An Approach for Redesign for Testability at the RT
Level

Haidar M. Harmanani and Salam Harfoush

Keywords— BIST Insertion, Test Synthesis

Abstract

This paper presents a new approach for redesign for
testability at the Register-Transfer Level (RTL). The
method identifies hard to test parts in RTL designs that
were synthesized, either manually or automatically using a
high-level synthesis tool. The design is modified by insert-
ing additional registers that are active during test mode.
The insertion process is followed by a test selection pro-
cess that uses functional test metrics in order to minimize
test overhead. Finally, test scheduling is performed in order
to minimize the overall test time and the number of test
sessions. The system outputs a VHDL description of the
resulting testable data path along with the test plan.

I. INTRODUCTION

The complexity of VLSI circuitry has complicated the
design and test of digital circuits. Recent trends in synthe-
sis have been moving synthesis higher in the design hierar-
chy. High-level synthesis has emerged as a good approach
for top down design methodology [5]. Though some re-
searchers have recently integrated design and test synthesis
[2], [6], [8], [11], most other researchers have ignored testa-
bility considerations at the system level. Add to that the
numerous designs that are manually synthesized without
testing considerations.

Design for testability (DFT) techniques [1] emerged as
a solution that aims at efficient and cost effective testing
by enhancing the controllability and observability of the
circuit under test; the control and observation of the circuit
under test are central to implementing its test procedures.
Within DFT, Built-In Self-Test (BIST) was proposed with
test generation and response analysis occurring on-chip.
The advantage for BIST is that designs can be “tested per
clock,” potentially enhancing test application time, delay
testing, and defect coverage. However, it often requires a
higher hardware overhead and induces more delay during
normal operation mode.

A. Background

This paper discusses testing within the scope of pseu-
dorandom BIST. In order to test a kernel using the BIST
methodology, every input port has to be fed by a Test Pat-
tern Generation Register (TPGR) which is based on au-
tonomous Linear Feedback Shift Register (LFSR). Every
output port must feed a Multiple Input Signature Register

Department of Computer Engineering & Science, Lebanese Ameri-
can University, P.O. Box 36, Byblos, Lebanon
S. harfoush is with The Central Bank of Lebanon

] N
-

ALU ALU I:le
-

(a) (b)

Fig. 1. a) Non-observable ALU due to self-adjacency, b) Testable
ALU after test insertion

(MISR) that evaluates the test responses . In our work, we
determine the fault coverage using logic level fault simu-
lation. One of the difficulties in implementing BIST tech-
niques is the register self-adjacency problem!, arising due
to structures similar to the one shown in Figure 1(a). In
this circuit, it is not possible to assign Rs as both a TPGR
and an MISR in the same test session. Some researchers
used the MISR outputs, which are essentially random vec-
tors, as random patterns [15]. The problem in this ap-
proach is that errors in the MISR propagate erroneous test
patterns that are applied to the ALU, which then tend
to produce errors in the BILBO2?. This problem can be
rectified using a concurrent built-in logic-block observation
(CBILBO) register [1]. The CBILBO register can operate
simultaneously as an MISR and a TPGR. The disadvan-
tage of the CBILBO is that it is very costly in area (about
1.75 times the size of a BILBO [2]) and induces more delay
during normal operation mode.

Hudson [12] showed that when self-adjacent registers are
configured as test pattern generators, the additional feed-
back that made the register self-adjacent can greatly reduce
its ability to retain error information as a signature ana-
lyzer. Kim [15] showed that random patterns generated by
signature registers are rarely repeated when the number of
test patterns is relatively small compared to the number of
possible patterns concluding that signatures registers can
be used as test pattern generators. However, we note that
this is not the case with self- adjacent registers since, when
configured as signature registers, they have an increased
probability of aliasing.

B. Related Work

Many researchers have addressed how to automatically
generate testable designs while minimizing test overheads.
Lin, Njinda and Breuer [19] proposed a system based on

L A register is self-adjacent if an output of that register feeds through
combinational logic and back into itself.

