
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tjca20

Download by: [University of Toronto Libraries] Date: 07 October 2016, At: 04:02

International Journal of Computers and Applications

ISSN: 1206-212X (Print) 1925-7074 (Online) Journal homepage: http://www.tandfonline.com/loi/tjca20

Concurrent BIST Synthesis and Test Scheduling
Using Genetic Algorithms

H.M. Harmanani & A.M.K. Hajar

To cite this article: H.M. Harmanani & A.M.K. Hajar (2007) Concurrent BIST Synthesis and Test
Scheduling Using Genetic Algorithms, International Journal of Computers and Applications,
29:2, 132-142

To link to this article: http://dx.doi.org/10.1080/1206212X.2007.11441841

Published online: 11 Jul 2015.

Submit your article to this journal

Article views: 3

View related articles

http://www.tandfonline.com/action/journalInformation?journalCode=tjca20
http://www.tandfonline.com/loi/tjca20
http://dx.doi.org/10.1080/1206212X.2007.11441841
http://www.tandfonline.com/action/authorSubmission?journalCode=tjca20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tjca20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/1206212X.2007.11441841
http://www.tandfonline.com/doi/mlt/10.1080/1206212X.2007.11441841

International Journal of Computers and Applications, Vol. 29, No. 2, 2007

CONCURRENT BIST SYNTHESIS AND TEST

SCHEDULING USING GENETIC

ALGORITHMS

H.M. Harmanani∗ and A.M.K. Hajar∗

Abstract

This paper presents an efficient method for concurrent built-in

self-test synthesis and test scheduling in high-level synthesis. The

method maximizes concurrent testing of modules while performing

the allocation of functional units, test registers, and interconnects.

The method is based on a genetic algorithm that efficiently explores

the testable design space and finds a sub-optimal test registers as-

signment for each k-test session. The method was implemented us-

ing C++ on a Linux workstation. Several benchmark examples have

been implemented and favorable design comparisons are reported.

Key Words

Testable synthesis, test scheduling, genetic algorithms

1. Introduction

High-level synthesis is the translation of a behavioral
description into a structural one by finding the structure
that best meets the constraints while minimizing other
costs. From the input specification, the synthesis process
produces a description of a register-transfer level (RTL)
circuit, that is, a network of registers, functional units,
multiplexers, and buses [1]. The data path is usually
synthesized in two steps: operations scheduling and re-
sources allocation. There are usually constraints on the
design that may limit the total area, throughput, delay,
or power consumption. The high-level synthesis process
involves navigation through the design space making ap-
propriate trade-offs until the best solution satisfying the
constraints is reached. High-level synthesis has several
advantages. First, it increases designers productivity by
exploring the design space in a relatively short time; the
resulting synthesized designs are correct by construction.
Another advantage is that it reduces silicon literacy re-
quirements as designers do not have to be familiar with
the details and peculiarities of technology-specific aspects.
The main difficulty in this process, however, is that most

∗ Department of Computer Science and Mathematics, Lebanese
American University, Byblos, 1401 2010 Lebanon; e-mail:
haidar@lau.edu.lb, aouni.hajar@gmail.com

Recommended by Dr. Sunil Das
(paper no. 202-1774)

behaviors have no implied architecture. Thus, it is rather
difficult to develop synthesis algorithms that will generate
the same quality from all possible design descriptions.

VLSI chips designers, on the other hand, have long
realized the importance and advantages of incorporating
testability early in the design process. It is estimated that
the cost of the test process is growing and that it is between
30% and 40% of the total production cost. Design for testa-
bility (DFT) methodologies emerged to reduce testing cost
and they range from ad-hoc techniques to structured ap-
proaches such as scan design and built-in self-test (BIST)
design. BIST is a “test per clock” DFT technique that
allows a circuit to test itself by embedding external tester
features into the chip itself [2]. The main idea of BIST is to
configure the data path, during test mode, into a number
of self-testable combinational logic blocks (CLBs) or ker-
nels that are fed directly or indirectly by pseudorandom
pattern generators, and each output feeds either directly
or indirectly a signature analyzer. To reduce test time,
kernels are organized into test sessions. Obviously, the
minimal test time would be achieved by simultaneously
testing all kernels; however, design constraints may prevent
this full parallelism. For example, tests maybe conflicting
because they share common test resources such as a test
bus or a test response compactor [3]. A test session brings
together the tests of compatible kernels; this compatibility
is checked with respect to the test resource sharing needs.

Consider the circuit shown in Fig. 1(a). To test
this circuit under the BIST methodology, we config-
ure registers R1, R3, and R4 as test pattern genera-
tors (TPGRs) while register R2 is configured as a multi-
ple input signature register (MISR). Register R5 is con-
figured as a built-in logic block observation (BILBO)
register, which is a test register that in addition to its
normal operation mode, operates during test mode as
an MISR or as a TPGR but in different test sessions
[4]. The modified circuit can now be tested in two test
sessions; T1 = {ModuleA, TPGR3, TPGR4, BILBO} and
T2 = {ModuleB, TPGR2, BILBO,MISR}. The test time
for this circuit is equal to the test time needed to test both
sessions, T1 +T2.

