
Test bus assignment, sizing, and partitioning
for system-on-chip

Attribution, dimensionnement et
partitionnement de bus de tests pour

système sur puce

Haidar M. Harmanani and Rachel Sawan∗

The test access mechanism (TAM) is an important element of test architectures for embedded cores and is responsible for on-chip test pattern transport
from the source to the core under test to the sink. Efficient TAM design is of critical importance in system-on-chip integration since it directly impacts
testing time and hardware cost. In this paper, an efficient genetic algorithm for designing test access architectures while investigating test bus sizing and
concurrently assigning cores to test buses is proposed. Experimental results are presented to demonstrate that the proposed TAM optimization methodology
provides efficient test bus designs with minimum testing time while outperforming reported techniques.

Le mécanisme de tests d’accès (TAM) est un élément important des architectures d’essais pour les noyaux embarqués. Il est responsable de la circulation
des patrons de tests sur puce de la source au noyau sous essais et jusqu’au récepteur. La conception efficace du TAM est d’importance critique dans
l’intégration des systèmes sur puce puisqu’elle affecte directement le temps d’essais et le coût du matériel. Dans cet article, un algorithme génétique
efficace est présenté. Celui-ci permet de concevoir des architectures d’essais d’accès. On présente aussi une étude des tailles de bus d’essais de même
qu’une étude sur l’attribution de noyaux de tests aux bus de tests. Des résultats expérimentaux sont fournis pour démontrer que la méthodologie proposée
d’optimisation du TAM fournit des conceptions efficaces de bus d’essais avec un temps d’essais minimum tout en surpassant les techniques connues.

Keywords: core-based systems; embedded core testing; test access mechanism

I. Introduction

Advances in semiconductor process technologies have enabled the in-
tegration of an entire system on a single chip, based on a redesign
philosophy that divides the CAD community into core providers and
core integrators. Core providers create embedded cores, which are pre-
designed and preverified complex logic blocks that cover a wide range
of functions such as CPU, DSPs, media processors, communication
modules, memories, and mixed-signal modules. Core integrators, on
the other hand, create the system-on-chip (SoC) by assembling the
cores within the system and by combining available cores and their
custom user-defined logic (UDL).

One of the implications of the core-based design methodology is
that test development for large core-based system chips should also be
core-based. Test strategies for embedded cores must ensure the exis-
tence of an access path in the on-chip hardware. Furthermore, the core
tests, as given by the core provider, must be translated from the core
terminals to the IC pins. A generic conceptual test access architecture
for an embedded core, introduced by [1], consists of a test source and
a sink, a test access mechanism (TAM) and a core wrapper. The test
source is used for test stimulus generation, while the response evalu-
ation is carried out by the test sink. The source and the sink can be
implemented either off-chip (ATE) or on-chip (BIST). The test access
mechanism serves as a “test data highway” that transports test patterns
between the source and the core as well as between the core and the
sink. A TAM is characterized by its transport capacity, also referred to
as the TAM bandwidth, which is given by the data rate required by the
core’s test. Finally, the core is surrounded with test logic, known as the
test wrapper, which provides switching functionality between normal

∗Haidar M. Harmanani and Rachel Sawan are with the Department of Com-
puter Science and Mathematics, Lebanese American University, Byblos, 1401
2010, Lebanon. E-mail: haidar.harmanani@lau.edu.lb

access and test access via the TAM [2]. The test wrapper has at least
three modes of operation for each input terminal: a normal mode in
which the core’s terminal is driven by the host chip; an external test
mode in which the wrapper element observes the core’s input terminal
for interconnect test; and an internal test mode in which the wrapper
element controls the state of the core’s input terminal to test the logic
inside the core. On the other hand, for the output terminal of each core,
the wrapper provides a normal mode in which the host chip is driven
by the core, an external test mode in which the host chip is driven by
the wrapper element for interconnect test, and an internal test mode in
which the wrapper element observes the core’s output for the core test.
Typically, suitable modifications are made to customize the test wrap-
per for cores that have internal scan chains or built-in self-test [2].

Genetic algorithms (GAs) are probabilistic optimization techniques
based on the model of natural evolution. They are used to solve prob-
lems of high complexity. GAs use a group of randomly initialized
points, called a population, in order to nondeterministically search the
design space. The population is characterized by the fact that each in-
dividual encodes all necessary problem parameters (genes). The qual-
ity of an individual is measured by a fitness function. Each offspring
undergoes a sequence of probabilistic modifications that changes the
genetic material in the population either by inversion, crossover, mu-
tation, or possibly other user-defined operators. The process exploits
new points in the search space by providing a diverse population and
avoiding premature convergence to a single local optimum. The iter-
ative process of selecting and combining “good” individuals should
yield even better ones, until a solution is found or a certain stopping
criterion is met.

A. Related work
Various test access strategies have been proposed in the literature. Ref-
erence [3] introduced a test access mechanism that connects the ter-
minals of the embedded cores directly to the IC pins. The approach

Can. J. Elect. Comput. Eng., Vol. 32, No. 3, Summer 2007



166 CAN. J. ELECT. COMPUT. ENG., VOL. 32, NO. 3, SUMMER 2007

accommodates multiple embedded cores through multiplexing. Refer-
ence [4] proposed a test bus architecture known as VisibleCores with
two dedicated on-chip variable-width buses, one for transporting test
control signals and the other for transporting test data signals. The ap-
proach is based on a combination of multiplexing and distribution.
Reference [5] proposed a method in which test access to embedded
cores is based on transparent paths through other cores. Reference [6]
proposed a scalable bus-based architecture called TestRail that pro-
vides a flexible and scalable test access mechanism. The approach uses
a combination of daisy chain and distribution architecture and wraps
cores in a TestShell. An IC may contain one or more TestRails of vary-
ing widths, where a single TestRail can provide access to one or more
cores. The width of the TestRail is referred to as the test data width,
since it determines the overall system testing time. TestRail allows the
system designer to trade off testing time for area overhead by varying
test data widths and allowing the bus to fork out as well as to merge
together; however, the designer must determine the precise relation-
ship between the testing time and the test access mechanism. Other
techniques include isolated rings [7] and the reuse of the existing test
bus [8].

Reference [9] explored the relationship between testing time and
test bus widths based on several integer linear programming (ILP)
models with an approach that solved the problem of assigning cores
to specific test buses and determining optimal widths of the test buses
to minimize testing time. The author later provided an improved de-
serialization model [10]. Though the ILP models were aimed at opti-
mal results, they were halted in various cases because of the problem
complexity. Furthermore, the reported testing times do not conform to
the reported assignments. In order to alleviate the problem complexity,
heuristic techniques were proposed. For example, [11] and [12] pro-
posed evolutionary approaches in order to solve the TAM optimization
problem. The method in [11] was later extended to incorporate place
and route constraints [13]. However, the above heuristic approaches
tackled only the simple TAM optimization problem that reduces test
time by distributing the total test bus width among individual buses.
In other words, no attempts were made to find the minimum test data
width with a suboptimal core assignment under a maximum test data
width constraint. Furthermore, no heuristic approach was attempted to
reduce the test time by exploring tradeoffs among test bus subdivision,
core assignment, and test bus minimization.

B. Problem formulation
This work proposes an efficient approach for the design of test ac-
cess architectures for SoC that minimizes testing time based on the
TestRail approach. Given a system with Nc cores and NB test buses
with a maximum width W , the problem is to (1) determine the optimal
or suboptimal width that should be distributed among the various test
buses in order to minimize test time; (2) assign the embedded cores to
the test buses so that the test time is minimized; and (3) explore test
time reductions by determining an optimal or a suboptimal subdivision
of test buses that can test smaller cores in parallel. The problem has
been proven to be NP-complete [9]–[10]. We solve the above prob-
lem by breaking it into a progression of five incremental problems in
order of increasing complexity. The proposed method is characterized
by the following contributions:

• a formulation and a solution for several TAM design problems
which are NP-complete, using a genetic algorithm;

• a minimum test data width and an assignment of cores to test
buses, subject to minimization of testing time;

• a tradeoff mechanism that explores possible test time reduction
among core assignments, test data widths, and test time by allow-
ing buses to fork out as well as to merge in.