2A BILBO is a test register that can act as a TPGR and as an
MISR but in different test sessions.

the BILBO methodology. The system constructs all possi-
ble embeddings for each kernel® and determines the com-
patibility between each two embeddings. Two embeddings
are compatible if they do not have resource conflicts and
can be executed concurrently. The system generates next
representative designs for the testable design space using a
branch and bound procedure. Each representative design
has its own test time and area overhead and the designer
uses these data to choose between representative designs.
An expert system helps the designer in the selection pro-
cess. Once the designer makes his selection, a modification
process is carried out to add the test hardware to the cir-
cuit under test. Kim, Tront and Ha [15] developed the
BIDES knowledge-based expert system for test insertion
in RTL designs using the BILBO methodology. The de-
sign process consists of an initial design and subsequent
redesign steps that are repeated until an acceptable solu-
tion is obtained. Techniques in AI planning are employed
for backtracking in the redesign steps. A family of testable
designs can be produced via user interactions. The sys-
tem works in a local search fashion and lacks a global view
of the design space. Craig, Kime and Saluja [4] proposed
optimal and sub-optimal procedures for scheduling the exe-
cution of tests associated with a testable design in order to
minimize test time. They formulated the test scheduling
problem for kernels having equal test lengths as a clique
covering problem which is NP-hard [10]. For the unequal
test length problem, a transformation is used that parti-
tions the tests for the kernels into equal length sub-tests,
and the procedure for the equal test length problem is then
employed. It is obvious that if the longest test length is
much greater than the shortest test length, the problem
becomes intractable.

C. Problem Description and Significance

The problem we address in this paper is as follows:
Given an RTL description of a datapath, the pur-
pose of the redesign for testability method is to
improve its testability by: 1) inserting additional
registers, active during test mode only, if neces-
sary; 2) schedule the resulting structure into the
minimal number of test sessions so as to reduce
the overall test time.

In order to reduce test penalty and ensure the datap-
ath structural testability, it is necessary to automate the
BIST insertion process. We solve the BIST insertion prob-
lem in two stages. In the first stage, necessary registers
are inserted in the datapath so as to guarantee the datap-
ath structural testability (section 2). In the second stage,
datapath registers configurations are explored in order to
improve the datapath cost while trading-off with test time
and quality. The resulting datapath, including inserted
test structures, is finally synthesized in VHDL and fed to
a logic synthesis tool.

This paper is organized as follows: in section 2 we de-
scribe the test insertion process. Section 3 describes the

3An embedding is defined as the structure formed of a kernel and
its associated Pseudorandom Pattern Generators (PRPGs) and Sig-
nature Analyzer (SA).

TPGR TPGR

Fig. 2. Testable Functional Block (TFB)

|Norma|| |MISR |

selection process while section 4 describes our scheduling
approach. Results are presented and discussed in section
5. We conclude with remarks in section 6.

II. BIST TEST POINTS INSERTION

The insertion process is based on the notion of structural
testability, introduced in our earlier work [11]. The key
element of the structural testability model is the Testable
Functional Block (TFB) shown in Figure 2. A TFB consists
of an ALU and a set of input and output registers. There
are at least two registers at the input ports of a TFB that
can be configured as TPGRs during test mode. The out-
put port of a TFB is connected to a set of registers, one of
which is configured as an MISR in test mode. Although a
basic TFB consists of two TPGRs and one MISR, it should
be noted that these BIST registers maybe shared by other
TFBs in the datapath. This means that some of these reg-
isters at the TFB output port maybe configured as BILBO
registers. Furthermore, some other non-BIST registers at
the TFB output port may have to be configured as TPGRs
if they control the input port of other TFBs. A datapath
that consists of TFBs is structurally testable [11].

