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This paper presents an efficient method to determine minimum system-on-chip (SOC)
test schedules with precedence and power constraints based on simulated annealing. The
problem is solved using a partitioned testing scheme with run to completion that min-
imizes the number of idle test slots. The method can handle SOC test scheduling with
and without power constraints in addition to precedence constraints that preserve desir-
able orderings among tests. We present experimental results for various SOC examples
that demonstrate the effectiveness of the method. The method achieved optimal test
schedules in all attempted cases in a short CPU time.
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1. Introduction

Advances in modern VLSI technology allow to incorporate complete systems on a
single chip using the system-on-chip (SOC) methodology through the use of pre-
designed and pre-verified intellectual property (IP) cores. IP cores may be soft, firm,
or hard and lead to a short design cycle by including processors, memories, buses,
and interfaces on a chip. Integrating reusable cores into SOC involves complicated
design and test issues since core-based designs are usually tested after assembly,
at the end of the system implementation. Typically, a core is surrounded with
test logic, known as test-wrapper, that serves as the interface between the core
and the test access mechanism (TAM) and provides functions for a normal mode,
an ezternal test mode, and an internal test mode. During external test mode, the
wrapper element drives the host chip in order to test the interconnect while during
the internal test mode the wrapper element tests the core by observing the core
output.! Usually, a combination of built-in self-test (BIST) and external testing
must be used to achieve high-fault coverage.

*This work was supported in part by a grant from the Lebanese National Council for Scientific
Research (CNRS) and by the Lebanese American University.
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One of the main challenges in core-based designs is test time reduction by max-
imizing the simultaneous test of all cores. The problem, known as test schedul-
ing, determines the order in which various cores are tested and is equivalent,
even for a simple SOC, to the NP-complete m-processor open shop scheduling
problem.?7 One classical approach to solve the test scheduling problem is by orga-
nizing tests for the target cores or modules into so-called test sessions. A test ses-
sion brings together the tests of compatible modules. This compatibility is checked
with respect to the test resource sharing needs. Individual tests may be conflicting
because:

1. they share common test resources such as a test bus or a test response compactor
and

2. the power consumption during simultaneous testing exceeds the device power
allowance.

Sessions-based test scheduling techniques assume either equal length test ses-
sions or unequal length test sessions. During “equal length test session”, cores are
arranged into sessions, where the length of each session is set to the longest test time
in all sessions. In the “unequal length test session”, cores are arranged into sessions;
however, the length of a specific session is the time taken to test the core requir-
ing the longest time in that session. Recent techniques in test scheduling arrange
cores for testing without sessions, where a test is initiated as soon as possible if the
resource sharing and power constraints are not violated. These techniques, labeled
as “sessionless”, partition testing with run to completion.%14

An effective test scheduling approach must minimize the test time while address-
ing resource conflicts among cores arising from the use of shared test access mech-
anisms, on-chip BIST engines, and power dissipation constraints. The average test
time per SOC may be reduced further using an “abort at first fail” strategy. Thus,
it is desirable to test components that are likely to fail first using precedence con-
straints that impose a partial ordering on the tests in a test suite.'? Similarly, since
BIST is likely to detect more defects than external tests, it is desirable to apply
BIST first to a core during manufacturing test. Finally, larger cores that are more
likely to have defects are tested first. Embedding precedence constraints in the test
schedule can play an important role in increasing the overall efficiency of a test
suite.

Finally, power consumption complicates the testing of core-based systems as
it impacts test parallelism. Power dissipation during testing is a function of time
and depends on the switching activity resulting from the application of test vectors
to the system.? SOC in test mode can dissipate up to twice the amount of power
it does in normal mode, since cores that do not normally operate in parallel may
be tested concurrently in order to minimize testing time.'® Power-constrained test
scheduling is therefore essential in order to limit the amount of concurrency dur-
ing test application to ensure that the maximum power rating of the SOC is not
exceeded.
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1.1. Related work