To explore further trade-offs between test time and
hardware overhead, the circuit in Fig. 1(a) can be re-

132

Figure 1. (a) Simple circuit; (b) testable circuit in two test sessions; and (c) testable circuit in one test session.

designed by reassigning the registers’ test attributes. For
example, R5 maybe reassigned as a CBILBO [2] where a
CBILBO is a test register that can operate simultane-
ously, in the same test session, as an MISR and a TPGR.
This leads to the circuit shown in Fig. 1(c), which can
be tested in one test session, T = {ModuleA, TPGR3,
TPGR4, CBILBO, ModuleB, TPGR2, MISR}. The
disadvantage of the CBILBO register is that it is very
costly in area (about 1.75 times the size of a BILBO [5])
and induces more delay during normal operation mode.

1.1 Genetic Algorithms

Genetic algorithms (GAs) [6] are stochastic combinatorial
optimization techniques based on evolutionary improve-
ments. A operate on a population of knowledge structures,
chromosomes, that represent candidate solutions. During
every generation, a number of chromosomes with the worst
fitness values is removed from the population and replaced
by new chromosomes obtained from applying genetic op-
erators. The execution of the algorithm is iterated until
either the best chromosome, representing an optimal solu-
tion, is found or a predetermined stopping condition, such
as maximum number of generations or maximum num-
ber of fitness evaluations, is satisfied. In the later case,
the chromosome with the best fitness in all generations is
returned.

1.2 Related Work

Several deterministic approaches for high-level synthesis
with test have been investigated [7]. One of the earliest
high-level BIST synthesis was proposed by Papachristou
et al. [8, 9] where a method that generates self-testable
designs without self-adjacent registers was proposed. The
method was later improved in Harmanani et al. [10]. Avra
[11] proposed a register allocation method that minimizes
the number of self-adjacent registers in the datapath and
resolves the conflicts due to remaining self-adjacency by
using CBILBOs. Parulkar et al. [5, 12] proposed a method
that minimizes the sharing of test registers to reduce BIST
area overhead. During the register assignment phase,
input and output variables of data flow graph (DFG) are
merged in a maximal sharing of the registers to avoid self-
adjacent registers. The aim of the method is to ensure

that the functional area is not compromised in the quest
for low BIST area overhead. Olcoz et al. [13] proposed a
method that explores area trade-offs during testable data
path allocation. The method is based on the premise of
no design space restriction such as avoiding self-adjacent
registers. Recently, Zwolinski et al. [14] proposed a BIST
method with design and time exploration.

The above approaches investigated test synthesis only
and did not approach the problem of minimizing test time.
While Craig et al. [15] proposed one of the most classical
work in test scheduling through optimal and sub-optimal
procedures, Harris et al. [16] investigated synthesis tech-
niques to synthesize data paths with BIST such that the
time required for testing is minimized by examining condi-
tions that prevent concurrent testing of modules. Recently,
Kim et al. [17, 18] proposed a BIST datapath synthesis
approach based on ILP that performs testable synthesis
in addition to test scheduling. Other researchers tackled
the synthesis problem using non-deterministic approaches.
Dhodi [19] proposed an GA for datapath synthesis where
the problem is altered using an GA and then transformed
into solution space by means of a heuristic.

1.3 Problem Description

This paper presents a concurrent method for testable high-
level synthesis and test scheduling. Given a behavioral
description of a digital circuit and a set of design con-
straints, we use an GA to generate a self-testable RTL
datapath that: (1) implements the original behaviour; (2)
minimizes the overhead of test registers; and (3) mini-
mize test overhead within a given test session. The main
features of the proposed method are:

• A model for testable RTL synthesis datapath based
on the BIST methodology. The method discriminat-
ingly incorporates all kind of test registers including
BILBOs and CBILBOs.

• Concurrent allocation of functional units, intercon-
nects, and test registers during the synthesis process.
The method finds a sub-optimal test registers assign-
ment for each k-session. This allows the designer to
trade-off design area, test time, and the number of test
sessions.

• Rapid exploration of the complex design space using
an efficient GA.

133

The rest of the paper is organized as follows. Sec-
tion 2 formulates the genetic testable datapath synthesis
problem including the chromosomal representation, ge-
netic operators, and cost function. Section 3 describes the
genetic algorithm while experimental results are presented
in Section 4. We conclude with remarks in Section 5.

2. Genetic Test Synthesis Formulation

Consider a DFG node associated with a variable instance
V . It corresponds to an operation that must be assigned
to a functional unit and to a value that must be assigned
to a register for the duration of the variable’s life span
L(V). The input edges of node V are connected to the
outputs of other nodes.

Figure 2. (a) Simple DFG and (b) kernel that corresponds
to node 8.

Fig. 2(a) shows a simple DFG where node 8 corre-
sponds to the test kernel shown in Fig. 2(b). The kernel
has an adder functional unit, two registers at the input
ports, and one register at the output port. The test at-
tributes for the registers depend on other kernels as ker-
nels’ inputs are connected to other kernel’s outputs. The
objective of our method is to map the DFG nodes onto
test kernels and to incrementally explore the design space
by minimizing the area of the k-sessions that are generated
where k=1, 2, 3, . . . , N and N is the number of test ker-
nels in the circuit. The algorithm finds a range of designs
with different area and test time where every BIST circuit
for a k-test has the least area. There are two conditions
that should be met for the successful merging of two test
kernels:

1. There is no conflict in the use of the kernels’ functional
units. Furthermore, the merger should result in a
feasible functional unit that exists in the library.

2. Test registers are assigned concurrently with test
scheduling. This provides a trade-off among area,
delay, and test time.

