
1An Approa
h for Redesign for Testability at the RTLevelHaidar M. Harmanani and Salam HarfoushKeywords|BIST Insertion, Test SynthesisAbstra
tThis paper presents a new approa
h for redesign fortestability at the Register-Transfer Level (RTL). Themethod identi�es hard to test parts in RTL designs thatwere synthesized, either manually or automati
ally using ahigh-level synthesis tool. The design is modi�ed by insert-ing additional registers that are a
tive during test mode.The insertion pro
ess is followed by a test sele
tion pro-
ess that uses fun
tional test metri
s in order to minimizetest overhead. Finally, test s
heduling is performed in orderto minimize the overall test time and the number of testsessions. The system outputs a VHDL des
ription of theresulting testable data path along with the test plan.I. Introdu
tionThe
omplexity of VLSI
ir
uitry has
ompli
ated thedesign and test of digital
ir
uits. Re
ent trends in synthe-sis have been moving synthesis higher in the design hierar-
hy. High-level synthesis has emerged as a good approa
hfor top down design methodology [5℄. Though some re-sear
hers have re
ently integrated design and test synthesis[2℄, [6℄, [8℄, [11℄, most other resear
hers have ignored testa-bility
onsiderations at the system level. Add to that thenumerous designs that are manually synthesized withouttesting
onsiderations.Design for testability (DFT) te
hniques [1℄ emerged asa solution that aims at eÆ
ient and
ost e�e
tive testingby enhan
ing the
ontrollability and observability of the
ir
uit under test; the
ontrol and observation of the
ir
uitunder test are
entral to implementing its test pro
edures.Within DFT, Built-In Self-Test (BIST) was proposed withtest generation and response analysis o

urring on-
hip.The advantage for BIST is that designs
an be \tested per
lo
k," potentially enhan
ing test appli
ation time, delaytesting, and defe
t
overage. However, it often requires ahigher hardware overhead and indu
es more delay duringnormal operation mode.A. Ba
kgroundThis paper dis
usses testing within the s
ope of pseu-dorandom BIST. In order to test a kernel using the BISTmethodology, every input port has to be fed by a Test Pat-tern Generation Register (TPGR) whi
h is based on au-tonomous Linear Feedba
k Shift Register (LFSR). Everyoutput port must feed a Multiple Input Signature RegisterDepartment of Computer Engineering & S
ien
e, Lebanese Ameri-
an University, P.O. Box 36, Byblos, LebanonS. harfoush is with The Central Bank of Lebanon

(a) (b)

R1

R2

Ri

R1

R2

ALU ALU

Fig. 1. a) Non-observable ALU due to self-adja
en
y, b) TestableALU after test insertion(MISR) that evaluates the test responses . In our work, wedetermine the fault
overage using logi
 level fault simu-lation. One of the diÆ
ulties in implementing BIST te
h-niques is the register self-adja
en
y problem1, arising dueto stru
tures similar to the one shown in Figure 1(a). Inthis
ir
uit, it is not possible to assign R2 as both a TPGRand an MISR in the same test session. Some resear
hersused the MISR outputs, whi
h are essentially random ve
-tors, as random patterns [15℄. The problem in this ap-proa
h is that errors in the MISR propagate erroneous testpatterns that are applied to the ALU, whi
h then tendto produ
e errors in the BILBO2. This problem
an bere
ti�ed using a
on
urrent built-in logi
-blo
k observation(CBILBO) register [1℄. The CBILBO register
an operatesimultaneously as an MISR and a TPGR. The disadvan-tage of the CBILBO is that it is very
ostly in area (about1.75 times the size of a BILBO [2℄) and indu
es more delayduring normal operation mode.Hudson [12℄ showed that when self-adja
ent registers are
on�gured as test pattern generators, the additional feed-ba
k that made the register self-adja
ent
an greatly redu
eits ability to retain error information as a signature ana-lyzer. Kim [15℄ showed that random patterns generated bysignature registers are rarely repeated when the number oftest patterns is relatively small
ompared to the number ofpossible patterns
on
luding that signatures registers
anbe used as test pattern generators. However, we note thatthis is not the
ase with self- adja
ent registers sin
e, when
on�gured as signature registers, they have an in
reasedprobability of aliasing.B. Related WorkMany resear
hers have addressed how to automati
allygenerate testable designs while minimizing test overheads.Lin, Njinda and Breuer [19℄ proposed a system based on1A register is self-adja
ent if an output of that register feeds through
ombinational logi
 and ba
k into itself.2A BILBO is a test register that
an a
t as a TPGR and as anMISR but in di�erent test sessions.