There have been various reported approaches for the test scheduling problem in
core-based systems. Craig et al.® solved the general test scheduling problem by
modeling tests compatibility using a test compatibility graph. A heuristic clique
partitioning algorithm was used to generate suboptimal test schedules. Sugihara
et al.?® formulated the test scheduling problem for core-based systems as a combi-
natorial optimization problem which is solved using a heuristic method. The authors
made two restrictive assumptions: (1) Every core has its own BIST logic, and (2)
external testing is carried out for one core at a time. Chakrabarty? solved the test
scheduling problem for core-based systems using an optimal formulation by map-
ping the problem to the m-processor open shop scheduling problem, an NP-complete
problem. The finish time of the schedule is mapped to the latest completion time of
the individual processor schedule, while the length of the job is mapped to the test
time. The problem is solved by minimizing the test finish time using a mixed integer
linear programming (MILP) approach. For large instances where the MILP model
is infeasible, the authors use a heuristic algorithm. Thus, although the objective of
the ILP model was to derive optimal schedules, it was halted in various cases due
to the problem’s complexity, resulting with nearly optimal solutions. The method
was later extended by Iyengar et al.'! to include TAM optimization with core level
wrapper optimizations. Larsson and Peng'*'0 analyzed the test scheduling prob-
lem with power and test resource constraints, where an integrated SOC test frame-
work is presented by analyzing the problem of test access mechanism design along
with test scheduling. Flottes et al.® presented a heuristic approach for test schedul-
ing for SOC with power constraints. The advantage of the method is that it can
handle large size problems in short time. Ravikumar et al2® proposed a method
to solve SOC test scheduling problem under power constraints while Harmanani
and Salamy® proposed a genetic algorithm to solve the power-constrained test
scheduling problem. Other researchers tackled the SOC test scheduling problem
in coordination with TAM assignment. For example, Huang et al.® used a bin
packing-based method to allocate test resources and to schedule test sets in order to
achieve optimal concurrent SOC test. The objective is to minimize test application
time for different TAMs under the constraint of peak power consumption. Su and
Wu?? proposed a heuristic algorithm to solve the test scheduling problem while
assigning TAM wires to the cores. Pouget et al.'? proposed a SOC test schedul-
ing technique that minimizes test time while considering test powers limitations
and test conflicts. Zhao and Upadhyaya?® proposed an efficient heuristic to solve
the power-constrained test scheduling problem using the single-pair shortest path
problem.

1.2. Problem description

This paper presents an efficient approach to SOC test scheduling based on test time,
precedence, and power constraints. Given a set of cores, a set of test resources
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consisting of TAMs and BIST engines, and a suite of tests such that each core
requires at most one test set applied externally and one test set applied by a BIST
engine, the problem we address in this paper is to minimize the overall test time
by optimally determining the start times for the various cores in the test sets such
that (i) no two tests for the same core are applied concurrently, (i) there are no
test resource conflicts, (iii) the schedule incorporates precedence constraints i < j,
such that test ¢ is applied before test j, (iv) the BIST test for each core is applied
before the external test for that core, and (v) the peak power during testing does
not exceed a specified value, Py ax. The method is motivated by the following:

e Test scheduling is an intractable problem that is necessary to reduce test time.
This work presents an efficient and fast simulated annealing algorithm to solve
the above problem. The proposed method obtains optimal test schedules with
precedence and power constraints for large SOCs.

e Precedence constraints are important in order to increase the overall efficiency
of a test suite by testing components that are most likely to fail first.

We assume that the test access architecture has been determined, and the cores
have been assigned to test buses. No restrictions are placed either on the sharing
of BIST logic among cores or on the use of multiple test buses for external testing.

The remainder of the paper is organized as follows. Section 2 introduces simu-
lated annealing while Sec. 3 formulates the annealing SOC test scheduling problem
and describes the cooling schedule, the neighborhood function, and the cost func-
tion. The annealing test scheduling algorithm is described in Sec. 4, while experi-
mental results are presented in Sec. 5. Finally, we conclude with remarks in Sec. 6.

2. Simulated Annealing

Simulated annealing is a global stochastic method that is used to generate approx-
imate solutions to very large combinatorial problems and was first introduced by
Kirkpatrick and co-workers.?! The technique originates from the theory of statis-
tical mechanics, based on the analogy between the annealing process of solids and
the solving procedure for large combinatorial optimization. The annealing algorithm
begins with an initial feasible configuration and proceeds to generate a neighboring
solution by perturbing the current solution. If the cost of the neighboring solution
is less than that of the current solution, the neighboring solution is accepted; oth-
erwise, it is accepted or rejected with probability p = e~ . The probability of
accepting inferior solutions is a function of the temperature, T', and the change
in cost between the neighboring solution and the current solution, Ag. The tem-
perature is decreased during the optimization process, and thus the probability
of accepting a worse solution decreases as well. The set of parameters controlling
the initial temperature, stopping criterion, temperature decrement between suc-
cessive stages, and the number of iterations for each temperature is called the
cooling schedule. Typically, at the beginning of the algorithm, temperature 7T is
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large, and an inferior solution has a high probability of being accepted. During this
period, the algorithm acts as a random search to find a promising region in the
solution space. As the optimization process progresses, the temperature decreases,
and there is a lower probability of accepting an inferior solution. The algorithm
behaves like a down hill algorithm for finding the local optimum of the current
region.

