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A NEURAL NETWORKS ALGORITHM FOR

THE MINIMUM COLOURING PROBLEM

USING FPGAs†

Haidar Harmanani,∗ Jean Hannouche,∗ and Nancy Khoury∗

Abstract

This paper presents a hardware implementation to solve the graph

colouring problem (chromatic number χ(G)) for arbitrary graphs

using the Hopfield neural network (HNN) model of computation.

The graph colouring problem, an NP-hard problem, has important

applications in many areas including time tabling and scheduling,

frequency assignment, and register allocation. The proposed algo-

rithm has a time complexity of O(1) for a neural network with

n vertices and k colours. The algorithm was implemented using

VHSIC hardware description language (VHDL) and downloaded on

a field programmable gate array (FPGA) device. The resulting

hardware was simulated and tested on various graphs, all yielding

optimum solutions.

Key Words
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1. Introduction

Artificial neural networks (ANNs) have been studied
since 1943 when the first such model was suggested by
McCulloch-Pitt [1]. Recent years have witnessed a con-
siderable interest in analog Very-large-scale integration
(VLSI) neural networks to solve a variety of hard opti-
mization problems [2]. The difficulty in such optimization
problems is that the best solution is computationally very
hard to find, and the time they require to solve on any com-
puter grows exponentially with the input size. The graph
colouring problem is to determine the minimum number
of colours needed to colour a given graph. Formally, the
problem is defined as follows [3]:

Instance: Graph G=(V,E) and a positive integer
K ≤ |V |
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Question: Is G K-colourable, i.e., does there exist a
function f : V →{1, 2, . . . ,K} such that f(u) �= f(v)
whenever {u, v}∈E?

The graph K-colourability problem has been proven to be
solvable in polynomial time for K =2 but remains NP-
complete for all fixed K ≥ 3 and, for K =3, for planar
graphs having no vertex degree exceeding 4. For an arbi-
trary K, the problem is NP-complete for circle graphs and
circular arc graphs (even their representation as families
of arcs), although for circular arc graphs the problem is
solvable in polynomial time for any fixed K. The general
problem can be solved in polynomial time for comparabil-
ity graphs, for chordal graphs, for (3, 1) graphs, and for
graphs having no vertex degree exceeding 3 [3].

The graph colouring problem is an important prob-
lem and has wide applications and uses beyond map colour-
ing. For example, Leighton [4] and Welsh et al. [5]
showed that the graph colouring problem can be used as
an abstraction of time-tabling problems. Garey et al. [6]
showed that the graph colouring problem can be used to
detect whether there is a short circuit on a printed circuit
board. Chaitin [7] reduced the register allocation problem
to graph colouring. Funabiki et al. [8] and Smith [9]
showed that graph colouring can be used to solve the
frequency assignment problems.

Several software-based approximation algorithms were
developed to solve the graph colouring problem. The
most common approximation algorithm is that of succes-
sive augmentation. In this approach, a partial colouring
is found on a small number of vertices, and this is ex-
tended vertex by vertex until the entire graph is coloured
[4, 5, 10]. Johnson et al. [11] formulated the graph colour-
ing problem using three simulated annealing techniques,
and an augmentation algorithm. Davis et al. [12] pro-
posed a genetic algorithm solution; however, the algorithm
gave poor results. Kirovski et al. [13] proposed a graph
colouring algorithm that uses two distinct algorithms and
a hybrid. The first is based on successive augmentation
while the second is based on a lottery-scheduling-driven
iterative improvement. The hybrid algorithm uses initially
the augmentation-based algorithm to reduce the search
space before proceeding into the lottery-based algorithm.
Takefuji et al. [14] used a discrete Hopfield-type network
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to solve the problem using four colours while Berger [15]
considered the general problem using k colours. Gassen
and Carothers [16] extended these models to minimize the
number of colours required for the colouring of a given
graph. Harmanani [a] formulated the data path allocation
problem in high-level synthesis using a Hopfield neural net-
work computational model. The data path allocation prob-
lem was formulated using clique-partitioning, and solved
using a software-based parallel simulation model.