2the BILBO methodology. The system
onstru
ts all possi-ble embeddings for ea
h kernel3 and determines the
om-patibility between ea
h two embeddings. Two embeddingsare
ompatible if they do not have resour
e
on
i
ts and
an be exe
uted
on
urrently. The system generates nextrepresentative designs for the testable design spa
e using abran
h and bound pro
edure. Ea
h representative designhas its own test time and area overhead and the designeruses these data to
hoose between representative designs.An expert system helps the designer in the sele
tion pro-
ess. On
e the designer makes his sele
tion, a modi�
ationpro
ess is
arried out to add the test hardware to the
ir-
uit under test. Kim, Tront and Ha [15℄ developed theBIDES knowledge-based expert system for test insertionin RTL designs using the BILBO methodology. The de-sign pro
ess
onsists of an initial design and subsequentredesign steps that are repeated until an a

eptable solu-tion is obtained. Te
hniques in AI planning are employedfor ba
ktra
king in the redesign steps. A family of testabledesigns
an be produ
ed via user intera
tions. The sys-tem works in a lo
al sear
h fashion and la
ks a global viewof the design spa
e. Craig, Kime and Saluja [4℄ proposedoptimal and sub-optimal pro
edures for s
heduling the exe-
ution of tests asso
iated with a testable design in order tominimize test time. They formulated the test s
hedulingproblem for kernels having equal test lengths as a
lique
overing problem whi
h is NP-hard [10℄. For the unequaltest length problem, a transformation is used that parti-tions the tests for the kernels into equal length sub-tests,and the pro
edure for the equal test length problem is thenemployed. It is obvious that if the longest test length ismu
h greater than the shortest test length, the problembe
omes intra
table.C. Problem Des
ription and Signi�
an
eThe problem we address in this paper is as follows:Given an RTL des
ription of a datapath, the pur-pose of the redesign for testability method is toimprove its testability by: 1) inserting additionalregisters, a
tive during test mode only, if ne
es-sary; 2) s
hedule the resulting stru
ture into theminimal number of test sessions so as to redu
ethe overall test time.In order to redu
e test penalty and ensure the datap-ath stru
tural testability, it is ne
essary to automate theBIST insertion pro
ess. We solve the BIST insertion prob-lem in two stages. In the �rst stage, ne
essary registersare inserted in the datapath so as to guarantee the datap-ath stru
tural testability (se
tion 2). In the se
ond stage,datapath registers
on�gurations are explored in order toimprove the datapath
ost while trading-o� with test timeand quality. The resulting datapath, in
luding insertedtest stru
tures, is �nally synthesized in VHDL and fed toa logi
 synthesis tool.This paper is organized as follows: in se
tion 2 we de-s
ribe the test insertion pro
ess. Se
tion 3 des
ribes the3An embedding is de�ned as the stru
ture formed of a kernel andits asso
iated Pseudorandom Pattern Generators (PRPGs) and Sig-nature Analyzer (SA).

Normal NormalMISR

TPGR TPGR

ALU

...Fig. 2. Testable Fun
tional Blo
k (TFB)sele
tion pro
ess while se
tion 4 des
ribes our s
hedulingapproa
h. Results are presented and dis
ussed in se
tion5. We
on
lude with remarks in se
tion 6.II. BIST Test Points InsertionThe insertion pro
ess is based on the notion of stru
turaltestability, introdu
ed in our earlier work [11℄. The keyelement of the stru
tural testability model is the TestableFun
tional Blo
k (TFB) shown in Figure 2. A TFB
onsistsof an ALU and a set of input and output registers. Thereare at least two registers at the input ports of a TFB that
an be
on�gured as TPGRs during test mode. The out-put port of a TFB is
onne
ted to a set of registers, one ofwhi
h is
on�gured as an MISR in test mode. Although abasi
 TFB
onsists of two TPGRs and one MISR, it shouldbe noted that these BIST registers maybe shared by otherTFBs in the datapath. This means that some of these reg-isters at the TFB output port maybe
on�gured as BILBOregisters. Furthermore, some other non-BIST registers atthe TFB output port may have to be
on�gured as TPGRsif they
ontrol the input port of other TFBs. A datapaththat
onsists of TFBs is stru
turally testable [11℄.The insertion problem then be
omes one of inserting reg-isters in order to transform the datapath into a stru
turallytestable one. The idea is to modify the datapath in orderto
reate TFBs by: 1) breaking self-loops that are feedinga module output ba
k to its input, and 2) inserting addi-tional registers to
over every port in the datapath with atleast one register, to be
onverted in the next stage into atest point.Based on the above, there are two general
ases that mayrequire test insertion for testability enhan
ements. In the�rst
ase, a CLB output feeds immediately an input port ofone or more other CLBs, either dire
tly or through a multi-plexer as shown in Figure 3(a). In this
ase, a register mustbe inserted between both CLBs if no other register
oversthis port. The inserted register would generate patternsfor one of the CLBs and
ompress the signature for theother one. The se
ond
ase is due to register self adja
en
yproblem shown earlier in Figure 1(a).The above
ases
ould feed into CLBs dire
tly or througha multiplexer. For a non-trivial
ir
uit, there are manypaths to
he
k and thus a lot of possibilities to make ittestable; hen
e, the diÆ
ulty in the above problem. Itshould be noted that not all self-adja
ent registers
reatea testing problem as shown in Figure 3(b) and 3(
). If anALU has two or more output registers, one of whi
h is self-

3
(a) (b)

(c)

regreg

reg reg

regALU

ALU
ALU

ALUFig. 3. Insertion Cases
(*)(-)

(+) (*)