The insertion problem then becomes one of inserting reg-
isters in order to transform the datapath into a structurally
testable one. The idea is to modify the datapath in order
to create TFBs by: 1) breaking self-loops that are feeding
a module output back to its input, and 2) inserting addi-
tional registers to cover every port in the datapath with at
least one register, to be converted in the next stage into a
test point.

Based on the above, there are two general cases that may
require test insertion for testability enhancements. In the
first case, a CLB output feeds immediately an input port of
one or more other CLBs, either directly or through a multi-
plexer as shown in Figure 3(a). In this case, a register must
be inserted between both CLBs if no other register covers
this port. The inserted register would generate patterns
for one of the CLBs and compress the signature for the
other one. The second case is due to register self adjacency
problem shown earlier in Figure 1(a).

The above cases could feed into CLBs directly or through
a multiplexer. For a non-trivial circuit, there are many
paths to check and thus a lot of possibilities to make it
testable; hence, the difficulty in the above problem. It
should be noted that not all self-adjacent registers create
a testing problem as shown in Figure 3(b) and 3(c). If an
ALU has two or more output registers, one of which is self-

reg reg

(©

Fig. 3. Insertion Cases

ALU 1 ALU 2
*) *)

Fig. 4. Data path example

adjacent, then the self-adjacent register may be configured
as a TPGR to the ALU and one of the other output reg-
isters would be configured as an MISR (Figure 3(c)). The
insertion algorithm, shown in Figure 5, has a worst case
run time in the order of O(n?), where n is the number of
components in the input circuit.

To illustrate our method we will use the simple datapath
example in Figure 4. In order to be able to test ALU,
under BIST, we need to insert an additional register, Reg;,
in order to compress the test patterns. Reg; may also be
used to generate random patterns for ALU,.

III. BIST TEsST POINTS SELECTION

Once the datapath has been ensured to be structurally
testable, test points must be selected. There are two con-
ditions that should be satisfied:

1. The TPGRs at the input ports of a single ALU cannot

be the same due to correlation problems.

2. A TPGR cannot be used as an MISR for the same

ALU in order to avoid the self-adjacency problem.

An initial and straightforward selection is to configure
all registers connected to primary inputs as TPGRs, and
registers connected to the primary outputs as MISRs. The
rest of the registers are configured as BILBOs. This selec-
tion is possible since every datapath port is covered by at

| ALU | First TPGR | Second TPGR | MISR |
ALU; Reg; Reg, Regy
ALU, Reg, Regs Reg;
ALU; Regy Regs Regg
ALU, Regs Reg; Regr

TABLE 1
INITIAL TEST MAPPING FOR THE DATA PATH EXAMPLE

least one register due to its structurally testability. Obvi-
ously, this will result in a datapath characterized with high
fault coverage but which incurs additional hardware over-
head and delay. Another approach is to reduce the test
hardware overhead by considering modules functionality,
using the test metrics developed in [3]. Thus, the selection
process will result in two possible extreme solutions though
it is possible to explore in between additional testable de-
signs by adding or removing test points. It should be noted
that other test metrics, such as the ones in [6], [7], [9], could
also be used in this case in our method.

We use two test metrics, randommness and transparency.
A module is random if its output is random enough to act
as a random pattern generator for all modules connected to
its output port. On the other hand, a module is transparent
if it can pass the faults generated by other modules to its
MISR. Thus, we remove a TPGR if it is at the output
port of a module whose responses are random. In the same
token, an MISR is removed if the faults can be propagated
through an intermediate module to another MISR without
a loss in randomness. For example in Figure 4, ALU; is
transparent; therefore we can use register regg as an MISR
for ALU; as well as for ALU3z. On the other hand, if an
ALU is random, then its output maybe used as random
patterns for other ALUs. In Figure 4, ALU; is random,
and therefore its output may be used to generate random
patterns for ALU3.

A. BIST Selection Algorithm

The selection algorithm starts by generating all possible
mappings of the datapath ALUs with all different possible
TPGRs and MISRs. For the data path example of Figure
4, the initial test mapping is shown in Table L.