In order to demonstrate the effectiveness of the proposed method,
we use two academic SoC benchmarks from Duke University [10],
the S1 system and the d695 system, also known as the S2 system.
Both SoC benchmark examples are hypothetical but nontrivial and
contain cores of various sizes and I/O widths. S1 consists of seven
combinational ISCAS 85 and three sequential ISCAS 89 benchmark

circuits, while S2 consists of two combinational ISCAS 85 and eight
sequential ISCAS 89 benchmark circuits. The benchmarks are indica-
tive and representative, as the problem’s complexity depends on the
number of SoC cores rather than on the size of the SoC. We use two
and three test buses in order to be able to make comparisons to other
works [10]–[12].

II. Test data deserialization model

Consider an SoC consisting of Nc cores and let core i, 1 ≤ i ≤ N ,
have ni inputs and mi outputs (including data and scan I/Os). Let the
SoC have NB test buses with widths w1, w2, . . . , wNB . If the width
of the test bus is less than the number of core terminals, then test data
deserialization is needed. References [9] and [10] noted that if core i
is assigned to bus j, then the amount of data serialization needed at the
I/Os of core i is related to the difference between core i’s test width φ
and the width, wj , of bus j, where φ = max{ni, mi}.

Let ti be the testing time in cycles required by core i when no
deserialization is necessary. For combinational cores, ti is equal to
the number of test patterns pi. However, for cores with internal scan,
ti = (pi + 1)dfi/sie + pi, where core i contains fi flip-flops and si

internal scan chains [14]. The testing time with test data deserialization
for core i assigned to bus j is given by [9]

Tij =

(
ti, if φi ≤ wj ,

(φi − wj + 1)ti, if φi > wj .
(1)

This model is motivated by the need to provide parallel access to
core terminals as scan-chain inputs that transport more test data. It
assumes a “worst case” deserialization of test data. Thus, the first
(wj − 1) test bus lines are connected to (wj − 1) core I/Os in par-
allel, and the last test bus line is serially connected to the remaining
(φi − wj + 1) core I/Os [14]–[15]. Reference [10] noted that a sub-
stantial reduction in test time can be obtained if there is a uniform
distribution of test bus lines among the core I/Os. Thus, the above test
data serialization becomes

Tij =

‰
φi

wj

ı
ti. (2)

We assume that the test sets for the SoC cores are available in scan
format, in which functional input values remain unchanged during suc-
cessive scan cycles. This implies that the scan input values in the same
cycle are specified in multiple cycles instead of being specified as inde-
pendent values in the same cycle. A similar assumption was implicitly
made in [14] and [15].

III. Assignment of cores to test buses

The first problem that we address in this paper is the assignment of
cores to test buses so as to minimize the system testing time. The prob-
lem is formally defined as follows:

P1: Given Nc cores and NB test buses of widths
w1, w2, . . . , wNB , determine an assignment of cores to test
buses such that the total testing time is minimized.

Problem P1 is NP-complete and has been shown to be equivalent to
the multi-processor scheduling problem [9].

A. Chromosomal representation
We solve the core assignment problem using the chromosomal repre-
sentation shown in Fig. 1(a), where a chromosome represents a possi-
ble assignment of cores to test buses. Each chromosome is a vector of



HARMANANI / SAWAN: TEST BUS ASSIGNMENT, SIZING, AND PARTITIONING FOR SYSTEM-ON-CHIP 167

Figure 1: (a) Chromosome representation for core bus assignment. (b) Sample chromosome with 10 cores and two buses.

Core 4

Core 1

Core 7

(c7552)

Core 2

(C499)

Core 8

(s5378)

Core 5 Core 9

(s35932)

Core 3

(c880) (c3540)

(c432)

(c1355)

Core 6

(c6288)

Core 10

(s38417)

16

12

16

12

Figure 2: Test bus assignment for system S1 with two test buses of 12 and 16 bits.

size Nc, where a gene j in position i indicates that core i is assigned
to bus j, where 1 ≤ i ≤ Nc and 1 ≤ j ≤ NB .

Consider the S1 SoC example and let NB = 2 with a total test data
width of W = 48 bits, and let w1 = 16 and w2 = 12. A chromosome
for a possible assignment of cores to the two test buses as proposed
by our system is shown in Fig. 1(b), where the 2 in position 3 of the
chromosome indicates that core 3 is assigned to bus 2. The resulting
test time is 452 696 cycles, which is optimal in this case. The proposed
test bus assignment is shown in Fig. 2.

B. Initial population
The initial population is important, as it affects the quality of the final
solution in addition to the time needed to converge to such a solution.
In order to create the initial population, we create a single chromosome
in which cores are equally assigned to all buses. For example, if NB =
2, then half the cores are assigned to bus 1, and the other half are
assigned to bus 2. The selection of the cores as well as their assignment
is purely random. The initial population is next generated in a fast and
simple procedure through 20% mutation and 80% crossover of this
chromosome.

C. Genetic operators
Operators are used in genetic algorithms in order to explore the de-
sign space by creating new candidate solutions from old ones. In order
to explore the design space in P1 as well as in the remaining four
problems, we use two genetic operators, mutation and crossover. The
genetic operators are applied iteratively and by taking turns.

1. Mutation
Mutation is a genetic operator that is used to explore the design space.
We use a standard random resetting technique in which the algorithm
chooses a random core and assigns it to a random bus from the set of
permissible buses with probability Pm.

2. Crossover
Crossover is a reproduction technique that is considered to be the most
important feature in GAs. It combines two parent chromosomes in or-
der to produce two offspring. Crossover has been known to overcome
information loss during the genetic evolution process. Given two chro-
mosomes, we apply two-point uniform crossover, in which two off-
spring are created from two parents by an exchange of the middle
genes of both parents with probability Pc.

D. Objective function
The objective function seeks to minimize the time needed to test all
cores assigned to the buses; that is, minimize

T = max
j

NcX
i=1

Tij , 1 ≤ j ≤ NB , (3)

where Tij is the testing time in cycles with test data deserialization for
core i assigned to bus j given by (1).

E. Algorithm
The genetic algorithm was implemented using Java and tested on both
benchmarks, S1 and S2. In every generation, 3n/2 offspring are cre-
ated from the current n chromosomes through mutation and crossover.
The best n chromosomes are kept, and the algorithm repeats for the
maximum number of generations.

In order to apply the genetic algorithm successfully, we empirically
adjusted the crossover rate, the mutation rate, the population size Np,
and the number of generations Ng . We performed experiments on the
benchmarks with a mutation and a crossover rate of 1, 0.9, . . . , 0.1.
The population size was varied between 50 and 500. It was determined
experimentally that a mutation probability Pm = 0.65 and a crossover
probability Pc = 0.35 are effective for obtaining good solutions. The
appropriate population size was determined to be 150, and the number
of generations was set to 300.

The algorithm generated assignments for both SoCs in less than one
second. The detailed results are shown in Tables 1 and 2. As shown,
our algorithm obtained either the same test times or outperformed the
ILP method in [9] for all attempted cases in a very short time. The
tables also show the test improvement that our system was able to at-
tain as a percentage. It should be noted that throughout this paper, we
present the results in [9] after correction in order to reflect the reported
assignments accurately.

IV. Test bus sizing

The next problem that we address is the problem of minimizing test
time by allocating a given test bus width W among NB individual test
buses while concurrently assigning the cores to these buses. Problem
P2 is a generalization of P1 and is formally defined as follows:

P2: Given Nc cores and NB test buses of total width W ,
determine the optimal width of each test bus and an assign-
ment of cores to the test buses such that the total testing
time is minimized.