3. The Annealing Test Scheduling Formulation

The proposed test scheduling method starts with a compatibility graph of a set
of cores and generates, through a sequence of transformations, a set of compact
and optimal test schedules. The key elements in implementing the annealing test
scheduling algorithm are (1) the definition of the initial configuration, (2) the def-
inition of a neighborhood on the configuration space and a perturbation operator
exploring it (3) the choice of the cost function, and (4) a cooling schedule. In what
follows, we describe our annealing algorithm for SOC test scheduling with reference
to Fig. 1, where a node C;(T;, P;) represents the test time and the power dissipation
for core i.

3.1. Configuration representation

In order to solve the SOC test scheduling problem, we propose the configuration
shown in Fig. 2(a). The representation is based on a vector where every cell corre-
sponds to a core with a specific test start time, S;. The core test finish time, F;, is

(75, 50)

Co

(75, 75) (125, 50)

C,

(100, 100)

Fig. 1. Simple SOC compatibility graph.
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Core number Test starting time
of each core
0 1 2 n
S, S, S, S,
(a)
C, C,
0 1 2 3
0 0 | 75 125 2 C, C,
100 175

) (<)

Fig. 2. (a) Configuration representation, (b) sample configuration, and (c) corresponding test
schedule.

equal to the test start time plus the core test time, T;, that is, F; = T; + S;. Note
that the test start time, Sy, is not constant, and it changes to the end times of other
cores as the algorithm explores the neighborhood of the solution. Figure 2(b) shows
a sample configuration using the compatibility graph in Fig. 1. The corresponding
test schedule is shown in Fig. 2(c).

3.2. Initial configuration

The initial configuration is chosen to be a random serial schedule, which is the
longest possible test schedule. However, when considering precedence constraints,
a completely random initial configuration is not feasible as it does not meet the
precedence constraints. Thus, the initial configuration in this case is chosen based
on the topological sorting of all tests represented in the precedence constraints
graph. Topological sorting is an ordering of the nodes of a directed acyclic graph
such that for every directed path from node u to node v, u appears before v in the
topological order. The result of the topological sorting is a valid serial schedule that
we use as an initial configuration when precedence constraints are incorporated.

3.3. Neighborhood transformation

A neighboring solution is selected by randomly selecting a core ¢ from the current
configuration and changing its starting time S; to the end time F}; of a randomly
chosen core j (i # j), where 0 < ¢,5 < N.+ 1. If core j is selected such that
j = N.+1, then the start time of core # i is set to 0. The neighborhood solution is
followed with a deterministic compaction transformation, Fill Gap, that compacts
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the solution by filling the gaps or the idle slots among the scheduled cores. The
algorithm for the Fill Gap transformation is shown in Fig. 3.

We illustrate the neighborhood transformation using the example in Fig. 4(a).
For instance, a new neighborhood solution is selected by randomly selecting core C's
and changing its test start time to the test end time of another randomly selected
core, Cy. The resulting configuration schedules core Cs at t = 125. The test schedule
for the resulting configuration is shown in Fig. 4(b).

Fill_Gap(Configuration, i))
{
Core(ti, fi) < Configuration [i]
List; = All cores whose start_time > t;
Lista = All cores such that start_time < ¢; < end_time
if Listo is empty
subtract f; — t; from all nodes in List;
else {
max1 = Largest end_time in Listg
for (all nodes u(t;, fj) € List1) {
maxs = Largest end_times for cores in Listy < t;
if (t; < max1)
if (fi — maxza > 0)
ty =1t; — (fi — max2)
else
if t; > max1)
if (fi —max1 > 0)
ty =1t; — (fi —maz1)
else
max3 = Largest end_time in List; and Lista <t;
tj =t; —maxs

Fig. 3. Fill gap transformation pseudo-code.