The first condition implies that DFG nodes are sched-
uled at different clock cycles while the second condition
is accomplished through the use of test registers including
CBILBOs. Formally, kernels that can be merged under the
above conditions are called compatible.

2.1 Chromosomal Representation

Each chromosome represents a candidate datapath solu-
tion that implements the original behavior DFG. The chro-
mosomal representation consists of a vector whose length
is equal to the number of test kernels in the DFG. A gene
or to be precise its position in the chromosome represents
a test kernel as shown in Fig. 3. The kernel’s inputs and
outputs are modeled using a vector whose size is a function
of the total number of clock cycles and contains references
to other test kernels. Thus, if n is the total number of
clock cycles, a kernel is connected to an array of size n at
each port.

Figure 3. General gene representation.

Whenever two nodes are merged and assigned to the
same hardware resource, the index of the genes are updated
as follows. Assume that kernel Ki is scheduled before
Kj . Then, if Ki is merged with Kj , the inputs of Kj are
appended to Ki’s inputs at an index equal to the Kj ’s
clock cycle. Therefore, all indexes in the Ki’s arrays that
are smaller than Ki’s cycles are not used. Fig. 4 illustrates
the simple merger of two test kernels that correspond to
DFG nodes 10 and 11.

2.2 Chromosomal Implementation

To improve the computational efficiency, the algorithm uses
a dual representation to represent a chromosome. Thus,
merged kernels in a chromosome are represented using a
parent/child relationship using a doubly linked list. The
list maintains references to the next child node, to the
parent node, and to the absolute parent node. The list is
sorted based on the clock cycles of each node. Thus, the
search and insertion order complexity in the list is O(N).

As the GA requires heavy access to all kernel’s merged
inputs and outputs, a second level of indexing is added
using a hashed representation. The hash table reduces
the complexity caused by the linked representation and
increases the efficiency of inserting as well as locating
parent/children nodes in a kernel. The advantage is that
kernels’ search, insertion, merge, and split are now done in
constant time, O(1).

134

Figure 4. Kernels merger example: node 10 and node 11.

2.3 Test Registers Representation

The data path consists of modules, registers as well as
the connections among these entities. The usage of each
test register can be isControllable, isObservable, or is-
Concurrent. The final implementation of a register is
the union of the underlying register usage. For example
if a register is a TPGR for one module and an MISR for
another module in the same test session, then this register
will have a final implementation attribute as a CBILBO.
This implementation can indicate the hardware overhead
before and after merging data flow nodes by computing the
difference in cost over two test sessions. Another advantage
of having three different attributes is that the algorithm
incrementally assigns one attribute at a time and evaluates
the trade-off before it finally commits to one solution.

Finally, registers are represented using a binary tree
structure where each node is connected to one vertical edge
and one horizontal edge rather than two diagonal edges;
the vertical edge represents a list of all merged registers
while the horizontal edge links all physical registers.

To determine the number of registers at a port, we loop
over the hash table attached at that port. If the register
does not have a parent, that means it is a input/output
register. To determine the type of a given register, we OR
all test attributes in the list of that register.

2.4 Initial Population

At the beginning of each run, an analysis of the DFG
is performed and DFG compatibility relations as well as
registers life spans are analyzed. Compatibility relations
are stored in a compatibility graph, Gcomp(V,E), that
consists of vertices V denoting operations and edges E
denoting the compatibility relations among DFG nodes.
Compatible nodes are connected with edges in the graph
and correspond to a partial binding. The initial population
is generated based on problem-specific data in two steps.
First, an initial chromosome is generated where each DFG
node is mapped to a test kernel. Second, the remaining
chromosomes are generated through a random enumeration
of partial feasible bindings that are directly derived from
the compatibility graph Gcomp(V,E).

2.5 Cost Function

The objective function measures the fitness of each chro-
mosome in the population and is crucial for the transmis-
sion of gene information to the next generation. The cost
of the datapath in terms of area is the sum of the cost
of registers, multiplexers, and functional units for a given
k-session and is given as follows:

F =
∑

i

Afu(i)Nfu(i) +ArNr +
∑

j

Atr(j)Ntr(j),

for each k -session, where k = 1, 2, . . . , N (1)

where Nfu(i) is the number of functional units of type i
and Afu(i) is the corresponding area. Nr is the number
of normal registers and Ar is the area of such a register.
Ntr(j) is the number of test registers of type j (TPGR,
MISR, BILBO, CBILBO) while Atr(j) is the area of test
register of type j. Finally, Mmux(l) is the number of
multiplexers of type l and Ml is the corresponding area.

2.6 Selection

The selection process is important to maintain a mixture
of chromosomes based on fitness. Our objective was to
have a selection scheme that ensures that the best individ-
uals are maintained while weaker individuals have a lower
probability of being selected. The motivation for keeping
the bad chromosomes is to help finding better solutions by
disturbing the state of the design space.

We have explored with various selection schemes that
ensure a good mixture of chromosomes based on fitness
including roulette wheel selection. However, we have
determined empirically that the best selection technique
was based on a weighted, biased selection based on the
following:

1. Select 2% of the best chromosomes and 10% of the
worst chromosomes.

2. Select 25% of those chromosomes whose fitness is be-
tween 90% and 100% of the best chromosomes.

3. Select 40% of those chromosomes whose fitness is be-
tween 25% and 75% of the best chromosomes.

4. Select 20% of the chromosomes whose fitness is be-
tween 17% and 30% of the best chromosomes.

5. Randomly select 5% of the remaining chromosomes.

135

2.7 Genetic Operators

To explore the design space, we use two genetic opera-
tors: mutation and crossover. The genetic operators are
applied iteratively in each generation and by taking turns.