168 CAN. J. ELECT. COMPUT. ENG., VOL. 32, NO. 3, SUMMER 2007

Table 1
Assignment of cores to test buses of predetermined widths for S1 SoC (P1)

(w1, w2) ILP GA Improvement
Test time (cycles) Bus assignment Test time (cycles) Bus assignment (%)

(4, 4) 497 155 (2, 2, 2, 1, 2, 1, 2, 2, 2, 1) 497 155 (2, 2, 2, 1, 2, 1, 2, 2, 2, 1) 0
(6, 6) 487 965 (2, 1, 2, 1, 1, 1, 1, 1, 1, 2) 487 965 (2, 1, 2, 1, 1, 1, 1, 1, 1, 2) 0
(8, 8) 478 936 (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) 478 936 (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) 0
(11, 9) 470 380 (2, 1, 1, 2, 2, 2, 2, 2, 2, 1) 470 378 (1, 1, 2, 2, 2, 2, 2, 2, 2, 1) 0

(11, 13) 461 304 (2, 1, 1, 1, 1, 1, 1, 1, 1, 2) 461 304 (2, 1, 1, 1, 1, 1, 1, 1, 1, 2) 0
(16, 12) 452 696 (1, 2, 2, 1, 2, 1, 2, 2, 2, 1) 452 696 (1, 2, 2, 1, 2, 1, 2, 2, 2, 1) 0
(18, 14) 443 624 (2, 1, 2, 2, 2, 2, 2, 2, 2, 1) 443 624 (2, 1, 2, 2, 2, 2, 2, 2, 2, 1) 0
(21, 15) 434 954 (1, 1, 2, 1, 2, 1, 2, 2, 2, 1) 434 954 (1, 1, 2, 1, 2, 1, 2, 2, 2, 1) 0
(17, 23) 439 575 (2, 2, 2, 1, 1, 1, 2, 1, 1, 2) 426 006 (1, 1, 1, 2, 1, 2, 1, 1, 1, 2) 3.08
(25, 19) 416 992 (2, 2, 2, 2, 2, 1, 2, 2, 2, 1) 416 992 (2, 2, 2, 2, 2, 1, 2, 2, 2, 1) 0
(28, 20) 408 023 (1, 1, 2, 1, 2, 1, 2, 2, 2, 1) 408 023 (1, 1, 2, 1, 2, 1, 2, 2, 2, 1) 0
(22, 30) 427 752 (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) 399 281 (1, 2, 1, 1, 1, 2, 1, 1, 1, 2) 6.66
(32, 16) 411 884 (1, 1, 1, 1, 1, 1, 1, 2, 2, 1) 411 884 (1, 1, 1, 1, 1, 1, 1, 2, 2, 1) 0
(32, 24) 391 192 (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) 391 192 (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) 0
(32, 28) 391 192 (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) 391 192 (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) 0
(32, 32) 391 192 (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) 391 192 (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) 0

Table 2
Assignment of cores to test buses of predetermined widths for S2 SoC (P1)

(w1, w2) ILP GA Improvement
Test time (cycles) Bus assignment Test time (cycles) Bus assignment (%)

(15, 1) 2 520 052 (2, 2, 2, 1, 2, 1, 2, 1, 1, 1) 2 470 746 (2, 1, 1, 1, 2, 1, 1, 2, 1, 2) 1.95
(1, 19) 2 437 081 (2, 2, 1, 2, 1, 2, 1, 2, 2, 2) 2 423 116 (1, 1, 1, 2, 1, 2, 1, 2, 2, 2) 0.57
(23, 1) 2 374 783 (2, 1, 1, 1, 2, 1, 2, 1, 1, 1) 2 361 278 (2, 2, 1, 1, 2, 1, 2, 1, 1, 1) 0.56
(3, 29) 2 275 329 (2, 2, 2, 2, 1, 2, 2, 2, 2, 1) 2 255 946 (2, 2, 2, 2, 1, 2, 1, 2, 2, 2) 0.85
(4, 32) 2 258 586 (2, 2, 2, 2, 1, 2, 2, 1, 1, 2) 2 195 730 (1, 2, 2, 2, 1, 2, 2, 2, 2, 1) 2.78
(9, 31) 2 222 271 (2, 2, 2, 2, 1, 2, 2, 2, 2, 1) 2 205 162 (2, 2, 2, 2, 1, 2, 1, 2, 2, 2) 0.77

(12, 32) 2 195 742 (2, 2, 2, 2, 1, 2, 2, 2, 2, 1) 2 179 770 (2, 2, 2, 2, 1, 2, 1, 2, 2, 2) 0.72
(32, 16) 2 195 730 (2, 1, 1, 1, 2, 1, 1, 1, 1, 2) 2 145 914 (1, 1, 1, 1, 2, 1, 2, 1, 1, 1) 2.27
(32, 20) 2 182 882 (2, 2, 1, 1, 2, 1, 1, 1, 1, 2) 2 125 782 (1, 2, 1, 1, 2, 1, 2, 1, 1, 1) 2.62
(25, 31) 2 160 295 (2, 2, 2, 2, 1, 2, 1, 2, 2, 2) 2 132 308 (1, 1, 1, 2, 1, 2, 1, 2, 2, 2) 1.30
(28, 32) 2 133 469 (2, 2, 2, 2, 1, 2, 1, 2, 2, 2) 2 100 443 (2, 2, 2, 2, 1, 2, 2, 1, 2, 1) 1.55
(32, 32) 2 114 206 (2, 2, 1, 2, 2, 1, 1, 1, 1, 2) 2 072 754 (1, 2, 2, 1, 2, 1, 1, 2, 1, 2) 1.96

In order to solve P2, which is an NP-complete problem, the chro-
mosomal representation is extended by the addition of one extra com-
ponent in the chromosome, as shown in Fig. 3(b). The additional rep-
resentation in part (b) of the figure is based on a vector, where a gene
wj in the i-th position indicates that bus i is assigned wj bits. The
chromosome now has two related parts: the first part assigns cores to
test buses, and the second part allocates a certain width to each test
bus. The cost function to minimize is

T = max
j

NcX
i=1

Tij , 1 ≤ j ≤ NB , (4)

under the following additional constraints:

NBX
j=1

wj = W, (5)

where wj ≤ φi for 1 ≤ j ≤ NB and 1 ≤ i ≤ NC .

If the equality in (5) is violated, the system iterates over chromoso-
mal part (b), randomly chooses a bus, and reduces its width by one bit.
The process continues until the equality is met.

SolvingP2 requires an additional operator, inversion, that randomly
selects a gene wj from chromosomal part (b) and sets its value to (W−
wj). While the crossover operator does not require any modifications
in order to handle part (b), we modify the mutation operator such that it
can explore the assignment of bus width in part (b) based on the core’s
test width, φ.

The initial population is generated in a way similar to that for P1.
Thus, we create a single chromosome in which the buses are equally
assigned to all cores in part (a). Part (b) is created by assigning a test
bus width wj to each gene in the chromosome, where wj = mini{φi}
and

PNB
j=0 wj ≤ W .

Ten percent of the members in the initial population match the above
chromosome. Another 50% of the chromosomes are created through
mutation of this single chromosome, and the last 40% are created
through inversion.

Another problem that is closely related to P2 is that of determining
the minimum system test width W needed to satisfy testing time con-
straints while finding a suboptimal distribution of the test bus width
among individual test buses, and a suboptimal test bus assignment.
Problem P3 is formally defined as follows:



HARMANANI / SAWAN: TEST BUS ASSIGNMENT, SIZING, AND PARTITIONING FOR SYSTEM-ON-CHIP 169

Figure 3: Chromosome representation: (a) core bus assignment; (b) bus width.