00 75 175

0 0 75 125

100 175

(a) (b)
Fig. 4. (a) Neighborhood transformation, and (b) test schedule.
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3.4. Cost function

Given a set of N, cores {Ci,Cs,...,Cn.} with corresponding test times
{T1,Ts,...,Tn,} and corresponding peak powers {P;, Ps,...,Py_}, and a partial
ordering on the test suite, the objective function is to minimize the overall test time
by optimally determining the start times for the various cores in the test sets such
that the peak power is not exceeded during testing and the specified ordering in
the test suite is preserved. The peak power dissipation is estimated as EC,iPi .

3.5. Cooling schedule

The cooling schedule is the set of parameters controlling the initial temperature, the
stopping criterion, the temperature decrement between successive stages, and the
number of iterations for each temperature. The cooling schedule was empirically
determined as follows:

1. Tinie = 4000.

2. The temperature reduction multiplier, «, is set to 0.99.

3. The number of iterations, M, is set to 5, while the iteration multiplier, 3, is set
to be 1.05.

The algorithm stops when the current temperature, 7, is below 0.001.

4. Test Scheduling Algorithm

Each configuration represents an intermediate test schedule that has a different
cost. During every annealing iteration, the neighborhood of the configuration is
explored. The algorithm must ensure the following:

1. Cores that are tested concurrently are compatible.

2. The test suite ordering, as specified in the precedence graph, is respected.

3. The peak power of cores that are tested concurrently does not exceed the max-
imum power rating of the SOC, Pyax.

Two test sets are conflicting if (i) they share resources such as an external
bus; (ii) they share BIST test set for cores that share a BIST resource or they
are the external and BIST components of a core’s test set. Cores compatibility is
represented using a compatibility graph where nodes represent tests while edges
indicate compatibility among nodes. The precedence constraints are represented
using a directed graph where a directed edge between nodes ¢ and j indicates that
node j cannot start unless node 7 is completely finished. Thus, S; > S; + T;, where
S; 1s the test start time of core ¢ and T; is its test time duration.

The algorithm, shown in Fig. 5, starts by selecting an initial configuration and
then a sequence of iterations is performed. In each iteration a new configuration is



Int. J. Comp. Intel. Appl. 2006.06:511-530. Downloaded from www.worldscientific.com
by Harman Haman on 11/04/14. For personal use only

A Simulated Annealing Algorithm for SOC Test Scheduling 519

Annealing_TestScheduling()
{
So = Initial solution
« = Cooling rate
[ = Tteration multiplier
To = Initial temperature
MazTime = Total allowed time for the annealing process
Mo = Time until next parameter update
BestS = Best solution
T =T
CurrentS = Sy
CurrentCost = Cost(CurrentS)
BestCost = Cost(BestS)
Time = 0
do {
M = My
do {
NewS = Neighbor(CurrentS);
NewCost=Cost(NewS)
Acost = NewCost — CurrentCost
If (ACost < 0)
CurrentS=NewS
CurrentCost=Cost(CurrentS);
If (NewCost < BestCost) then
BestS=NewS
BestCost = Cost(BestS)
else if (Random < 6_% then
CurrentS=NewS
CurrentCost = Cost(CurrentS);
M=M-1
} while (M > 0)
Time = Time + Mo;
T = a «T;
Mo = B * Mo;
} while (Time > MaxTime and 7" > 0.001);
Return(BestS);
}

Fig. 5. Annealing SOC test scheduling algorithm.

generated in the neighborhood of the original configuration by randomly changing
the test start time of a randomly selected core to the finish time of another randomly
chosen core. The solution is always feasible as the neighborhood transformation uses
a constructive approach that generates feasible test schedules. The variation in the
cost functions, A¢, is computed, and if negative then the transition from C; to
Ciy1 is accepted. If the cost function increases, the transition is accepted with
a probability based on the Boltzmann distribution. The temperature is gradually
decreased throughout the algorithm from a sufficiently high starting value, Tini =
4000, where almost every proposed transition, positive or negative, is accepted to
a freezing temperature, T = 0.001, where no further changes occur.
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5. Experimental Results
5.1. Benchmarks

The proposed algorithm was implemented using the Java language on a Pentium
Centrino with 2.13 GHz clock and 1 GB of RAM. The algorithm was tested on var-
ious benchmark examples from the literature. We compare the proposed approach
with the techniques proposed by Chou et al.,* Flottes et al.,® Larsson et al., 17
Muresan et al.,'® and Zhao and Upadhyaya.?* Detailed results comparisons are
shown in Tables 5 and 6.