2.7.1 Mutation

Mutation is a generic operator that is used for finding new
points in the search space. We use a novel mutation oper-
ator based on a split/merge mechanism. Thus, a kernel is
split into two kernels or two kernels are merged into one.
It should be noted that the algorithm encourages more
mergers than splits as the split operation is destructive and
has more of a hill-climbing effect. The mutation operator
merges 80% of the time and splits 20% of the time subject
to the mutation probability Pm.

2.7.2 Crossover

To improve the quality of the solutions found, one needs to
overcome the information loss that occurs when the algo-
rithm converges to a solution. This was done through the
use of a uniform crossover operator. Crossover is a repro-
duction technique that mates two parent chromosomes and
produces two child chromosomes. The algorithm randomly
selects two chromosomes and then selects two compati-
ble kernels pseudo-randomly from the compatibility graph.
The operator checks the status of the edge between the
selected nodes. If there is an edge, then a merge operation
is applied otherwise the kernel is split. If the probability is
lower than the specified threshold, no operation is applied.

3. Algorithm

Every chromosome represents an intermediate data path
that has different number of registers, multiplexer inputs,
functional units, and controller cost. During every genera-
tion, chromosomes are selected for reproduction, resulting
in new datapaths. This is accomplished by merging com-
patible kernels or splitting kernels within chromosomes.

An initial population is first selected and all input reg-
isters are assigned a isTPGR attribute while the isMISR
attribute is assigned to all output registers. The isConcur-
rent attribute is assigned to the remaining registers. The
system then loops for Ng × iSteps times where Ng is the
maximum number of generations and iSteps is the number
of incremental steps that reproduces and evaluates a new
population (Fig. 5). The incremental step invokes the ker-
nel evolution process and monitors the solution feasibility
by checking a set of compatibility rules.

The genetic optimizer selects one operator per incre-
mental step, either mutation or crossover. The selected
operator is applied on randomly selected chromosomes and
genes. There are six operations that are required every
time two kernels are either merged or split (Fig. 6). If
a violation occurs during the process, the whole process
is aborted. The kernel evolution process commits one ac-
tion at a time. The operations are: node merge, register
merge, and MUX merge. Furthermore, the algorithm

Evolutionary_Synthesis(Scheduled_DFG)
{
Read the scheduled DFG and the resource library.
Get the population size (Psize) and the nb. of
generations (Ng).

Generate an initial population, current_pop.
Evaluate(current_pop)
Keep_the_best()
for i=0 to Ng

{
for j=0 to iSteps do
{
if (i % 2 == 0)
Select a random chromosome from current_pop

for mating.
apply crossover with probability Pxover

Select two compatible genes
Split one of the two genes

else
Select a random chromosome from current_pop

for mating.
apply mutation with probability Pm

Select two compatible genes
Split one of the two genes

kernel_evolution_process()
Evaluate the population fitness using equation 1
Selection and reproduction()

}
}
Output best chromosome

}

Figure 5. Genetic test synthesis and scheduling algorithm.

Figure 6. Kernel evolution process.

reassigns all test attributes after merge or split to resolve
self-loop conditions, update output and input attributes,
and reassigning test points in order to minimize the num-
ber of test sessions. Similar operations are applied in the

136

TestSessionSchedulingAfterMerge()
{
For each register in the hash table
If the register is a BILBO
tc ← select the next not-used test session
if tc is feasible
Kernel’s test session ← tc
Reset isConcurrent attribute in Kernel

else
tc ← select test session that has minimum BILBO
Set isConcurrent attribute for registers where
their kernel’s test session are equal to tc
(change all BILBO to CBILBO)

}

Figure 7. Test session scheduling after merging two test
kernels.

case of the split operation. Themerge and split operations
work as follows:

1. Merge: Node merge operation selects a random parent
node and a random child node from the compatibility
graph. The kernels are merged by first binding the
operations to a feasible functional unit. Registers are
next merged and test attributes are assigned; self-loops
are resolved (if needed) using CBILBOs. Merged nodes
are stored in a sorted link list using a parent child rela-
tionship; children are inserted in the list based on their
scheduled clock cycle. Thus, the hash table is updated
by copying all input and output kernel’s references at
index ci from the child node to index cj of the parent
node. Register merge includes a complete update of
the tree structure for the selected kernel. The multi-
plexers are merged and register alignment is applied to
reduce the number of multiplexers inputs. Finally, the
operation applies incremental test scheduling.

2. Split: Node split operation is used in two possible
cases. The first case occurs if a GA operation requests
splitting during mutation or crossover. The second
case occurs if a merge operation causes a conflict with
an already existing merged node. Once a split is ap-
plied, all associated variables and inputs are split caus-
ing a split in the corresponding nodes, multiplexers,
and registers. This would also trigger a reassignment
for the registers test attributes. Finally, incremental
test scheduling is applied.

The test session scheduling pseudo-code after merging
two kernels is shown in Fig. 7 while test attributes reas-
signment to avoid self-loops is shown in Fig. 8. The order
complexity for the above operations is shown in Table 1.