To improve neural computation processing rates, sev-
eral researchers explored implementing neural networks
using field programmable gate arrays (FPGAs). Omondi
et al. [17] explored various techniques in FPGA implemen-
tations for neural networks using independent component
neural networks. Lim et al. [18] presented two FPGA
hardware implementations for two independent component
neural networks: one that maximizes mutual information
between input and output signals and one that minimizes
the divergence at the output. Li et al. [19] presented
a reconfigurable approach for neural hardware. The ap-
proach explores possible issues in FPGA implementation
of neural networks. Maeda et al. [20] presented an FPGA
implementation for a Hopfield neural network (HNN) sys-
tem with learning capability using the simultaneous per-
turbation learning rule. Watanabe et al. [21] proposed
a hardware implementation to solve the minimum p-quasi
clique cover problem and its implementation on an FPGA.
Abramson et al. [22] presented an implementation of the
HNNs for solving constraint satisfaction problems using
FPGAs. However, the approach used unrealistically small
and simplistic examples to solve the eight queens problem.
Varma et al. [23] presented a neural network solution
for the travelling salesperson’s problem, and proposed a
mapping to an FPGA.

This paper presents a hardware method to solve the
graph colouring problem (chromatic number χ(G))1, an
NP-complete problem, for arbitrary graphs based on the
HNN model of computation. We use a large number
of simple processing elements or neurons. We assume
the McCulloch-Pitts binary neuron that performs the
function of a simplified biological neuron [1].

The remainder of the paper is organized as follows.
In Section 2 we give some background on the HNN. In
Section 3 we formulate the graph colouring problem us-
ing the HNN, and describe the neurons motion equation.
Section 4 presents the parallel neural networks algorithm
while Section 5 describes the hardware implementation us-
ing an FPGA in addition to the hill-climbing mechanism.
We present experimental results in Section 6, and conclude
with remarks in Section 7.

2. Hopfield Neural Network: Background

In 1982, Hopfield introduced the collective computational
property of an ANN and later proposed in 1984 a continu-
ous output model, and showed the circuit for implementing
it. He used the travelling salesman problem (TSP) to
illustrate his model [24, 25].

1 The chromatic number is the smallest number of colours that
can be used to colour a graph.

Figure 1. Simplified Hopfield network with four neurons.

The HNNs [24, 25] are single-layer networks with
output feedback consisting of simple processors or neurons
that can collectively provide good solutions to difficult
optimization problems. A simple Hopfield network with
four neurons is shown in Fig. 1. A connection between
two neurons is established through a conductance Tij that
transforms the voltage outputs of amplifier j to current
input for amplifier i. Externally supplied bias current Ii is
also present in every processor j. Each neuron i receives
a weighted sum of the activation of other neurons, and
updates its activation according to the rule:

Vi = g(Ui) (1)

where g(Ui) can be either a binary or a threshold function
for the case of the McCulloch-Pitts neurons.

Hopfield showed that in the case of symmetric connec-
tion (Tij =Tji) the motion equation for the activation of
the neurons of a HNN always leads to convergence to a
stable state, in which the output voltages of all the ampli-
fiers remain constant. The stable states of a network of N
neuron units are the local minima of the energy function:

E =
1

2

N∑
i=1

N∑
j=1

TijViVj −
N∑
i=1

IiVi (2)

where Vi is the output of the ith neuron and Ii is the
externally supplied input or bias to the ith neuron. E is
referred to as the computational energy of the system. The
equation of motion for the ith neuron maybe described in
terms of the energy function E as follows:

dUi

dt
= −Ui

τ
+
∑
i �=j

TijVj + Ii (3)

where τ =RC is the time constant of the RC circuit con-
nected to neuron i.

Takefuji [26] showed that the above function performs
the parallel gradient descent method. In fact, as long as
the motion equation of the binary neurons is given by (2),
the energy function E monotonically decreases. The state
of the neural network is guaranteed to converge to the local
minimum under the discrete numerical simulation.