5.1.1. Muresan SOC

The Muresan SOC example was reported by Muresan et al.'® and used later by
other researchers for comparison purposes. The SOC, shown in Table 1, has 10
tests and a power constraint of Py.« = 12. The example was later modified to
include 20 tests with a power constraint of Py . = 15.

The test schedule proposed by Muresan et al.'® for the Muresan 10 SOC leads
to a total testing time of 29 cycles. We generate the schedule shown in Fig. 6 with
a total testing time of 25 cycles. The example was test scheduled in 0.284 CPU
seconds. The second SOC, Muresan 20, was test scheduled by Larsson et al.!®!4
leading to 49 and 47 cycles, respectively. Our algorithm generated a test schedule
with a 39 cycles total test time, an improvement of 20.5% and 25.6%, respectively.
The Muresan 20 SOC test schedule was generated in 0.324 CPU seconds.

5.1.2. Muresan II SOC

The Muresan II SOC, whose characteristics are shown in Table 2, was first reported
by Muresan et al.'® and used later by Flottes et al for comparison purposes.
The example was test scheduled in 31,000,000 cycles. The authors improved the
“unequal length session approach” by allowing several cores to be tested sequen-
tially within a session. The example was test scheduled based on our anneal-
ing approach using a “sessionless” scheme in 23,000,000 cycles, which is the
optimal test schedule (Fig. 7). The example was test scheduled in 0.475 CPU
seconds.

Table 1. Test data for the Muresan SOC.

t1(9,9,t2,t3,t5,t6,ts,t9)  te(2,4,t1,t7,ts,t9)

t2(4,8,t1,t3,t7,18) t7(1,3,t2,t3,t4,t6,ts,t9)
t3(1,8,t1,t2,ta,t7,t9,t10)  t8(4,2,t1,t2,t4,t6,17,t9,t10)
ta,(6,6,t3,t5,t7,18) to(12,1,t1,t3,15, 6,17, ts, t10)

t5(5,5,t1,ta,to, t10) t10(7,1,t3,15,ts,to)
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power

0 8 10 14 15 19 24 25 TestTime

Fig. 6. Test schedule using a sessionless scheme for the Muresan I SOC example.!8

Table 2. Test data for the Muresan II SOC example.®

Core P; D; Share test with

1 6 16,000 678

2 5 10,000 4567

3 4 9000 679

4 2 7000 5

5 8 4000 247

6 2 3000 123

7 2 2000 1235

8 2 1000 1

9 1 3000 3

Int. J. Comp. Intel. Appl. 2006.06:511-530. Downloaded from www.worldscientific.com
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0 16k 17k 21k 23k  TestTime

Fig. 7. Power-constrained test schedule for the Muresan 1T SOC example.5

5.1.3. Flottes SOC

The Flottes SOC example was first reported in Flottes et al.5 The example includes
14 cores with a power constraint of P, = 30. The testing time obtained in Ref. 6
for this example is 52,000 cycles while our method leads to the schedule shown in
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21 ‘

Fig. 8.

Fig. 8 with a total testing time of 46,000 cycles. The test schedule was generated

in 2.031 CPU seconds.

5.14. ASIC Z

The ASIC Z example, whose details are shown in Table 3, was reported by Zorian.?
The example consists of four RAMs, two ROMs, and three random logic blocks.
Our proposed approach results in a test schedule with a test time of 262 cycles for
a maximum power constraint, Py ax, of 900 mW. The schedule, shown in Fig. 9, was

Test schedule for Flottes SOC example.b

generated in 0.6 CPU seconds.

Table 3. Test length and power data for ASIC Z system.
Block Power (mW) Test length
RL1 295 134
RL2 352 160
RF 95 10
RAMI1 282 69
RAM2 241 61
RAM3 213 38
RAM4 96 23
ROM1 279 102
ROM2 279 102
163 242
T
E RL1 RF| RAMNA1
S
ROM1 RAM2 | RAM3 262
ROM2 RL2

Fig. 9.