Table 3
Test time and width distribution with two test buses and a given test width for S1 SoC (P2)

Width ILP GA Improvement
(W ) (w1, w2) Test time Bus assignment (w1, w2) Test time Bus assignment (%)

(cycles) (cycles)
8 (4, 4) 497 155 (2, 2, 2, 1, 2, 1, 2, 2, 2, 1) (4, 4) 497 155 (2, 2, 2, 1, 2, 1, 2, 2, 2, 1) 0

12 (6, 6) 487 965 (2, 1, 2, 1, 1, 1, 1, 1, 1, 2) (6, 6) 487 965 (2, 1, 2, 1, 1, 1, 1, 1, 1, 2) 0
16 (8, 8) 478 936 (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) (8, 8) 478 936 (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) 0
20 (11, 9) 470 380 (2, 1, 1, 2, 2, 2, 2, 2, 2, 1) (11, 9) 470 378 (1, 1, 2, 2, 2, 2, 2, 2, 2, 1) 0
24 (11, 13) 461 304 (2, 1, 1, 1, 1, 1, 1, 1, 1, 2) (11, 13) 461 304 (2, 1, 1, 1, 1, 1, 1, 1, 1, 2) 0
28 (16, 12) 452 696 (1, 2, 2, 1, 2, 1, 2, 2, 2, 1) (16, 12) 452 696 (1, 2, 2, 1, 2, 1, 2, 2, 2, 1) 0
32 (18, 14) 443 624 (2, 1, 2, 2, 2, 2, 2, 2, 2, 1) (18, 14) 443 624 (2, 1, 2, 2, 2, 2, 2, 2, 2, 1) 0
36 (21, 15) 434 954 (1, 1, 2, 1, 2, 1, 2, 2, 2, 1) (21, 15) 434 954 (1, 1, 2, 1, 2, 1, 2, 2, 2, 1) 0
40 (17, 23) 439 975 (2, 2, 2, 1, 1, 1, 2, 1, 1, 2) (17, 23) 426 006 (1, 1, 1, 2, 1, 2, 1, 1, 1, 2) 3.17
44 (25, 19) 416 992 (2, 2, 2, 2, 2, 1, 2, 2, 2, 1) (1, 43) 400 553 (1, 1, 1, 1, 1, 1, 1, 2, 1, 2) 3.94
48 (28, 20) 408 023 (1, 1, 2, 1, 2, 1, 2, 2, 2, 1) (1, 47) 367 901 (1, 1, 1, 1, 1, 1, 1, 2, 1, 2) 9.83
52 (22, 30) 427 752 (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) (1, 51) 335 249 (1, 1, 1, 1, 1, 1, 1, 2, 1, 2) 21.63
56 (32, 24) 391 192 (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) (55, 1) 311 611 (2, 2, 2, 2, 2, 2, 2, 1, 2, 1) 20.34
60 (32, 28) 391 192 (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) (1, 59) 296 987 (1, 1, 1, 1, 1, 1, 1, 2, 1, 2) 24.08
64 (32, 32) 391 192 (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) (63, 1) 282 363 (2, 2, 2, 2, 2, 2, 2, 1, 2, 1) 27.82

P3: Given Nc cores, NB test buses, and a maximum testing
time T , determine the minimum total test width, an optimal
distribution of the test width among the test buses, and an
optimal assignment of cores to test buses.

The problem representation and parameters are the same as in P2;
the difference is that the objective function now aims to minimize

W =

NBX
j=1

wj (6)

under time constraint T and such that
NCX
i=1

Tij ≤ T and 1 ≤ j ≤ NB . (7)

We solved problems P2 and P3 for several values of W and T .
The running time was equal to 4 CPU seconds. Tables 3 and 4 show,
respectively, the minimum test time and width distribution for fixed
values of W with NB = 2, while Tables 5 and 6 show the same results
for NB = 3. Tables 7 and 8 show result comparisons with [9], [11],
and [12] for P2 using two buses, while Tables 9 and 10 compare the
proposed method with [9], [11], and [12] for three buses. We note that
for smaller values of W , our algorithm obtains the same results as
the ILP method [9]. However, for larger values of W , our algorithm
yields considerable improvements that vary between 9.83% for 48 bits
and 27.82% for 64 bits. For the other cases, our system showed either
slight improvements or the same results as [11] and [12] except for
one case in Table 5, where [11] reports improvements in the case of
S1 only.

Table 11 presents the results for test bus width and width distribu-
tion for a given maximum test time under time constraint T for prob-

lem P3. For large W or smaller T , our algorithm obtains substantial
improvements. For example, for T = 400 000, our algorithm saves
7 bits of the TAM, representing a 13.46% improvement in bus width,
and for T = 410 000, there is a 5-bit improvement or a 10.42% de-
crease in bus width. For T = 420 000, there is a 1-bit saving. It was
not possible to do further comparisons for problemP3, since this prob-
lem was not tackled by researchers other than [9]. .

The problem parameters were determined empirically as well. The
population size was chosen to be 150, and the number of generations
was set to 300. The probability of crossover was 0.35, and mutation
probability was 0.65.

V. Test bus subdivision

In order to explore further test time improvements, we consider trading
off test assignment, test data widths, and test time by taking advantage
of the TestRail flexibility that allows test buses to fork out and merge
together. Thus, test buses may fork out into a set of smaller test buses
that transport, in parallel, test data to smaller cores. Doing so reduces
testing time, especially when several small cores with small test widths
are assigned to a wide test bus. Larger cores can still be assigned to the
undivided part of the test bus as before. ProblemP4 is formally defined
as follows:

P4: Given Nc cores, NB test buses with known widths
w1, w2, . . . , wNB , and an upper limit jmax on the number
of subdivisions allowed for test bus j, 1 ≤ j ≤ NB , de-
termine (1) an optimal subdivision of test bus widths and
(2) an optimal assignment of cores to test buses such that
the total testing time is minimized.



170 CAN. J. ELECT. COMPUT. ENG., VOL. 32, NO. 3, SUMMER 2007

Table 4
Test time and width distribution with two test buses and a given test width for S2 SoC (P2)

Width ILP GA Improvement
(W ) (w1, w2) Test time Bus assignment (w1, w2) Test time Bus assignment (%)

