 2(*), 3(+) 10 8 34
multipliers 18 1(*), 3(+) 10 7 28

19 1(*), 2(+) 10 5 27
21 1(*), 2(+) 8 5 24

For this example, our system also generated two different bindings with the second
binding outperforming all other systems.

4.2.3. The AR filter

The AR filter was initially used by Jain et al.5 We derived schedules using 11, 13,
15, 16, 18, 20, and 34 clock cycles. The schedules are based on multicycled and
pipelined multipliers. Detailed results for this example are shown in Table 4. Note
that it was not possible to report result comparisons for this example due to the
lack of details in the literature regarding this example.

4.2.4. Fifth-order wave elliptic filter

This example was popularized by Paulin et al.7 The example has 34 nodes and
consists of addition and multiplication operators only. We derive six designs based
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on four different schedules in 17, 18 19, and 21 clock cycles and based on mul-
ticycled and pipelined multipliers. In all ran cases, our system report the same
number of functional units but allocated either fewer registers, fewer multiplexer
inputs or both. Note that PSGA Synth did not report the number of multiplexers
inputs. Detailed results for this example are shown in Table 5. Tables 6 and 7

Table 6. Result comparisons from the wave (multicycled multipliers) benchmark.

Clock cycles System ALUs # Reg # Mux in CPU time (s) Cost

17 Ours 3(*), 3(+) 10 32 20.28 11 0864
PSGA Synth 3(*), 3(+) 10 — 10 —
HAL 3(*), 3(+) 12 — 120 —

18 Ours 2(*), 3(+) 9 28 22.61 87 832
PSGA Synth 3(*), 2(+) 9 — 10 —
HAL 3(*), 2(+) 12 — 240 —

19 Ours 1(*), 3(+) 10 27 21.72 75 570
HAL 1(*), 2(+) 12 31 360 81 098
SE 2(*), 2(+) 10 31 1791 122 634

21 Ours 1(*), 2(+) 8 24 14.91 61 888
HAL 1(*), 2(+) 12 31 360 78 186
SE 1(*), 2(+) 11 24 2870 71 056
MABAL 2(*), 2(+) 11 43 — 99 762
PSGA Synth 1(*), 2(+) 10 — 10 —

Table 7. Result comparisons from the wave (pipelined multipliers) benchmark.

Clock cycles System ALUs # Reg # Mux in CPU time (s) Cost

17 Ours 2(*), 3(+) 10 32 24.40 102 816
GABIND 2(*), 3(+) 13 29 210 110 238
SE 2(*), 3(+) 11 31 1511 105 290
HAL 2(*), 3(+) 12 31 120 108 846
PSGA Synth 2(*), 3(+) 10 — 10 —
ALPS 2(*), 3(+) 11 — — —
ADaPAS 2(*), 3(+) 10 — — —

18 Ours 1(*), 3(+) 10 28 18.37 78 040
GABIND 1(*), 3(+) 11 31 251 82 842
SE 1(*), 3(+) 10 24 2096 75 712
HAL 1(*), 3(+) 12 31 240 85 898
PSGA Synth 1(*), 3(+) 10 — 10.25 —
ALPS 1(*), 3(+) 11 — — —
ADaPAS 1(*), 3(+) 9 — — —

19 Ours 1(*), 2(+) 10 27 17.21 74 546
GABIND 1(*), 2(+) 14 27 255 86 770
HAL 1(*), 2(+) 12 26 360 82 988
SE 1(*), 2(+) 11 25 2096 79 350

21 Ours 1(*), 2(+) 10 24 14.91 72 800
HAL 1(*), 2(+) 12 31 360 82 986
SE 1(*), 3(+) 11 24 2870 78 768
Splicer 1(*), 2(+) 11 43 55 86 914

J 
C

IR
C

U
IT

 S
Y

ST
 C

O
M

P 
20

05
.1

4:
34

7-
36

6.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

ar
m

an
 H

am
an

 o
n 

11
/0

4/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



June 29, 2005 14:14 WSPC/123-JCSC 00236

364 H. M. Harmanani & R. Saliba

provide comparison of our system with PSGA Synth, MABAL, HAL, ADapAs,
and SE.

4.2.5. Discrete cosine transform

The Discrete Cosine Transform (DCT) was first reported by Nestor et al.6 It is a
large benchmark that consists of 48 operators: 16 multiply by constant, 25 add,
and 7 subtract. The DCT is used extensively in image coding and compression,
and has been implemented in hardware for special purpose image processors. We
generated four schedules for this example and we ran it with pipelined as well
as with multicycled multipliers. We show the detailed results for this example in
Table 8. Results comparisons are shown in Table 9. Note that in both reported
cases our system slightly outperformed PSGA Synth and Salsa.

5. Conclusion

A datapath allocation problem was presented based on an evolutionary algorithm.
The proposed system can handle pipelined and multicycled operations and creates
a VHDL description targeted for Altera FPGAs. The system provides the best solu-
tion in terms of the number and types of functional units, the number of registers,

Table 8. Results from the Discrete Cosine Transfer (DCT) benchmark.

Clock
Design characteristics cycles ALUs Regs Mux Mux in

Nonpipelined multicycled 10 5(*), 5(+−) 19 14 61
multipliers 11 5(*), 5(+−) 19 15 58

14 4(*), 4(+−) 20 14 64
18 2(*), 3(+−) 18 9 56
19 2(*), 3(+−) 18 8 59
25 1(*), 2(+−) 21 5 56
34 1(*), 2(+−) 19 5 49

Pipelined 10 3(*), 6(+−) 22 13 64
multipliers 11 3(*), 3(+−) 18 9 60

13 3(*), 4(+−) 18 10 59
19 1(*), 3(+−) 14 7 47
20 1(*), 3(+−) 18 9 54
25 1(*), 2(+−) 21 5 56
33 1(*), 2(+−) 20 5 52

Table 9. Results comparisons for the DCT benchmark.

Clock
System cycles ALUs # Reg Cost

Ours 1 18 2(*), 3(+−) 16 92 922
Salsa 18 3(*), 2(+−) 13 98 496
Ours 2 19 2(*), 3(+−) 16 92 922
PSGA Synth 19 3(*), 2(+−) 14 101 552
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and the number of multiplexer inputs. The method was implemented on a Linux
station using C++ and several benchmarks were attempted. Future work includes
the incorporation of test consideration and test scheduling during the synthesis
process.
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