Power-constrained test schedule for ASIC Z.
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5.1.5. Ericsson design

117 consists of 18 cores including

The Ericsson SOC first reported by Larsson et a
eight DSPs, a DSP control, two memory banks, a common program memory and a
common data memory, a control unit for each memory bank, common data mem-
ory controller and common program memory controller, and five logic blocks. The
Ericsson SOC has a total of 170 tests with a maximal allowed power consumption
of Ppax = 5125 mW. The Ericsson SOC was scheduled using our method in 30,899

cycles, which is the optimal in this case.

5.1.6. Zhao SOC

The Zhao SOC example is a hypothetical but a non-trivial SOC that consists of
seven embedded cores from the ISCAS’85 and ISCAS’89 combinational and sequen-
tial benchmarks. The example was first reported in Ref. 24 and then used later by
Zhao and Upadhyaya?® for comparison purposes. Each core is provided with a test
set that includes, among others, the number of test patterns, number of capacitance
nodes, and the peak switching frequency. The power constraint, Pyax, is assumed
to be 900 mW. The compatability graph for this example is shown in Fig. 10, where
each node T;(test_time, power) represents the test time and the power dissipation
of core 1.

The example was scheduled in 618,915 cycles using the block-test method*
and in 561,672 cycles using the greedy best-fit algorithm.'® Both methods were

(45784, 168)

(399721, 185) (274200, 417)

(206346, 712)

@
(12848, 211)

(5439, 129)

(81126, 92)

Fig. 10. Compatibility graph for the Larsson SOC.®
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power
897 480546
13
4
t 15
T T T
0 81126 206346 257569 493394

TestTime

Fig. 11. Solution for the Larsson SOC.

implemented by Zhao and Upadhyaya?* who scheduled the example in 493,394
cycles. The example was test scheduled using our proposed method in 493,394
cycles, as shown in Fig. 11, a significant improvement of 13.83% over Ref. 15 and
25.44% over Ref. 4. The example was test scheduled in 0.840 CPU seconds.

5.1.7. d5018 SOC

The d5018 system, whose details are shown in Table 4, is an example SOC that con-
sists of eight ISCAS benchmark cores. The example was scheduled by Chakrabarty?
using the shortest-task-first and later in Ref. 10 using precedence constraints. While
the total testing time obtained using the shortest-task-first is 7851 cycles, the total
testing time obtained using our approach is 6809 cycles, an improvement of 15.30%.
The schedule for the d5018 example obtained by our approach is shown in Fig. 12
and was test scheduled in 1.114 CPU seconds.

The d5018 SOC example is next test scheduled by considering power constraints.
Iyengar and Chakrabarty'® test scheduled this example using an MILP formulation
in 7985 cycles with a power constraint of Py = 950 mW. The power-constrained
test schedule for d5018 using our approach is shown in Fig. 13, where the total
testing time is 6809 cycles, an improvement of 17.27%. The example was test sched-
uled in 1.785 CPU seconds.

The example was next test scheduled by considering power and precedence con-
straints using a test architecture that consists of one external test bus and four
BIST engines and assuming that for each core the BIST test should precede the
external test. The total test time obtained using our approach is 7065 cycles. The
schedule for the example is shown in Fig. 14 and was generated in 4 CPU seconds.

Finally, the d5018 example was test scheduled by adding precedence constraints
to the 950 mW power constraint resulting with the schedule shown in Fig. 15.
Our method test scheduled the example in 7065 cycles, a substantial improvement
of 23.47% over the 8723 cycles test time reported in Ref. 10. The example was
generated in 4.5 CPU seconds.



525

A Simulated Annealing Algorithm for SOC Test Scheduling

0 76£'€6¥ yoeoxdde pesodorg
0 $6£'C67 wmﬁ%mkﬂﬁﬁQD pue oeyy,

€8°¢T TLI'T9S ¢ 8U9J pue uossrer

At G16'819 10 99 N0y
— 006 76£°€6T rewndQ L rgO0S ovyzZ
0 668°0¢ yoeoadde pesodoi]

Ger-0 29LYE-668°08 Lrpr 1P 92 uossIe]
— gerg 668°0¢ rewrydQ 8T OSSO
0 292 poreordde pasodoig
0 29¢ ¢pSued pue uossier]
— 006 414 rewrndQ 6 127 OISV
0 000°9¥ yoroadde posodorg
€l 000G o0 19 S9NOL
- 0¢ 000°9% rewndo V1 9S9M0[g
0 000°000°€T yoeoxdde pesodorg
0 000°000°€Z o110 72 9911014