(cycles) (cycles)
16 (15, 1) 2 520 052 (2, 2, 2, 1, 2, 1, 2, 1, 1, 1) (13, 3) 2 456 793 (2, 1, 1, 1, 2, 1, 1, 1, 2, 2) 2.51
20 (1, 19) 2 437 081 (2, 2, 1, 2, 1, 2, 1, 2, 2, 2) (1, 19) 2 423 116 (1, 1, 1, 2, 1, 2, 1, 2, 2, 2) 0.57
24 (23, 1) 2 374 783 (2, 1, 1, 1, 2, 1, 2, 1, 1, 1) (23, 1) 2 361 278 (2, 2, 1, 1, 2, 1, 2, 1, 1, 1) 0.57
32 (3, 29) 2 275 329 (2, 2, 2, 2, 1, 2, 2, 2, 2, 1) (1, 31) 2 222 247 (1, 2, 2, 2, 1, 2, 2, 2, 2, 1) 2.33
36 (4, 32) 2 258 586 (2, 2, 2, 2, 1, 2, 2, 1, 1, 2) (4, 32) 2 195 730 (1, 2, 2, 2, 1, 2, 2, 2, 2, 1) 2.78
40 (9, 31) 2 222 271 (2, 2, 2, 2, 1, 2, 2, 2, 2, 1) (1, 39) 2 144 192 (1, 1, 1, 2, 1, 2, 2, 2, 1, 2) 3.51
44 (12, 32) 2 195 742 (2, 2, 2, 2, 1, 2, 2, 2, 2, 1) (1, 43) 2 039 183 (2, 2, 1, 1, 2, 1, 1, 1, 2, 1) 7.13
48 (32, 16) 2 195 730 (2, 1, 1, 1, 2, 1, 1, 1, 1, 2) (1, 47) 1 966 608 (2, 2, 2, 2, 1, 2, 2, 2, 1, 2) 10.43
48 (32, 16) 2 195 730 (2, 1, 1, 1, 2, 1, 1, 1, 1, 2) (2, 46) 1 975 827 (2, 1, 2, 2, 1, 2, 2, 2, 1, 2) 10.02
52 (32, 20) 2 182 882 (2, 2, 1, 1, 2, 1, 1, 1, 1, 2) (4, 48) 1 949 151 (2, 2, 2, 2, 1, 2, 2, 2, 1, 2) 10.71
56 (25, 31) 2 160 295 (2, 2, 2, 2, 1, 2, 1, 2, 2, 2) (7, 49) 1 931 694 (2, 2, 2, 2, 1, 2, 2, 2, 1, 2) 10.58
60 (28, 32) 2 133 469 (2, 2, 2, 2, 1, 2, 1, 2, 2, 2) (10, 50) 1 914 237 (2, 2, 2, 2, 1, 2, 2, 2, 1, 2) 10.27
64 (32, 32) 2 114 206 (2, 2, 1, 2, 2, 1, 1, 1, 1, 2) (50, 14) 1 902 625 (2, 1, 1, 1, 2, 1, 1, 1, 2, 1) 10.01
64 (32, 32) 2 114 206 (2, 2, 1, 2, 2, 1, 1, 1, 1, 2) (12, 48) 1 933 403 (1, 1, 2, 2, 1, 2, 2, 2, 1, 2) 8.55
64 (32, 32) 2 114 206 (2, 2, 1, 2, 2, 1, 1, 1, 1, 2) (1, 63) 1 865 686 (1, 1, 1, 2, 1, 2, 2, 2, 2, 2) 11.75

Table 5
Test time and width distribution with three test buses

and a given test width for S1 SoC (P2)

Width Bus assignment Bus distribution Test time
(W ) (cycles)
16 (2, 2, 2, 2, 2, 2, 3, 3, 2, 1) (14, 1, 1) 457 000
20 (3, 2, 2, 2, 2, 3, 2, 2, 3, 1) (18, 1, 1) 442 376
24 (2, 3, 3, 2, 2, 3, 2, 3, 2, 1) (22, 1, 1) 427 752
28 (2, 2, 2, 2, 2, 2, 2, 3, 2, 1) (26, 1, 1) 413 128
32 (3, 3, 3, 3, 2, 2, 3, 2, 3, 1) (30, 1, 1) 398 504
36 (2, 3, 3, 2, 2, 2, 3, 3, 2, 1) (34, 1, 1) 383 880
40 (3, 2, 2, 2, 2, 3, 2, 2, 3, 1) (38, 1, 1) 369 256
44 (1, 1, 3, 3, 1, 3, 3, 3, 1, 2) (1, 42, 1) 354 632
48 (3, 2, 2, 3, 3, 2, 3, 2, 3, 1) (46, 1, 1) 340 008
52 (3, 3, 2, 2, 2, 2, 2, 3, 2, 1) (50, 1, 1) 325 384
56 (2, 3, 3, 3, 3, 2, 2, 2, 3, 1) (54, 1, 1) 310 760
60 (1, 1, 1, 2, 2, 2, 2, 1, 2, 3) (1, 1, 58) 296 136
64 (1, 1, 1, 1, 2, 2, 1, 1, 2, 3) (1, 1, 62) 281 512

Finally, we formulate the general case of the test bus subdivision
problem, where the test bus widths must be determined as well. Prob-
lem P5 is formally defined as follows:

P5: Given Nc cores, NB test buses of total width W , and an
upper limit jmax on the number of subdivisions allowed for
test bus j, 1 ≤ j ≤ NB , determine (1) an optimal width for
each test bus, the optimal subdivision of the width of every
bus, and (2) an assignment of cores to test buses such that
the total testing time is minimized.

The main difference between P4 and P5 is that in P5 the restriction
is on the total width of W rather than on the width of each test bus;
this gives the problem a higher degree of freedom.

A. Chromosomal representation
In order to solve P4, we need to extend the chromosomal representa-
tion to incorporate bus subdivisions. The extended chromosomal rep-
resentation, shown in Fig. 4, is of variable length and includes three

Table 6
Test time and width distribution with three test buses

and a given test width for S2 SoC (P2)

Width Bus assignment Bus distribution Test time
(W ) (cycles)
16 (2, 1, 2, 1, 3, 2, 1, 1, 1, 1) (8, 3, 5) 1 694 860
20 (2, 2, 3, 3, 1, 2, 3, 3, 3, 3) (8, 1, 11) 1 684 002
24 (3, 2, 3, 3, 1, 2, 3, 3, 3, 3) (11, 1, 12) 1 664 230
28 (3, 2, 3, 3, 1, 2, 3, 3, 3, 3) (14, 1, 13) 1 648 915
32 (3, 2, 3, 3, 1, 2, 3, 3, 3, 3) (17, 1, 14) 1 633 623
36 (3, 3, 2, 2, 2, 1, 3, 3, 3, 3) (1, 34, 1) 1 618 512
40 (3, 3, 1, 1, 1, 2, 3, 3, 3, 3) (35, 4, 1) 1 598 231
44 (3, 3, 2, 2, 2, 1, 3, 3, 3, 3) (6, 37, 1) 1 574 068
48 (1, 3, 2, 2, 2, 1, 3, 3, 3, 3) (7, 38, 2) 1 563 240
52 (2, 3, 1, 1, 1, 2, 3, 3, 3, 3) (40, 9, 3) 1 542 814
56 (1, 1, 2, 2, 2, 1, 3, 3, 3, 3) (12, 41, 3) 1 530 756
60 (3, 3, 2, 2, 2, 1, 3, 3, 3, 3) (14, 41, 5) 1 530 756
64 (1, 3, 2, 2, 2, 3, 1, 1, 1, 1) (5, 45, 14) 1 507 432

related parts. Part (a) of the chromosome represents a possible assign-
ment of cores to either test buses or to a test subdivision. Thus, a gene j
in position i indicates that core i is assigned to either a bus or a sub-
division j, where 1 ≤ i ≤ Nc and 1 ≤ j ≤ NB + NS , where NS is
the total number of subdivisions. Part (b) of the chromosome allocates
a width to each bus or subdivision and is based on a vector, where
a gene wj in the i-th position indicates that bus i or subdivision i is
assigned wj bits. Finally, part (c) of the chromosome assigns the num-
ber of bus subdivisions, which should be less than or equal to jmax.
A gene i in the j-th position in part (c) indicates that bus j forks into
i subdivisions.

A sample chromosome is shown in Fig. 5 with five cores and three
buses, with bus 2 having two subdivisions. For example, core 2 in
Fig. 5(a) is assigned to bus 2, while Fig. 5(c) indicates that bus 2 has
two subdivisions, 2 and 3, that are allocated 10 and 20 bits respectively,
as shown in Fig. 5(b).