3. Problem Formulation

The graph colouring problem is described as follows.
Let G=(V,E) be an undirected graph where V = {v1,
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Figure 2. Neural representation for the graph colouring problem: (a) initial graph, (b) solution (K =3), and (c) neural
representation.

v2, . . . , vn} is the set of vertices in G, and E⊆V ×V
is the set of edges in G. Let K be a positive inte-
ger such as K ≤ |V |. A k-colouring of G is a func-
tion c : V →{1, 2, . . . ,K} such that c(u) �= c(v) whenever
{u, v}∈E. In other words, the numbers 1, 2, . . . , k repre-
sent k colours, and adjacent vertices must have different
colours. The graph colouring problem is to determine
the minimum number of colours needed to colour a given
graph.

To solve the graph colouring problem, it is first nec-
essary to formulate the problem using the Hopfield model.
Let n= |V | and k be the number of colours. The adja-
cency matrix of G is denoted as Adj=(aij) where aij =1
if (vi, vj) is an edge in G, i.e., (vi, vj)∈E and aij =0 if
(vi, vj) /∈E. We formulate the graph colouring problem
using a neural representation that uses a two-dimensional
array composed of n× k neurons (Fig. 2). Every array cell
corresponds to a neuron connected to every other neuron
using a conductance. A neuron in the array fires if it is
to be a part of a specific shared resource. A row in the
network corresponds to set of vertices that have the same
colour, while a column corresponds to a vertex. The firing
rules in the network are determined using an energy func-
tion that will be described next. For example, the graph in
Fig. 2(a) can be coloured using three colours as shown in
Fig. 2(c), an optimal colouring in this case. Thus, vertices
3, 7, and 10 are coloured using the same colour.

3.1 Motion Equation

To enable the neurons to compute a solution to our prob-
lem, we must describe the network using an energy func-
tion that describes the motion of the ith neuron in the
network. This will be done using the two kinds of forces
that exist in neural networks, excitatory and inhibitory.
For example, if vertices vi and vj are to be assigned a colour
k, then neurons (i, k) and (j, k) are encouraged to fire as
the excitatory force. However, if vertices vi and vj are
connected by an edge, then either neuron is discouraged
from firing as the inhibitory force.

The graph colouring problem definition leads to the
following two optimization criteria:
1. There should be only one colour assigned to each

vertex.

2. Adjacent vertices cannot be assigned the same colour.

The first criterion can be expressed by the following
term in the motion equation:

k∑
j=1

Vxj − 1 (4)

This will encourage one and only one neuron to fire in
each column of our neural network representation.

The second criterion can be fulfilled by ensuring that
neurons that fire in the same row are not mutually adjacent.
This can be expressed with the following term in the motion
equation:

n∑
y=1,y �=x

AdjyxVyi

n∑
l=1

Adjyl (5)

whereAdj is the adjacency matrix representation for graph
G.

The above two terms in (3) and (4) ensure that the
network converges to a local minimum. To ensure an
optimal solution, the system must be able to escape local
minima. This is fulfilled using an additional hill-climbing
term in the motion equation. The hill-climbing term is
activated by resetting the highest colour to a zero. It is
excitatory and will encourage the vertex with the highest
colour to fire a new colour thus causing the whole network
to re-evaluate. The hill-climbing term is:

Vxi = 0 if Uxi ≥ Max(Uml), ∀m, l (6)

Based on (3), (4), and (5), the motion equation for the
ith neuron can be described by:

dUxi

dt
= −A

⎛
⎝

k∑
j=1

Vxj − 1

⎞
⎠

−B

⎛
⎝

n∑
y=1,y �=x

AdjyxVyi

n∑
l=1

Adjyl

⎞
⎠ (7)

where A and B are positive connection weights.
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Figure 3. Neuron design.

4. The Colouring Algorithm

The proposed algorithm can be implemented in parallel as
illustrated below, based on the first-order Euler method.

Step 1 : Initialize.

Read the graph to be coloured.