4. Experimental Results

We implemented the proposed method using C++ on a
Pentium 1.4GHz PC with 128MB of RAM running Linux.
The method is very fast and all reported results were
produced in at most twoCPUminutes including scheduling
time. We measured the performance of our BIST system

TestAttributeReassignSelfLoop()
{

If no self-loop then exit.
Reset isMISR and isConcurrent test attributes for all
merged output registers.

If self-loop at port i then
reset isTPGR and isConcurrent test attributes

for all merged input registers at port i
If self-loop at port i+ 1 then
reset isTPGR and isConcurrent test attributes

for all merged input registers at port i+ 1
set isTPGR, isMISR and isConcurrent for this

test kernel
}

Figure 8. Test attributes reassignment after merger in
order in the case of self-loops.

Table 1
GA Operations Order Complexity

Operation Complexity

GA evaluation O(Psize×Nk)

Node merge O(N)

Mux merge per port O(R log2 R)

Register merge per port O(R log2 R)

Node split O(N +R)

Mux split O(1)

Register split O(1)

Test attributes reassignment O(R)

Test attribute assignment O(R)

using a suite of benchmark examples that include the 5th
order elliptical wave filter, AR filter, the 6th order finite
impulse response filter (FIR 6), the 3rd order infinite
impulse response filter (IIR 3), the 4-point discrete
cosine transform (DCT 4), and the 6-tap wavelet filter.
The GA running parameters are shown in Table 2 while the
DFG details for the above circuits are shown in Table 3.

Table 4 shows the implementation details by our sys-
tem where for every k-test session, the system success-
fully generated a sub-optimal testable datapath in terms
of area. The area of the circuit was computed based on the
transistor area in the datapath registers and multiplexers
estimated by [18, 20] and shown in Tables 5 and 6. For
every example, we show the number of test sessions, func-
tional units types, number of multiplexer inputs, and the
number and type of registers. The table also shows the test
overhead that the specific datapath incur due to testabil-
ity considerations. The area overhead in this case ranges
from 7.49% to 81.55%. The area overhead monotonically
decreased with the increase of the number of test sessions
which illustrates the trading-off involved in this process.

137

Table 2
Parameter settings

Parameter Value

Merge/mutation 80%

Split 20%

Crossover 60%

Population size 50

Number of generations 50,000

Incremental step (iStep) 1,000

Max time 0–4 s

Table 3
DFG Details

Design Example #Nodes

6th order finite impulse response filter (FIR6) 27

4-point discrete cosine transform (DCT4) 23

3rd order infinite impulse response (IIR3) 26

6-tap wavelet filter (wavelet6) 28

5th order elliptical wave filter 34

Discrete cosine transform (DCT) 48

AR filter 54

We compare the performance of our method to four
other synthesis systems: ADVBIST [18], ADVAN [17],
RALLOC [11], and BITS [21]. Results comparisons are
shown in Table 7. Our system outperformed all other

Table 4
Benchmark Results

Design Clock Test ALUs # Mux Normal TPGR MISR BILBO CBILBO OH
Name Cycles Sessions Inputs (%)

7 1 2(*), 1(+) 14 3 2 1 0 2 30.43

FIR6 2 2(*), 1(+) 14 3 2 1 2 0 14.28

3 2(*), 1(+) 14 5 2 1 2 0 14.28

8 1 2(*), 1(+) 21 2 1 1 2 2 48.92

IIR3 2 2(*), 1(+) 19 1 2 1 2 0 30.03

3 2(*), 1(+) 20 1 3 2 0 0 20.32

6 1 2(*), 1(+), 1(−) 22 1 3 1 0 3 81.55

DCT4 2 2(*), 1(+), 1(−) 23 3 1 1 3 0 52.76

3 2(*), 1(+), 1(−) 22 3 1 0 4 0 54.13

11 1 1(*), 1(+), 1(−) 24 2 2 2 0 1 17.36

wavelet6 2 1(*), 1(+), 1(−) 24 2 2 2 1 0 10.14

3 1(*), 1(+), 1(−) 24 2 2 2 1 0 10.14

systems in the case of FIR6 and wavelet6. In the other
two cases, our system was outperformed by ADVBIST
which is based on ILP by 1% and 13%.

Table 8 compares the performance of our system to
ADVBIST [18] for k=1, 2, 3, the only system that we are
aware of, other than ADVAN [17], that implements concur-
rent test synthesis and test scheduling. ADVBIST is based
on integer linear programming, which has exponential run-
ning time. Though our system was slightly outperformed
in some of these cases, our system always outperforms AD-
VBIST in terms of time. Thus, our genetic-based synthesis
technique runs in the order of seconds while ADVBIST
cannot process large designs and runs in the order of hours
(such as in the case of DCT4 that required up till 24 hours).