A further reduction of test points is explored next using
functional test metrics [3]; thus, additional mappings are
added to list of test mappings (Table I). Note that in
some cases, by removing a test point due to test metrics, a
register maybe saved if this register was inserted during the
insertion phase. The new mappings after the randomness
and transparency metrics are shown in Table II.

Once all possible mappings have been generated, the sys-
tem removes TPGRs that are at the same input ports of an
ALU due to the correlation condition. Furthermore, regis-
ters that are TPGRs and MISRs for the same ALU in the
same session are removed due to self-adjacency. The up-
dated list of registers is next sorted according to the num-
ber of times a register is used in the test mapping. The

Check the connection at every ALUs port in the list

insert a register

if it is an ALU that directly feeds into the input port then
insert a register between both ALUs.

else

if the current ALU has other output register(s)
if the register is self-adjacent then
insert a register
else
insert a register

insert a register
else

insert a register
if the MUX is at the output port of the ALU
if the ALU has a self-adjacent register at its output port
then insert a register
else
if the ALU has no registers at the output port

insert a register

insert a register

B Input: A list of all datapath ALUs and the registers at their ports.
B Qutput: A list that contains all ALUs and their possible TPGRs and MISRs.

if it is a self-adjacent output register and there is no other output register then

if another ALU is fed at the output port by the current ALU

if it is a multiplexer at the input port and if the inputs of the MUX do not include registers then

if the inputs to the MUX include only one self-adjacent register then

if at the output of the MUX there is a self-adjacent register then

else if there is no registers at the output of the MUX then

Fig. 5. Test Insertion Algorithm

| ALU | First TPGR | Second TPGR | MISR |
ALU, Reg: Rego Regy
ALU, Reg, Regs Reg;
ALU; Regy Regs Regs
ALU, Regs Reg; Regy;
ALU; Reg; Regs Regs
ALU; Reg, Regs Regs
ALU, Regs Regy Regy;
ALU, Regs Regs Regy;
ALU; Reg; Regy Regs

TABLE 11
TEST MAPPING FOR THE DATA PATH EXAMPLE

final test plan is selected by choosing the mappings with
the highest weight. For the example datapath in Figure 4,
the highest weighted register is Regy resulting in the final
list of selected mappings shown in Table III.

The above problem was formulated as a set-covering
problem and solved in a near optimal approach using a
greedy technique. The selection algorithm, shown in Fig-
ure 6, has a worst case run time of O(a®r?) where a is the
number of ALUs in the input circuit and r is the number
of registers in the initial circuit.

IV. THE SCHEDULING PROCESS

The final step is the scheduling of different datapath
components into different test sessions. The goal of this
step is to minimize the number of test sessions by maxi-
mizing the number of ALUs tested in the same test session.

However, there are conditions that restrict two ALUs from
being tested in parallel. These conditions are:

1. If two ALUs have the same MISR, then they cannot
be tested at the same time.

2. If an ALU’s MISR is another ALU’s TPGR then these
two ALUs cannot be tested at the same time, unless
the register in concern is a CBILBO, which is not used
at this stage in our system

The scheduling process is divided into two main steps

that resolve the first and the second condition. In the first
step, ALUs that have the same MISR are assigned to dif-
ferent test sessions. Each ALU is also assigned a weight
that is equal to the number of times its MISR is used by
other ALUs. For the mappings of Table II, ALU; and
ALU; have the same MISR, and thus they are assigned
to different test sessions with a weight of two. ALUy and
ALUy are assigned to the first test session with weights of
one. The second phase deals with the second condition. In
this phase, every ALU’s TPGRs is compared with every
other ALUs MISR within the same test session. If they are
equals then the ALU with the smallest weight is moved to

| ALU | First TPGR | Second TPGR | MISR |
ALU, Reg, Regs Reg;
ALU;3 Reg, Regs Regs
ALU, Regs Reg, Regr
ALU, Reg: Reg, Regg

TABLE III
FINAL SELECTED MAPPINGS

B Input: A list of all possible test mapping of the datapath ALUs
B Qutput: Minimum cost test registers mapping for the datapath.