Based on this representation, a chromosome grows and shrinks
according to the number of subdivisions in part (c), with the result
that the chromosome has variable length. The algorithm invokes the



HARMANANI / SAWAN: TEST BUS ASSIGNMENT, SIZING, AND PARTITIONING FOR SYSTEM-ON-CHIP 171

Table 7
Test time comparison of proposed algorithm

with other works for S1 SoC with two test buses (P2)

Width Test time (cycles)
(W ) ILP [9] Ebadi [11] Wang [12] GA
20 470 380 n/a 470 378 470 378
24 461 304 n/a 461 304 461 304
28 452 696 452 696 452 696 452 696
32 443 624 443 624 443 624 443 624
36 434 954 434 954 434 954 434 954
40 439 975 426 006 426 006 426 006
44 416 992 400 553 400 553 400 553
48 408 023 367 901 367 901 367 901
52 427 752 335 249 335 249 335 249
56 391 192 311 611 311 611 311 611
60 391 192 296 987 n/a 296 987
64 391 192 282 363 n/a 282 363

Table 8
Test time comparison of proposed algorithm

with other works for S2 SoC with two test buses (P2)

Width Test time (cycles)
(W ) ILP [9] Ebadi [11] Wang [12] GA
16 2 520 052 2 477 722 n/a 2 456 793
20 2 437 081 2 423 284 2 323 116 2 423 116
24 2 374 783 2 361 278 2 301 278 2 361 278
32 2 275 329 2 222 247 2 202 247 2 222 247
36 2 258 586 2 195 730 2 174 501 2 195 730
40 2 222 271 2 144 192 2 144 192 2 144 192
44 2 195 742 2 039 183 2 039 183 2 039 183
48 2 195 730 1 966 608 1 966 608 1 966 608
52 2 182 882 1 949 151 1 949 151 1 949 151
56 2 160 295 1 931 694 1 931 694 1 931 694
60 2 133 469 n/a 1 914 237 1 914 237

reduceSlots operation in order to decrease the size of part (b). At the
same time, if the number of subdivisions increases in part (c), then the
algorithm increases the size of part (b) using the addSlots operation.

B. Objective function
The objective function in P4 and P5 aims to minimize the time needed
to test all cores assigned to the test buses; that is, minimize

T = max
j

NcX
i=1

Tij , 1 ≤ j ≤ NB , (8)

where Tij is given by (1) and Tij is the testing time with test data
deserialization for core i assigned to bus j. Problem P5 has constraints
on the total width only:

W =

NBX
j=1

wj . (9)

C. Genetic operator
To explore the design space for problems P4 and P5, we use the same
genetic operators as in the previous three problems. However, we ex-
tend the mutation operator in order to accommodate part (c) as shown
in Fig. 6. To achieve a good hill-climbing effect, we define two types
of mutations. The first mutates part (a) only, while fixing parts (b) and
(c), and the second mutates all three parts concurrently.

Table 9
Test time comparison of proposed algorithm

with other works for S1 SoC with three test buses (P2)

Width Test time (cycles)
(W ) Ebadi [11] Wang [12] GA
16 n/a n/a 457 000
20 n/a n/a 442 376
24 n/a 422 752 427 752
28 409 742 n/a 413 128
32 394 848 n/a 398 504
36 380 224 398 504 383 880
40 365 600 n/a 369 256
44 350 976 354 632 354 632
48 336 352 n/a 340 008
52 321 728 325 384 325 384
56 307 104 n/a 310 760
60 292 480 n/a 296 136
64 277 856 n/a 281 512

Table 10
Test time comparison of proposed algorithm

with other works for S2 SoC with three test buses (P2)

Width Test time
(W ) Ebadi [11] Wang [12] GA
16 n/a n/a 1 694 860
20 n/a n/a 1 684 002
24 n/a 1 669 335 1 664 230
28 409 742 n/a 1 648 915
32 394 848 n/a 1 633 623
36 380 224 1 618 512 1 618 512
40 365 600 1 595 724 1 598 231
44 350 976 n/a 1 574 068
48 336 352 1 565 027 1 563 240
52 321 728 n/a 1 542 814
56 307 104 n/a 1 530 756
60 292 480 n/a 1 530 756
64 277 856 n/a 1 507 432

D. Repair functions
Our genetic algorithm generates infeasible chromosomes for the fol-
lowing reasons:

1. The variable-length nature of the chromosome causes part (c)
to change in order to explore the number of subdivisions, thus
changing the number of genes in part (b). Furthermore, if the
number of subdivisions is reduced in part (b), then some of the
subdivisions will cease to exist, and some of the assignments in
part (a) will become invalid. For example, if the number of sub-
divisions in chromosomal part (c) is decreased from seven to six,
then cores in part (a) that are assigned to subdivision 7 will be-
come invalid.

2. The crossover operator may generate infeasible chromosomes in
P4 only because of restrictions on the width of individual buses
(9), where the sum of the width in the subdivisions is more than
the width of bus wj .

Typically, there are two strategies to deal with infeasible chromo-
somes: the first repairs them, and the second imposes a penalty func-
tion. We choose the first approach. Thus, the first part is repaired by
reassigning cores that have been assigned to invalid subdivisions to
random valid ones. We repair the second part by randomly reducing



172 CAN. J. ELECT. COMPUT. ENG., VOL. 32, NO. 3, SUMMER 2007

Figure 4: (a) Chromosome representation. (b) Core bus assignment. (c) Bus subdivisions.

Table 11
Width distribution for S1 SoC with two test buses and a given maximum time (P3)

Max T ILP GA Improvement
Width (W ) (w1, w2) Bus assignment Width (W ) (w1, w2) Bus assignment (%)

400 000 52 (21, 31) (2, 2, 2, 2, 2, 2, 1, 1, 1, 2) 45 (44, 1) (1, 1, 1, 2, 2, 2, 2, 1, 2, 1) 13.46
410 000 48 (27, 21) (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) 43 (42, 1) (2, 1, 2, 2, 1, 2, 2, 1, 2, 1) 10.42
420 000 43 (25, 18) (2, 2, 2, 2, 1, 1, 2, 2, 2, 1) 42 (41, 1) (1, 1, 1, 2, 1, 1, 2, 1, 2, 1) 2.32
430 000 39 (22, 17) (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) 39 (22, 17) (1, 2, 1, 2, 2, 2, 2, 2, 2, 1) 0
440 000 34 (19, 15) (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) 34 (20, 14) (2, 1, 1, 2, 1, 2, 2, 2, 2, 1) 0
450 000 30 (16, 14) (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) 30 (18, 12) (1, 1, 1, 1, 1, 1, 2, 2, 2, 1) 0
460 000 25 (14, 11) (2, 2, 2, 1, 2, 2, 2, 2, 2, 1) 25 (11, 14) (1, 1, 2, 2, 2, 2, 2, 2, 2, 1) 0
470 000 21 (11, 10) (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) 21 (13, 8) (1, 1, 2, 1, 1, 1, 2, 2, 2, 1) 0
480 000 16 (8, 8) (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) 16 (8, 8) (2, 2, 2, 2, 2, 1, 2, 2, 2, 1) 0
480 000 16 (8, 8) (2, 2, 2, 2, 2, 2, 2, 2, 2, 1) 16 (7, 9) (1, 1, 1, 1, 2, 2, 1, 1, 1, 2) 0

the number of bits in the subdivisions as shown in Fig. 7. The method
iterates over an invalid part (b) and randomly chooses a bus in every
iteration. The bus width is decremented, and the method repeats the
process until the chromosome is fully repaired and (5) is satisfied.

E. Initial population
The initial population is important, as it affects the quality of the final
solution in addition to the time needed to converge to such a solution.
The initial population is generated on the basis of three initial single
chromosomes, in a way similar to that for the previous three problems.
Part (a) of the single chromosome is created such that cores are as-
signed equally to all buses, and part (b) is created by assigning to each
gene in the chromosome a test bus width wj , where wj = mini{φi}
and

PNB
j=0 wj ≤ W . The selection of the cores, test bus widths, and

assignment is purely random. Part (c) is created on the basis of three
categories:

1. The first category includes a chromosome such that each bus has
the maximum number of subdivisions allowed, jmax.

2. The second category includes a chromosome such that buses are
not subdivided.

3. The third category includes a chromosome such that the number
of subdivisions for each bus is randomly chosen between 1 and
jmax.