Finally, Tables 9–12 present the results for three large
benchmark examples: the AR filter, the 5th order ellip-
tical wave filter, and the discrete cosine transfer which
were synthesized less than 18 CPU seconds. We could
not compare these three cases to ADVAN or ADVBIST as

Table 5
Number of Transistors for 8-Bit Test Registers

Type Reg TPGR MISR BILBO CBILBO

Trs 208 256 304 388 596

Table 6
Number of Transistors for 8-Bit Multiplexers

Mux in 2 3 4 5 6 7 Average

Trs 80 176 208 300 320 350 —

Trs/input 40 59 52 60 53 50 52

138

Table 7
Performance of Various High-level Synthesis Systems

Ckt System # Regs # TPGR # MISR # BILBO # CBILBO # Mux Inputs Area OH

FIR6 Ours 8 2 1 2 0 14 2944 14.28

ADVBIST 7 4 1 0 0 26 3040 18.01

ADVAN 7 2 1 0 0 28 3308 28.42

RALLOC 8 1 1 2 0 36 4212 63.66

BITS 7 1 0 0 1 24 3280 27.2

IIR3 Ours 5 2 2 1 0 20 2676 20.32

ADVBIST 6 5 1 0 0 32 2656 19.42

ADVAN 6 3 1 0 0 32 3432 54.31

RALLOC 7 1 0 2 0 38 4212 89.38

BITS 6 2 0 2 0 29 3176 42.81

DCT4 Ours 8 1 1 3 0 23 3544 52.76

ADVBIST 6 3 1 1 0 32 3236 39.48

ADVAN 6 3 1 0 0 35 3420 47.41

RALLOC 6 1 1 2 0 37 3812 64.31

BITS 7 1 1 0 1 38 4180 80.17

wavelet6 Ours 7 2 2 1 0 14 3172 10.14

ADVBIST 7 2 2 0 0 31 3248 12.78

ADVAN 7 2 1 0 0 46 4182 31.10

RALLOC 8 1 0 3 0 50 5186 45.21

BITS 7 1 0 2 0 40 3946 37.01

Table 8
Comparison with ADVBIST [15] Synthesis System for k=1, 2, 3

Ckt System # Test # Regs # TPGR # MISR # BILBO # CBILBO # Mux Area Time
Sessions Inputs

FIR6 1 7 3 2 0 1 29 3684 17m 34 s

ADVBIST 2 7 3 1 0 1 23 3268 40m 16 s

3 7 4 1 0 0 26 3040 23 h 56m 4 s

1 8 2 1 0 2 14 3360 0.76 s

Ours 2 8 2 1 2 0 14 2944 0.76 s

3 8 2 1 2 0 14 2944 0.76 s

IIR3 1 6 3 3 0 0 27 2912 3 h 11m 8 s

ADVBIST 2 6 4 2 0 0 24 2688 2 h 6m 26 s

3 6 5 1 0 0 23 2656 2 h 50m 8 s

1 6 1 1 0 2 22 3312 0.52

Ours 2 6 2 1 2 0 21 2892 0.57

3 6 3 2 0 0 21 2676 0.52

DCT4 1 6 2 4 0 0 27 3024 24 h

ADVBIST 2 6 3 2 0 0 34 3088 24 h

3 6 2 2 0 0 59 4256 24 h

1 8 3 1 0 3 22 4212 1 s

Ours 2 8 1 1 3 0 23 3544 1 s

3 8 1 0 4 0 22 3576 1 s

wavelet6 1 7 2 3 0 0 31 3344 17m 34 s

ADVBIST 2 7 2 2 0 0 31 3248 40m 16 s

3 7 2 2 0 0 31 3248 23 h 56m 4 s

1 7 2 2 0 1 24 3380 0.81 s

Ours 2 7 2 2 1 0 24 3172 0.81 s

3 7 2 2 1 0 24 3172 0.81 s

139

Table 9
AR Filter Results (Max Time 1 s)

Design Clock Test ALUs # Mux TPGR MISR BILBO CBILBO Normal OH
Characteristics Cycles Sessions Inputs (%)

11 1 4(*), 2(+) 48 5 4 0 2 1 11.96

2 4(*), 2(+) 47 5 3 2 1 1 10.53

15 1 3(*), 2(+) 44 2 2 0 3 3 15.75

Non-pipelined 2 3(*), 2(+) 48 2 2 3 0 3 8.53

multicycled 18 1 2(*), 2(+) 37 2 3 0 1 3 10.97

2 2(*), 2(+) 37 3 2 2 0 3 8.65

34 1 1(*), 1(+) 33 1 1 0 1 4 11.21

2 1(*), 1(+) 35 2 1 1 0 4 6.32

11 1 4(*), 2(+) 50 5 4 0 2 5 11.26

2 4(*), 2(+) 50 5 3 1 2 5 11.78

13 1 2(*), 2(+) 44 3 2 0 2 3 14.14

Pipelined 2 2(*), 2(+) 45 3 2 2 0 3 8.15

multicycled 16 1 2(*), 2(+) 43 2 1 0 2 5 12.72

2 2(*), 1(+) 42 3 0 3 0 6 7.70

20 1 1(*), 1(+) 37 1 1 0 1 6 10.20

2 1(*), 1(+) 37 1 0 2 0 6 7.04

Table 10
Elliptic Wave Filter Results (Max Time 1 s)

Design Clock Test ALUs # Mux TPGR MISR BILBO CBILBO Normal OH
Characteristics Cycles Sessions Inputs (%)