For every module in the datapath

if the ALU is random apply the randomness check
if the ALU is transparent apply the transparency check

}

for every register in the list do

for all the mappings of the same ALU that contain this register
add the weights of the selection points.
pick the highest weighted mapping.

pick the ALU that corresponds to the above mapping.

Sort remaining registers in descending order according to their occurrence in the mapping.

get the first mapping that contains the register at any one of its input ports

remove all other mappings that contain this ALU in the selection list.

Fig. 6. The Greedy Set Cover Selection Algorithm

B Qutput: Sub-optimal test schedule for the datapath

repeat {
CurrentSession <+ 1
CurrentMapping < Mapping][1]
Session(Mapping[1]) < 1

CurrentSession <— CurrentSession +1;
Session(X) «— CurrentSession;

} until there are no more sessions

for every mapping ¢

{
for every other mapping j
if (weight(i) < weight(j))
Session(i) + weight(i) + 1
else
Session(j) < weight(j) + 1
}
}

B Input: Minimum cost test registers mapping for the datapath, Mapping|[n]

// Two ALUs with the same MISR may not be scheduled in the same session

for every other mapping X in list, if its MISR is the same as CurrentMapping

Adjust the weight of all the mappings whose session has been changed to be CurrentSession.

// Two ALUs with the TPGRs of one is the MISR of the other may not be scheduled in the same session.

if ¢ and j are scheduled in the same session and if either TPGR is equal to the MISR of the other mapping

Fig. 7. The test scheduling algorithm

another test session. For the data path example in Figure
4, this results with the following test sessions:

Session 1: ALU3, ALU,, ALU4

Session 2: ALU;

In the second step every ALU’s TPGR. is compared to
every other ALUs MISR within the same session. If they
are equal, then the ALU with the least weight is moved to
another test session. The final schedule for the example,
after using test metrics, is shown in Table IV.

The scheduling algorithm, shown in Figure 7, has a worst
case run time equal to O(a?) where a is the number of ALUs
in the input circuit.

V. RESuULTS

In order to validate the Redesign for Testability (ReTest)
approach, we attempted four benchmark examples that
were found in the literature. The examples were automat-
ically generated using High-Level Synthesis tools. In what
follows, the experimental procedure is first explained and

| Session | ALU | TPGR1 | TPGR2 | MISR |

1 ALU, Reg, Regs Reg;

1 ALU3 Reg2 Reg5 Reg6

1 ALU4 Reg5 Reg2 Reg7

2 ALU1 Reg1 Reg2 Reg6
TABLE IV

FINAL TEST PLAN FOR THE DATA PATH EXAMPLE

then results are presented.

A. Ezxperimental Procedure

In order to validate our system shown in Figure 8, var-
ious published designs for benchmark circuits were at-
tempted. However, due to the lack of VHDL descriptions
for these designs, they were manually captured in struc-

Structural RTL VHDL
Description

Test Insertion

i

Test Points Selection }

p— g e

i

l Test Scheduling

i

l Testable VHDL Description }

Fig. 8. ReTest System Description

b]
I h | I
! .

LT L

P
(MISR_> MISR

Fig. 9. Datapath from ARYL/LYRA

tural VHDL. ReTest translated the designs, expressed in
structural VHDL, to ISCAS89 format. The circuits were
then fault graded, before and after test insertion, using the
HOPE fault simulator [18]. For the initial designs (before
the test insertion), all registers at the input ports were con-
figured as TPGRs, the registers at the output ports were
configured as MISRs. The remaining registers were config-
ured as BILBOs. The fault simulator was fed random pat-
terns generated using the COMPASS LFSR compiler. Four
designs were attempted for this paper, all derived from the