Step 2 : Initialize the neural network

Set t=0; Δt=1; A=B=1

Randomize the initial values of Uxi(t) in the range (−ω, 0)
where x=1, 2, . . . , n and i=1, 2, . . . , n and ω=120

Step 3 : Evaluate Vxi(t) based on the binary function:

V (Xi(t)) = f(Uxi(t)) =

⎧⎨
⎩

0 if Uxi ≤ 0

1 otherwise

Step 4 : Use the motion equation in (6) to compute dUxi(t).

Step 5 : Compute Uxi(t+1) using the first-order Euler
method

Uxi(t+Δt)=Uxi(t)+ΔUxi(t)Δ(t) where x=1, 2, . . . , n
and i=1, 2, . . . , n and ΔUxi =

dUxi

dt

Step 6 : Update.

Increment t by 1. If the system is in equilibrium or t=T
then terminate. Else go to step 3.

5. Hardware Implementation

The main issue in the hardware solution for the graph
colouring problem is the design of a neuron that will repre-
sent a node in an arbitrary graph. A neuron communicates
with other neurons in the network colour the graph. Ad-
jacent neurons check the colours of neighbouring neurons,
and generate a different colour. The process of checking
will stop when all adjacent neurons have different colours,
or when the neurons outputs remain stable implying that
a solution was found.

Neurons were implemented using VHDL.2 As we sup-
port up till seven colours, we represent a colour using a
3-bit word. The neuron design, shown in Fig. 3, consists
of several components including an adjacency checker, a
colour comparator, a linear feedback shift register (LFSR),
an adder, a general purpose comparator, a register and a
multiplexer. Neurons are then interconnected to create a
HNN based on the graph adjacency matrix and the de-
fined energy function. In what follows, we describe these
components and their function in detail.

• Adjacency Checker: The adjacency checker deter-
mines the nodes that are adjacent in the graph. The
checker consists of groups of XNOR gates. Each group

2 Short for very high speed integrated circuits hardware descrip-
tion language.
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Figure 4. Random graph 1 generated using the DIMACS software. (a) graph and (b) hardware simulation.

consists of three gates corresponding to the number of
bits used to determine the colour.

• Colours Comparator: The colours comparator com-
pares the colours of adjacent neurons. If one or more
adjacent neurons have the same colour as the current
neuron, a control signal is sent to the LFSR.

• (LFSR): The LFSR is responsible for the generation
of random 8-bit numbers and is based on the maximal
polynomial: P (x)=x8 +x6 +x5 +x3 +x+1. The
polynomial allows the LFSR to generate 90 pseudo-
random numbers before the sequence restarts all over
again. Each neuron has an LFSR with a different seed
value. The LFSR generates random number when it
receives a control signal from the colours comparator.
The random value is sent next to the main comparator.

• Main Comparator: The main comparator com-
pares the random number received from the LFSR
with the number is that input by the user. If the
input number were greater than the random number,
the comparator’s output would be a logical zero and
a logical one otherwise. This result is then passed to
the adder.

• Multiplexer: The multiplexer chooses one of two
data bus, the result of the comparator and a logical
zero. The select line of the multiplexer is connected
to the enable of the LFSR such that when the select
is “1”, the result of the comparator is passed to the
adder. When the solution is stable, the second input
is passed to the adder.

• Adder: The adder is responsible for changing the
colour of the neuron. This is done by incrementing the
previous colour value stored in the register.

• Register: The 3-bit register stores the colour value
of the neuron. The value in the register is updated
whenever the output of the adder is changed.

5.1 Hardware Hill-Climbing Term

Each neuron “repels” its neighbours to colour the graph.
The collective behaviour of the system attempts to mini-
mize the motion equation (6). However, the dynamics of

the network is unstable, and it oscillates between minima.
To simplify determining the solution, we note that the
oscillatory behaviour of the neuron states is about a local
minimum of E. A moving average circuit is used to obtain
the state corresponding to the “mini” of E. The moving
average of a varying input is obtained by simply feeding
it into shift registers to store its previous values and then
adding up these values.