17 1 2(*), 3(+) 28 2 4 0 1 5 12.10

2 2(*), 3(+) 36 1 3 2 0 4 9.53

18 1 2(*), 3(+) 35 1 3 0 2 3 15.56

2 2(*), 3(+) 41 1 4 0 1 2 11.68

Non-pipelined 19 1 2(*), 2(+) 32 1 2 0 2 3 15.40

multicycled 2 2(*), 2(+) 33 1 2 2 0 3 8.97

20 1 2(*), 2(+) 32 1 2 0 0 3 15.40

2 2(*), 2(+) 33 1 2 2 2 3 8.97

21 1 1(*), 2(+) 30 1 1 0 2 3 18.19

2 1(*), 2(+) 29 1 1 2 0 3 9.95

17 1 2(*), 3(+) 34 1 3 0 2 4 15.27

2 2(*), 3(+) 34 1 3 2 0 4 9.64

18 1 1(*), 3(+) 36 1 1 0 3 3 21.79

2 1(*), 3(+) 30 1 2 1 1 4 14.57

Pipelined 19 1 1(*), 2(+) 30 1 1 0 2 4 17.74

Multicycled 2 1(*), 2(+) 34 2 1 2 0 4 9.24

20 1 1(*), 2(+) 30 1 1 0 2 4 17.74

2 1(*), 2(+) 34 2 1 2 0 4 9.24

28 1 1(*), 1(+) 27 1 1 0 1 9 9.99

2 1(*), 2(+) 33 1 2 1 0 6 7.49

these results were not reported. Fig. 9 shows the speed of
convergence for our algorithm and shows at every genera-
tion the best, average, and worst fitness of chromosomes in
a population of 300,000 for the elliptic wave filter.

5. Conclusion

A datapath allocation problem was presented based on
an evolutionary algorithm. The proposed system can

140

Table 11
DCT Results (Max Time 15 s)

Design Clock Test ALUs # Mux TPGR MISR BILBO CBILBO Normal OH
Characteristics Cycles Sessions Inputs (%)

7 1 5(*), 5(+), 4(−) 64 1 6 0 8 8 20.91

2 5(*), 5(+), 4(−) 67 1 5 6 3 8 15.78

10 1 2(*), 3(+), 2(−) 66 1 3 0 4 10 17.22

2 2(*), 3(+), 2(−) 68 1 3 3 1 10 11.63

Single cycle 13 1 2(*), 2(+), 1(−) 62 1 3 0 2 12 11.57

FUs 2 2(*), 2(+), 1(−) 67 1 3 2 0 11 6.93

18 1 1(*), 2(+), 1(−) 58 1 2 0 2 11 12.99

2 1(*), 2(+), 1(−) 57 1 2 2 0 11 7.55

25 1 1(*), 2(+), 1(−) 54 2 3 0 1 15 9.07

2 1(*), 2(+), 1(−) 53 1 1 2 1 17 11.41

14 1 3(*), 3(+), 1(−) 65 1 4 0 3 13 13.23

2 3(*), 3(+), 1(−) 64 1 2 3 2 13 12.60

18 1 2(*), 3(+), 1(−) 64 1 3 0 3 12 14.43

Non-pipelined 2 2(*), 3(+), 1(−) 66 1 3 3 0 12 8.33

multicycled 34 1 1(*), 2(+), 1(−) 56 1 2 0 2 16 13.02

2 1(*), 2(+), 1(−) 56 1 3 1 0 18 6.47

12 1 2(*), 3(+), 1(−) 63 1 4 0 2 11 12.17

Pipelined 2 2(*), 3(+), 1(−) 63 1 3 3 0 11 8.53

multicycled 19 1 1(*), 2(+), 1(−) 61 1 2 0 2 16 11.67

2 1(*), 2(+), 1(−) 61 1 2 2 0 16 6.71

Table 12
DCT Results Where Adders and Subtractors are Compatible (Max Time 15 s)

Design Clock Test ALUs # Mux Regs TPGR MISR BILBO CBILBO Normal OH
Details Cycles Sessions Inputs (%)

7 1 5(*), 8(+−) 74 22 1 7 0 6 8 17.56

2 5(*), 8(+−) 76 21 1 5 5 3 7 14.92

10 1 2(*), 5(+−) 71 17 1 4 0 3 9 14.86

2 2(*), 5(+−) 71 17 1 4 2 1 9 11.11

Single 13 1 2(*), 3(+−) 61 17 2 3 0 2 11 11.94

cycled 2 2(*), 3(+−) 61 17 1 2 2 1 11 10.31

FUs 18 1 1(*), 3(+−) 52 15 1 2 0 2 10 13.72

2 1(*), 3(+−) 52 14 1 1 2 1 9 11.66

25 1 1(*), 3(+−) 52 15 1 2 0 2 10 13.72

2 1(*), 3(+−) 52 14 1 1 2 1 9 11.66

14 1 3(*), 4(+−) 68 19 1 3 0 4 11 15.50

2 3(*), 4(+−) 69 20 1 4 2 1 12 9.81

Non- 18 1 2(*), 4(+−) 60 18 1 3 0 3 11 14.90

pipelined 2 2(*), 4(+−) 68 18 1 3 3 0 11 8.34

multicycled 34 1 1(*), 2(+−) 54 19 1 1 0 2 15 11.70

2 1(*), 2(+−) 60 19 1 1 2 0 15 5.75

12 1 2(*), 4(+−) 67 18 1 4 0 2 11 12.05

Pipelined 2 2(*), 4(+−) 60 19 1 3 3 0 12 8.52

multicycled 19 1 1(*), 3(+−) 62 18 1 2 0 2 13 12.22

2 1(*), 3(+−) 59 19 1 2 2 0 14 7.17

141

Figure 9. Best, average, and worst fitness of chromosomes
in a population of 300,000 for the elliptic wave filter.

handle pipelined and multicycled operations and creates
an RTL VHDL description for a least cost self-testable
datapath. The system provides the best solution in terms
of the number and types of functional units, the number of
registers, and the number of multiplexer inputs for each k-
session. The method was implemented on a Linux PC using
C++ and several benchmarks were attempted. Future
work includes the incorporation of power constraints during
the synthesis process.