literature. Detailed results summary are shown in Table
VI

A.1 Example 1: ARYL and LYRA

The first attempted example was synthesized from be-
havioral description using ARYL and LYRA [13]. The data
path for this example is shown in Figure 9 with the selected
test registers. Only one register was inserted for this ex-
ample in order to improve the testability of the subtractor.
The datapath was scheduled in three test sessions. The
schedule for this example is shown in Table V. The fault
coverage of the redesigned circuit improved to 96.41%, from
87.94%, an improvement of 10.92%. The fault simulation
time improved from 9.73 seconds to 6.67 seconds. Fault
simulation results are shown in Figure 10.

A.2 Examples 2 and 3: Differential Equation

The second example is the HAL differential equation
popularized by Paulin [21]. Two designs that were gen-
erated by [3], [22] are presented. One register was inserted
in the first design improving its testability from 58.53% to
98.11%. The simulation time also improved from 39.7 secs

[Session | ALU | TPGRI1 | TPGR2 | MISR |

1 ALU, Regr Reg; Reg»

1 ALU; Regy Regy Regio

2 ALU; Regy Reg: Reg;

2 ALU; Regs Regy Regs

3 ALU, Regy Regs Reg;
TABLE V

FINAL TEST PLAN FOR THE ARYL/LYRA EXAMPLE

to 4.41 secs. The example was scheduled in four test ses-
sions. For the second design, one register was also inserted.
The fault coverage improved from 87.97% to 98.71%; how-
ever, the fault simulation time did not improve by much
(only 0.6 secs). The example was scheduled in three test
sessions. Fault simulation results for [22] are shown in Fig-
ure 11.

A.3 Example 4: TMS32010

The last example is the TMS32010, used by [16] as well as
by other researchers for comparison purposes. Two regis-
ters were inserted improving the fault coverage by 71.24%,
from 25.97% to 97.21%. The fault simulation time im-
proved by 18.05 seconds, from 22.81 sec to 4.77 sec. The
example was scheduled in two test sessions. Fault coverage
results are shown in Figure 12.

VI. CONCLUSION

A method for redesign for testability at the register-
transfer level was presented. The method improves circuits
testability through test registers insertion. The method
is followed by a test selection and a test scheduling algo-
rithm. What distinguishes our approach is the use of func-
tional test metrics in order to tradeoff datapath area and
delay with test quality expressed in terms of fault cover-
age and test time. The method was implemented and sev-
eral benchmarks circuits were attempted. The results show
clear improvemnet in test time as well as in fault coverage.

100

Before Insertion
After Insertion --------

Fault Coverage (%)

. . .
400 600 800 1000
Number of Test patterns

Fig. 10. Fault simulation results using ARYL/LYRA

Example #Registers Test Register Types # Test Fault Coverage Test Time
Inserted TPGR [MISR [BILBO | Sessions | Initial | Improved | Improvement (s)

ARYL/LYRA [13] 1 4 3 0 3 87.94% 96.41% 3.1

Differential

Equation [3] 1 4 2 1 3 87.97% 98.71% 35.29

Differential

Equation [22] 1 11 3 5 4 58.53% 98.11% 0.6

TMS32010 [16] 2 1 3 1 2 25.97% 97.21% 18.05

TABLE VI

RESULTS SUMMARY

100

[9] M. Gentil, A. ElRhalibi, C. Durante, “A New High Level Testa-
bility Measure: Description Evaluation,” Proc. ED&TC, 1994.

[10] M. Garey, D. S. Johnson, Computer and Intractability, W. H.
Freeman, 1979.

[11] H. Harmanani, C. Papachristou, “An Improved Method for RTL
Synthesis with Testability Trade-Offs,” in Proc. of the ICCAD,
pp. 30-37, 1993.

1 [12] C.L. Hudson, G.D. Peterson, “Parallel Self-Test With Pseudo-

woll i Random Test Patterns,” Proc. ITC, pp. 954-963, 1987.