The initial population is next generated with 10% of its members
from the first category, 10% from the second category, and 20% from
the last category. The remaining chromosomes are generated through
mutations, of which 40% are mutations of parts (a) and (b), while the
remaining 20% are mutations of all three parts.

F. Experimental results
We solved problems P4 and P5 using our genetic algorithm. The algo-

rithm has a running-time order of O(Ng ×NB × jmax), where Ng is
the number of generations, NB is the number of test buses, and jmax is
the number of bus subdivisions. The results, shown in Tables 12 to 15,
were generated in less than 20 seconds and provide various TAM archi-
tectures for the S1 and S2 SoCs based on a two-test-bus architecture.
For all attempted cases, our algorithm generated a test bus assignment
vector in addition to subdividing one bus into w1 and w2 bits in prob-
lem P5. As can be observed, our algorithm either obtained the same
results as [9] or showed improvement. We believe that this is due to
the fact that the ILP formulation [9] performs better when the search
space is constrained. On the other hand, our algorithm outperforms
the ILP formulation [9] in P5 for larger W . For example, in the case
of W = 32, there is a decrease of 56 470 cycles or an improvement
of 10.44%, while for W = 44, there is a decrease of 40 378 cycles
or an improvement of 10.28%. For W = 52 bits, there is a decrease
of 112 284 cycles or 25.5%. Furthermore, our system generated more
design alternatives than [9] while reducing the test time. It should be
noted that it was not possible to further compare P4 and P5, as these
two problems were not attempted by other researchers. Fig. 8 shows
the architecture generated by our system for S1 with two test buses of
total width W = 44, where bus 1 is allowed to have one subdivision.
The resulting chromosome generated by our algorithm is (1a, 1a, 1a,
1b, 1a, 1b, 1b, 1a, 1b, 2) with w1a = 1, w1b = 1, and w3 = 42. The
resulting test time is 354 632 cycles. The population size for this part
was 150, and the number of generations was chosen to be 300. The
probability of crossover was 0.35, and mutation probability was 0.65.

VI. Conclusion

We presented a genetic formulation for the design of SoC test architec-
tures that explores test bus sizing while concurrently assigning cores
to test buses. Our system generated test architectures with minimum



HARMANANI / SAWAN: TEST BUS ASSIGNMENT, SIZING, AND PARTITIONING FOR SYSTEM-ON-CHIP 173

Figure 5: Sample chromosome representation with five cores and three buses, where two
buses are subdivided into two subdivisions.

Figure 6: Mutation operator.

testing time while minimizing test data width and performing assign-
ment of cores to test buses. The system includes a tradeoff mechanism
that explores possible test time reduction among core assignments,
test data widths, and test time by allowing buses to fork out as well
as to merge in. We presented experimental results demonstrating that
the proposed TAM optimization methodology provides efficient test
bus designs with minimum testing time while outperforming reported
techniques.

Acknowledgements

This work was supported in part by a grant from the Lebanese National
Council for Scientific Research (CNRS).

Figure 7: Repair operator.

Core 6

(c6288)

Core 10

(s38417)

Core 4

(c1355)

Core 7

(c7552)

Core 2

(C499)

Core 5Core 3

(c880) (c3540)

2 Core 1

(c432) (s5378)

Core 8

(s35932)

Core 9

2

42 42

Figure 8: Test bus architecture for systemS1 with two test buses and total width W = 44.
Bus 1 is allowed to have only one subdivision.

References

[1] Y. Zorian, E.J. Marinissen, and S. Dey, “Testing embedded core-based system
chips,” in Proc. Int. Test Conf., 1998, pp. 130–143.

[2] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits, Boston: Kluwer Academic Publishers, 2000.

[3] V. Immaneni and S. Raman, “Direct access test scheme: Design of block and core
cells for embedded ASICs,” in Proc. Int. Test Conf., 1990, pp. 488–492.

[4] P. Varma and S. Bhatia, “A structured test re-use methodology for core-based sys-
tem chips,” in Proc. Int. Test Conf., 1998, pp. 294–302.

[5] I. Ghosh, N.K. Jha, and S. Dey, “A fast and low cost testing technique for core-based
system-on-chip,” in Proc. Design Automat. Conf., 1998, pp. 542–547.

[6] E.J. Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M. Lousberg, and
C. Wouters, “A structured and scalable mechanism for test access to embedded
reusable cores,” in Proc. Int. Test Conf., Oct. 1998, pp. 284–293.

[7] L. Whetsel, “An IEEE 1149.1 base test access architecture for ICs with embedded
cores,” in Proc. Int. Test Conf., 1997, pp. 69–78.

[8] P. Harrod, “Testing re-usable IP: A case study,” in Proc. Int. Test Conf., 1999,
pp. 493–498.

[9] K. Chakrabarty, “Optimal test access architectures for system-on-a-chip,” ACM
Trans. Design Automat. Electron. Syst., vol. 6, Jan. 2001, pp. 26–49.

[10] V. Iyengar and K. Chakrabarty, “Test bus sizing for system-on-a-chip,” IEEE Trans.
Comput., vol. 51, May 2002, pp. 449–459.

[11] Z.S. Ebadi and A. Ivanov, “Design of an optimal test access architecture using a
genetic algorithm,” in Proc. 10th Asian Test Symp., 2001, pp. 205–210.

[12] Y. Wang and W. Huang, “Optimizing test access mechanism under constraints by
genetic local search algorithm,” in Proc. 12th Asian Test Symp., 2003, pp. 428–431.

[13] Z.S. Ebadi and A. Ivanov, “Design of an optimal test access architecture under
power and place-and-route constraints using GA,” in Proc. IEEE Latin-American
Test Workshop, 2002, pp. 154–159.

[14] K. Chakrabarty, “Design of system-on-a-chip test access architectures using integer
linear programming,” in Proc. VLSI Test Symp., 2000, pp. 127–134.

[15] ———, “Design of system-on-a-chip test access architectures under place-and-
route constraints,” in Proc. Design Automat. Conf., 2000, pp. 432–437.



174 CAN. J. ELECT. COMPUT. ENG., VOL. 32, NO. 3, SUMMER 2007

Table 12
Assignment of cores to two test buses of predetermined widths and test bus subdivisions,

where only one bus is allowed to fork into two branches, for S1 SoC (P4)

(w1, w2) ILP GA Improvement
Distribution Test time (cycles) Distribution Test time (cycles) (%)

(19, 1) (1, 18, 1) 442 889 (18, 1, 1) 442 376 0.12
(23, 1) (1, 22, 1) 664 491 (22, 1, 1) 427 752 35.63
(27, 1) (26, 1, 1) 413 425 (26, 1, 1) 413 128 0.072

(19, 13) (1, 18, 13) 444 974 (18, 1, 13) 442 376 0.58
(32, 4) (31, 1, 4) 624 918 (31, 1, 4) 394 848 36.82
(32, 12) (31, 1, 12) 395 010 (31, 1, 12) 394 848 0.041
(22, 20) (1, 21, 20) 437 668 (21, 1, 20) 427 752 2.27

Table 13
Assignment of cores to two test buses of predetermined widths and test bus subdivisions,

where only one bus is allowed to fork into two branches, for S2 SoC (P4)

(w1, w2) ILP GA Improv.
Distribution Test time Bus assignment Distribution Test time Bus assignment (%)