8L'¥E 000°000°T¢€ gp P 99 Ues Ny
— 45 000°000°€% rewrndQ 6 71T Tesemy
0 68 yoeoxdde pssodoig

9°¢e 67 cpUEsoInI\

¢0g Ly ¢1dSL
— qT 6¢ [ewrndQ 01 90T TesoIny
0 [ste yoeoxdde pssodoig
0 &4 910 72 $9130[ ]

o1 8¢—9¢ ¢pSued pue uossier]
91 6T 1P 12 wesoIIy
— 4 514 [ewndQ 01 10T UesaImny

(%) wmundo oy
QOURIOYI(] xew g QWILT, 1597, oroaddy $9I00) JO JoquuIN N uSiso(]

‘suorjeIapIsuod 1omod Yjrm s3nsal Surnpayds 4891, ¥ 9[qeL,

*Ajuo asn [euosiad 104 HT/70/TT U0 UeweH UewleH Aq
W00 1US 10SP [J0M* MMM WO POPEO UMOQ “0£G-TTS:90°900¢ ‘1ddYy “jeiu| ‘dwo ¢ |



526  H. M. Harmanani & H. A. Salamy

External Test Schedule
c, Cs

134 2677 4034 4488 6391

BIST Schedule

2048 4752

6809
c, C,

2304 3701 4469

C, C4 Cg [C4C4Cq

Fig. 12. Test schedule for d5018.
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Fig. 13. Test schedule for d5018 under power constraints.

5.2. Results analysis

From the various attempted SOC benchmarks, we have noted the following
observations:

e Our method performs consistently well for all SOC examples and obtains the
optimal test scheduling time, irrespective of the number of tests or the number
of constraints. For example, while some methods obtain optimal schedules for
some SOCs they fail to do so for other SOCs. This can be best illustrated in
Table 5. For example, Flottes et al.5 achieve optimal schedules for the Muresan
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Fig. 14. Test schedule for d5018 under precedence constraints on BIST and external tests.
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Table 5. Test data for the d5018 system.

Core  BIST Test Time External Test Time Power in BIST Mode (mW)

1 256 134 54
2 2048 2543 159
3 2048 1357 453
4 256 454 57
5 256 1903 324
6 256 242 72
7 2048 — 792
8 1024 176 75

Table 6. Test scheduling results for the d5018 SOC.

Scheduling constraints Approach Test Time Difference to Optimum
(%)
Resource Optimal 6809 —
Chakrabarty? 7851 15.30
Proposed approach 6809 0
Power (950 mW) Optimal 6309 —
Chakrabarty? 7851 15.30
Iyengar and Chakrabarty'© 7985 17.27
Flottes et al.t 6809 0
Proposed approach 6809 0
Precedence on BIST and Optimal 7065 —
external test constraints Chakrabarty? 7065 0
Proposed approach 7065 0
Power, precedence, and Optimal 7065 —
test constraints Chakrabarty? 8723 23.47
Proposed approach 7065 0

10, but fail to do so for the Flottes SOC.6 The same observation can be made
in Table 6 where Chakrabarty? obtains the optimal test schedule for precedence
on BIST and external test constraints case and sub-optimal test schedules in the
remaining three cases.

e As indicated earlier, the test scheduling problem is intractable. Most reported
techniques are based on deterministic algorithms whose complexity is related to
the number of tests. Our non-deterministic algorithm performs well due to two
main reasons. The first is the configuration encoding and the efficient neigh-
borhood transformation that allow the system to locally explore compact test
schedules. The second reason is that we combine our method with a deterministic
transformation that reduces idle slots in the schedule thus drastically improving
the convergence time.

6. Conclusion

We have presented a fast and efficient method for the test scheduling problem of
core-based systems using a partitioned testing scheme with run to completion. The
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method is based on a simulated annealing algorithm that explores the decision space
in a very short time. The method minimizes the overall test application time of a
SOC through efficient and compact test schedules and handles SOC test schedul-
ing with and without power constraints in addition to precedence constraints. We
presented experimental results for various SOC examples that demonstrate the
effectiveness of our method. The method achieved optimal test schedules in all
attempted cases.
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