[13] C. Huang, Y. Chen, Y. Lin, Y. Hsu, “Data Path Allocation
Based on Bipartite Weighted Matching,” Proc. 27th DAC, pp.

20} J 499-504, 1990.

[14] W. Jone, C. Papachristou, M. Pereira, “A Scheme for Overlaying
Concurrent Testing of VLSI Circuits,” Proc. 26th DAC, pp. 531-

% 10 200 200 200 500 500 700 800 536, .1989' . . .

Number of Test patterms [15] K. Kim, D. Ha, J. Tront, “On Using Signature Registers as Pseu-
dorandom Pattern Generators in Built-In Self-Testing,” IEEE

Fig. 11. Differential Equations fault simulation results using Splicer Trans. CAD, Vol. 8, pp. 919-928, 1988.

[16] K. Kim, J. Tront, D. Ha, “Automatic Insertion of BIST Hard-
ware Using VHDL,” Proc. 25th DAC, pp. 9-15, 1988.

w w w w w w w [17] K. Kim, J. Tront, and D. Ha, “BIDES: A BIST design expert
system,” JETTA, Vol. 2, pp. 165-179, 1991.

[18] H.Lee and D. Ha, “HOPE: An Efficient Parallel Fault Simulator

Before Insertion] for Synchronous Sequential Circuits,” Proc. 29th DAC, pp. 336-
340, 1992.

[19] S. Lin, C. Njinda, M. Breuer, “Generating a Family of Testable

] Designs Using the BILBO Methodology,” JETTA, Vol. 4, pp.
71-89, 1993.

[20] C. Papachristou, S. Chiu, H. Harmanani, “SYNTEST: a method
for SYNThesis with self-TESTability,” Proc. ICCD, pp. 458-462,
1991.

[21] P. Paulin, J.P. Knight, “Forced-Directed Scheduling for the Be-
havioral Synthesis of ASIC’s”, IEEE Trans. CAD, pp. 661-679,

| 1989.

N ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ [22] B. Pangrle, “Splicer: A Heuristic Approach to Connectvity Bind-

N N ing,” Proc. 25th DAC, pp. 536-541, 1988.

[23] A. Stroele, H. Wunderlich, “Hardware-Optimal Test Register

Insertion,” IEEFE Trans. CAD, pp. 531-539, 1998.

80 -

After Insertion
Before Insertion --------

60 |} R

Fault Coverage (%)

Fault Coverage (%)

Fig. 12. Fault simulation results using TM32010 Example

REFERENCES

[1] M. Abramovici, M. Breuer, A. Friedman, Digital Systems Test-
ing and Testable Designs, Computer Science Press, 1990.

[2] L. Avra, “Allocation and Assignment in High-Level Synthesis
for Self-Testable Data Paths,” Proc. ITC, pp. 463-472, 1991.

[3] S. Chiu, C. Papachristou, “A Design for Testability Scheme with
Applications to Data Path Synthesis,” Proc. 28th DAC, pp. 271-
277, 1991.

[4] G. Craig, C. Kime, and K. Saluja, “Test Scheduling and Control
for VLSI Built-In Self-Test,” IEEE Trans. On Computers, Vol.
C-37, pp. 1099-1109, 1988.

[5] G. De Micheli, Synthesis and Optimization of Digital Circuits,
McGraw Hill, 1994.

[6] M. Fernandez, P. Sanchez, E. Villar, “High-Level Synthesis with
Testability Criteria,” Proc. Second Annual Atlantc Test Work-
shop, pp. 381-390, 1993.

[7] M. Flottes, P. Pires, B. Rouzeyre, “Analyzing Testability from
Behavioral to RT Level,” Proc. ED&TC, pp. 1-8, 1997.

[8] C. Gebotys, M. Elmasri, “VLSI Design Synthesis with Testabil-
ity,” Proc. 25th DAC, pp. 16-21., 1988.