(cycles) (cycles)
(23, 1) (12, 11, 1) 1 772 909 (1a, 1a, 1a, 1a, 1b, 1a, 2, 2, 2, 2) (11, 12, 1) 1 664 230 (1b, 2, 1b, 1b, 1a, 2, 1b, 1b, 1b, 1b) 6.13
(23, 1) (12, 11, 1) 1 772 909 (1a, 1a, 1a, 1a, 1b, 1a, 2, 2, 2, 2) (11, 12, 1) 1 664 230 (2, 2, 1b, 1b, 1a, 2, 1b, 1b, 1b, 1b) 6.13
(28, 8) (16, 12, 8) 1 700 237 (1a, 1, 1a, 1a, 1b, 1a, 2, 2, 2, 2) (17, 11, 8) 1 633 600 (2, 1b, 2, 1b, 1a, 2, 1b, 1b, 1b, 1b) 3.92
(28, 8) (16, 12, 8) 1 700 237 (1a, 1, 1a, 1a, 1b, 1a, 2, 2, 2, 2) (17, 11, 8) 1 633 600 (1b, 1b, 2, 1b, 1a, 2, 1b, 1b, 1b, 1b) 3.92
(30, 10) (18, 12, 10) 1 672 119 (1a, 1, 1a, 1a, 1b, 1a, 2, 2, 2, 2) (19, 11, 10) 1 623 390 (1b, 2, 2, 1b, 1a, 2, 1b, 1b, 1b, 1b) 2.91
(30, 10) (18, 12, 10) 1 672 119 (1a, 1, 1a, 1a, 1b, 1a, 2, 2, 2, 2) (19, 11, 10) 1 623 390 (2, 2, 2, 1b, 1a, 2, 1b, 1b, 1b, 1b) 2.91
(32, 12) (17, 15, 12) 1 682 069 (1a, 1, 1a, 1a, 1b, 1a, 2, 2, 2, 2) (20, 12, 12) 1 618 285 (1b, 1b, 2, 1b, 1a, 2, 1b, 1b, 1b, 1b) 3.79
(32, 12) (17, 15, 12) 1 682 069 (1a, 1, 1a, 1a, 1b, 1a, 2, 2, 2, 2) (20, 12, 12) 1 618 285 (1b, 1b, 2, 1b, 1a, 2, 1b, 1b, 1b, 1b) 3.79

Table 14
Test time and width distribution for two test buses,

where only one bus is allowed to fork into two branches, for S1 SoC (P5)

Width ILP GA Improv.
(W ) Distribution Test time Bus assignment Distribution Test time Bus assignment (%)

(cycles) (cycles)
20 (1, 18, 1) 442 889 (1b, 1a, 1a, 1a, 1a, 1a, 2, 2, 1a, 1b) (18, 1, 1) 442 376 (2, 1b, 2, 1b, 1b, 1b, 1b, 2, 1b, 1a) 0.02
24 (1, 22, 1) 664 491 (1b, 1a, 1a, 1a, 1a, 1a, 2, 2, 1b, 1b) (22, 1, 1) 427 752 (2, 1b, 2, 1b, 1b, 1b, 2, 1b, 2, 1a) 35.63
28 (26, 1, 1) 413 425 (1a, 1b, 1b, 1b, 1b, 1b, 2, 2, 1b, 1a) (26, 1, 1) 413 128 (2, 2, 1b, 1b, 1b, 1b, 2, 2, 1b, 1a) 0.07
32 (1, 18, 13) 444 974 (1b, 1a, 1a, 1a, 2, 1a, 2, 2, 2, 1b) (30, 1, 1) 398 504 (2, 2, 1b, 2, 1b, 1b, 2, 1b, 2, 1a) 10.44
36 (31, 1, 4) 624 918 (1a, 1b, 1b, 1b, 1b, 1b, 2, 2, 1a, 1a) (34, 1, 1) 383 880 (2, 2, 1b, 1b, 1b, 1b, 2, 2, 1b, 1a) 38.57
44 (31, 1, 12) 395 010 (1a, 1b, 1b, 1b, 1b, 1b, 2, 2, 1b, 1a) (1, 1, 42) 354 632 (1a, 1a, 1a, 1b, 1a, 1b, 1b, 1a, 1b, 2) 10.28
52 (1, 21, 20) 437 668 (1b, 1a, 1a, 1a, 2, 1a, 1, 1, 1, a2) (1, 1, 50) 325 384 (1a, 1b, 1b, 1b, 1a, 1b, 1b, 1b, 1a, 2) 25.55

Table 15
Test time and width distribution for two test buses,

where only one bus is allowed to fork into two branches, for S2 SoC (P5)

Width ILP GA Improv.
(W ) Distribution Test time Bus assignment Distribution Test time Bus assignment (%)

(cycles) (cycles)
24 (12, 11, 1) 1 772 909 (1a, 1a, 1a, 1a, 1b, 1a, 2, 2, 2, 2) (11, 12, 1) 1 664 230 (1b, 2, 1b, 1b, 1a, 2, 1b, 1b, 1b, 1b) 6.13
24 (12, 11, 1) 1 772 909 (1a, 1a, 1a, 1a, 1b, 1a, 2, 2, 2, 2) (1, 11, 12) 1 664 230 (1a, 1a, 2, 2, 1b, 1a, 2, 2, 2, 2) 6.13
36 (16, 12, 8) 1 700 237 (1a, 1, 1a, 1a, 1b, 1a, 2, 2, 2, 2) (1, 15, 20) 1 618 512 (1b, 1b, 1b, 1b, 2, 1a, 1b, 1b, 1b, 1b) 4.81
36 (16, 12, 8) 1 700 237 (1a, 1, 1a, 1a, 1b, 1a, 2, 2, 2, 2) (20, 15, 1) 1 618 512 (1a, 1a, 1b, 1b, 1b, 1a, 2, 1b, 1b, 1b, 1b) 4.81
40 (18, 12, 10) 1 672 119 (1a, 1, 1a, 1a, 1b, 1a, 2, 2, 2, 2) (35, 1, 4) 1 598 231 (2, 1b, 1a, 1a, 1a, 2, 1b, 1b, 1b, 1b) 4.42
40 (18, 12, 10) 1 672 119 (1a, 1, 1a, 1a, 1b, 1a, 2, 2, 2, 2) (4, 35, 1) 1 598 231 (2, 2, 1b, 1b, 1b, 1a, 2, 2, 2, 2) 4.42
44 (17, 15, 12) 1 682 069 (1a, 1, 1a, 1a, 1b, 1a, 2, 2, 2, 2) (7, 36, 1) 1 584 896 (2, 1a, 1b, 1b, 1b, 1a, 2, 2, 2, 2) 5.78
44 (17, 15, 12) 1 682 069 (1a, 1, 1a, 1a, 1b, 1a, 2, 2, 2, 2) (7, 36, 1) 1 584 896 (1a, 1a, 1b, 1b, 1b, 1a, 2, 2, 2, 2) 5.78



HARMANANI / SAWAN: TEST BUS ASSIGNMENT, SIZING, AND PARTITIONING FOR SYSTEM-ON-CHIP 175

Haidar M. Harmanani received the B.S., M.S., and Ph.D.
degrees, all in computer engineering, from Case Western Re-
serve University, Cleveland, Ohio, U.S.A., in 1989, 1991,
and 1994, respectively. He joined the Lebanese American
University (LAU), Lebanon, in 1994 as an assistant profes-
sor of computer science. Currently, he is an associate profes-
sor of computer science and the chairperson of the Computer
Science and Mathematics Division at LAU, Byblos Cam-
pus. Prof. Harmanani has been on the program committee of
various international conferences, including the IEEE NEW-
CAS Conference (NEWCAS 2006 and 2007), the IEEE In-
ternational Conference on Electronics, Circuits, and Systems
(ICECS 2000, 2006, and 2007), and the 14th IEEE Interna-
tional Conference on Microelectronics, 2002. His research

interests include electronic design automation, high-level synthesis, system-on-chip test-
ing, design for testability, and cluster parallel programming. He is a senior member of
IEEE and ACM.

Rachel Sawan received the Bachelor of Engineering degree
in computer engineering from the Lebanese American Uni-
versity, Byblos, Lebanon, in 2005. Currently, she is a system
engineer at Consolidated Contractors Company (CCC) In-
ternational, Beirut, Lebanon. Her research interests include
evolutionary programming and VLSI testing.