References

[1] G. De Micheli, Synthesis and optimization of digital circuits
(New York: McGraw Hill, 1994).

[2] M.L. Bushnell & V.D. Agrawal, Essentials of electronic testing
for digital, memory, and mixed signal VLSI circuits (Boston:
Kluwer Academic Publishers, 2000).

[3] C.E. Stroud, A designer’s guide to built-in self-test (Boston:
Kluwer Academic Publishers, 2002).

[4] B. Koenemann, J. Mucha, & G. Zwiehoff, Built-in logic block
observation techniques, Proc. of the Int. Test Conf., Cherry
Hill, NJ, October 1979, 37–41.

[5] I. Parulkar, S. Gupta, & M. Breuer, Scheduling and module
assignment for reducing BIST resources, Proc. DATE 98.

[6] A.E. Eiben & J.E. Smith, Introduction to evolutionary com-
puting (Berlin: Springer-Verlag, 2003).

[7] K. Wagner & S. Dey, High-level synthesis for testability: A
survey and perspective, Las Vegas, Nevada, Proc. DAC, 1996,
131–136.

[8] C. Papachristou, S. Chiu, & H. Harmanani, A data path
synthesis method for self-testable designs, Proc. of the 28th
Design Automation Conf., San Francisco, CA, June 1991,
378–384.

[9] C. Papachristou, S. Chiu, & H. Harmanani, SYNTEST: A
method for high-level synthesis with self-testability, Proc. Int.
Conf. on Computer Design, Cambridge, MA, 1991, 458–462.

[10] H. Harmanani & C. Papachristou, An improved method for
RTL synthesis with testability trade-offs, Proc. ICCAD, Santa
Clara, CA, 1993.

[11] L. Avra, Allocation and assignment in high-level synthesis for
self-testable data paths, Proc. ITC, Nashville, TN, 1991.

[12] I. Parulkar, S. Gupta, & M. Breuer, Allocation techniques for
reducing BIST overhead of datapaths, Journal of Electronic
Testing & Theory Application, 13, 1998, 149–166.

[13] K. Olcoz, F. Tirado, & H. Mecha, Unified data path allocation
and BIST intrusion, Integration, the VLSI Journal, 28, 1999,
55–99.

[14] M. Zwolinski & M. Gaur, Integrating testability with design
space exploaration, Microelectronics Reliability, 43, 2003, 685–
693.

[15] G. Craig, C. Kime, & K. Saluja, Test scheduling and control
for VLSI built-in self-test, IEEE Trans. on Computers, C-37,
1988, 1099–1109.

[16] I. Harris & A. Orailoglu, SYNCBIST: Synthesis for concurrent
built-in self-testability, Proc. EDTC, Cambridge, MA, 1994,
101–104.

[17] H. Kim, T. Takahashi, & D. Ha, Test session oriented built-
in self-testable data path synthesis, Proc. Int. Test Conf.,
Washington, DC, October 1998, 154–163.

[18] H. Kim, D. Ha, T. Takahashi, & T. Yamaguchi, A new
approach to built-in self-testable datapath synthesis based on
ILP, IEEE Trans. on VLSI, 8, 2000, 594–605.

[19] M. Dhodhi, F. Hielscher, R. Storer, & J. Bhasker, Datapath
synthesis using a problem-space genetic algorithm, IEEETrans.
on CAD, 14, 1995, 934–944.

[20] L.T. Wang & E.J. McCluskey, Concurrent built-in logic block
observer, Proc. ISCAS’86, San Jose, CA, 1986, 1054–1057.

[21] P. Bukovjan, L. Ducerf-Bourbon, & M. Marzouki, Cost/quality
trade-off in synthesis for BIST, JETTA, 17, 2001, 109–119.

Biographies

Haidar Harmanani received
his B.S., M.S., and Ph.D. all
in Computer Engineering from
Case Western Reserve University,
Cleveland, Ohio, in 1989, 1991,
and 1994, respectively. He joined
the Lebanese American Univer-
sity (LAU), Lebanon, in 1994 as
an Assistant Professor of Com-
puter Science. Currently, he is an
Associate Professor of Computer
Science and the Chair of the Com-

puter Science and Mathematics Division at LAU, Byblos
Campus. Prof. Harmanani has been on the program com-
mittee of various International Conferences including the
IEEE NEWCAS Conference (NEWCAS 2006, 2007), the
IEEE International Conference on Electronics, Circuits,
and Systems, (ICECS 2000, 2006, and 2007), and the 14th
IEEE International Conference on Microelectronics, 2002.
His research interests include electronic design automation,
high-level synthesis, SOC Testing, design for testability,
and cluster parallel programming. He is a senior member
of IEEE and ACM.

Aouni Kamal Hajar received his
Bachelor of Engineering (BE) in
Computer Engineering and his
MS in Computer Science from the
Lebanese American University,
Lebanon, in 1999 and 2002, re-
spectively. Mr. Hajar has worked
with various regional companies
as a software engineer. Currently,
he is a software engineer with
Netways Corporation, Lebanon.

142