To escape from local minima, a hill-climbing compo-
nent was implemented based on a controller that consists
of two parts: collect and choose. The collect part is
responsible for collecting the colour index of each neuron
in the graph. The collected values are then compared and
the neuron with the greater colour index is found. The
result is then passed to the second part of the controller
that resets the colour of the corresponding neuron. Thus,
the value stored in the register of the neuron will be reset
and forced to change its colour. If a colour violation results
from this process, then the neural network will try to find a
new solution. Otherwise, if no violation occurred, then the
number of colours is reduced one. The controller accepts
an input that determines how many times it can activate
and reset the value of a certain neuron. After testing the
hill-climbing controller on all graphs, all optimal solutions
were found. The controller allows local changes in the
graph, thus moving towards the optimal solution.

6. Experimental Results

The proposed parallel algorithm was implemented for ver-
ification purposes using VHDL and downloaded on an Al-
tera UP1 Board. We used the Altera EPF10K20 device
which is based on a static SRAM elements. The device
has 1, 152 logic elements and six embedded array blocks
(EABs). Each EAB provides 2, 048 bits of memory and
can be used to implement logic functions. The device has
the equivalent of 20,000 logical gates. The UP1 board was
connected to a VGA monitor to display the original graph
as well as the resulting coloured graph.

To verify our design, two sets of examples were at-
tempted. The number of vertices in the graphs varied from

510



Figure 5. Random graph 2 generated using the DIMACS software. (a) graph and (b) hardware simulation.

Table 1
Graph Colouring Results

Graphs Characteristics # Iterations # Neurons Time (μs)

Example # Vertices # Edges # Colours χ(G)

Simple graph 6 9 3 3 2 18 1.49

Tseng data path 10 10 3 3 43 30 31.52

Register allocation 11 23 4 4 2 44 1.03

Differential equation 10 20 3 3 4 30 1.75

DIMACS random graph 1 15 48 4 4 8 60 17.37

DIMACS random graph 2 15 51 6 6 2 90 4.55

DIMACS random graph 3 15 50 5 5 5 75 8.59

DIMACS random graph 4 15 47 5 5 6 75 13.97

7 to 15, the largest number that we could handle due to
the limited number of gates in the EPF1K20 device.

The first set is from the high-level synthesis benchmark
suite. In specific, the Tseng Datapath Circuit [27], the
Differential Equation example [27] that solves a second-
order differential equation, and the register optimization
example [28] where registers that are used in the same
clock cycle are coloured using two different colours.

The second set of examples were randomly generated
using the graph generator for the colouring problem from
the Center for Discrete Mathematics & Theoretical
Computer Science (DIMACS). The generator was ran
with a 50% edge probability. Four graphs were generated in
this set. Figures 4(a) and 5(a) illustrate two of the random
DIMACS graphs while Figures 4(b) and 5(b) show the
simulation results for the same graphs, respectively. The
graphs were coloured in 17.37 and 4.55μs, respectively.

Table 1 illustrates the specification of these examples
as well as the results. At each run, the network was
randomly initialized by the LFSR, using a random seed
for each neuron. The network was able to colour all

attempted graphs with the optimum number of colour.
This is consistent with the HNNs that deterministically
converge to a “minimum energy”after a series of iterations.
Note that Rin is an initial value entered by the user. The
table also shows the number of colours that was used to
colour the graph while χ(G) shows the minimum number
of colours needed to colour the graph. Note that all graphs
were coloured with the least number of colours in a very
small time. It should be noted that although the graph
colouring problem is NP-complete, the running time did
not increase exponentially as the size of the input increased.

7. Conclusion

We have presented a hardware-based parallel algorithm
to solve the graph colouring problem based on the HNN
model of computation. The method expands the work in
[b] by improving the hill-climbing terms while presenting
more substantial results. The method has shown promis-
ing results in solving a hard combinatorial optimization
problem in a reasonably fast time. The interesting part
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about our parallel algorithm versus “classical” algorithms
is that in our case, convergence time did not depend on the
problem size, as it is clear in Table 1.
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