Reg 1 Reg 2 Reg 3 Reg4

Reg4 Reg 5
Reg i

Reg 6 Reg 7

ALU 1 ALU 2

ALU 3 ALU 4Fig. 4. Data path exampleadja
ent, then the self-adja
ent register may be
on�guredas a TPGR to the ALU and one of the other output reg-isters would be
on�gured as an MISR (Figure 3(
)). Theinsertion algorithm, shown in Figure 5, has a worst
aserun time in the order of O(n3), where n is the number of
omponents in the input
ir
uit.To illustrate our method we will use the simple datapathexample in Figure 4. In order to be able to test ALU2under BIST, we need to insert an additional register, Regi,in order to
ompress the test patterns. Regi may also beused to generate random patterns for ALU4.III. BIST Test Points Sele
tionOn
e the datapath has been ensured to be stru
turallytestable, test points must be sele
ted. There are two
on-ditions that should be satis�ed:1. The TPGRs at the input ports of a single ALU
annotbe the same due to
orrelation problems.2. A TPGR
annot be used as an MISR for the sameALU in order to avoid the self-adja
en
y problem.An initial and straightforward sele
tion is to
on�gureall registers
onne
ted to primary inputs as TPGRs, andregisters
onne
ted to the primary outputs as MISRs. Therest of the registers are
on�gured as BILBOs. This sele
-tion is possible sin
e every datapath port is
overed by at

ALU First TPGR Se
ond TPGR MISRALU1 Reg1 Reg2 Reg4ALU2 Reg2 Reg3 RegiALU3 Reg4 Reg5 Reg6ALU4 Reg5 Regi Reg7TABLE IInitial test mapping for the data path exampleleast one register due to its stru
turally testability. Obvi-ously, this will result in a datapath
hara
terized with highfault
overage but whi
h in
urs additional hardware over-head and delay. Another approa
h is to redu
e the testhardware overhead by
onsidering modules fun
tionality,using the test metri
s developed in [3℄. Thus, the sele
tionpro
ess will result in two possible extreme solutions thoughit is possible to explore in between additional testable de-signs by adding or removing test points. It should be notedthat other test metri
s, su
h as the ones in [6℄, [7℄, [9℄,
ouldalso be used in this
ase in our method.We use two test metri
s, randomness and transparen
y.A module is random if its output is random enough to a
tas a random pattern generator for all modules
onne
ted toits output port. On the other hand, a module is transparentif it
an pass the faults generated by other modules to itsMISR. Thus, we remove a TPGR if it is at the outputport of a module whose responses are random. In the sametoken, an MISR is removed if the faults
an be propagatedthrough an intermediate module to another MISR withouta loss in randomness. For example in Figure 4, ALU3 istransparent; therefore we
an use register reg6 as an MISRfor ALU1 as well as for ALU3. On the other hand, if anALU is random, then its output maybe used as randompatterns for other ALUs. In Figure 4, ALU1 is random,and therefore its output may be used to generate randompatterns for ALU3.A. BIST Sele
tion AlgorithmThe sele
tion algorithm starts by generating all possiblemappings of the datapath ALUs with all di�erent possibleTPGRs and MISRs. For the data path example of Figure4, the initial test mapping is shown in Table I.A further redu
tion of test points is explored next usingfun
tional test metri
s [3℄; thus, additional mappings areadded to list of test mappings (Table I). Note that insome
ases, by removing a test point due to test metri
s, aregister maybe saved if this register was inserted during theinsertion phase. The new mappings after the randomnessand transparen
y metri
s are shown in Table II.On
e all possible mappings have been generated, the sys-tem removes TPGRs that are at the same input ports of anALU due to the
orrelation
ondition. Furthermore, regis-ters that are TPGRs and MISRs for the same ALU in thesame session are removed due to self-adja
en
y. The up-dated list of registers is next sorted a

ording to the num-ber of times a register is used in the test mapping. The

4Input: A list of all datapath ALUs and the registers at their ports.Output: A list that
ontains all ALUs and their possible TPGRs and MISRs.Che
k the
onne
tion at every ALUs port in the listif it is a self-adja
ent output register and there is no other output register theninsert a registerif it is an ALU that dire
tly feeds into the input port theninsert a register between both ALUs.elseif another ALU is fed at the output port by the
urrent ALUif the
urrent ALU has other output register(s)if the register is self-adja
ent theninsert a registerelseinsert a registerif it is a multiplexer at the input port and if the inputs of the MUX do not in
lude registers theninsert a registerelseif the inputs to the MUX in
lude only one self-adja
ent register theninsert a registerif the MUX is at the output port of the ALUif the ALU has a self-adja
ent register at its output portthen insert a registerelseif the ALU has no registers at the output portif at the output of the MUX there is a self-adja
ent register theninsert a registerelse if there is no registers at the output of the MUX theninsert a register Fig. 5. Test Insertion AlgorithmALU First TPGR Se
ond TPGR MISRALU1 Reg1 Reg2 Reg4ALU2 Reg2 Reg3 RegiALU3 Reg4 Reg5 Reg6ALU4 Reg5 Regi Reg7ALU3 Reg1 Reg5 Reg6ALU3 Reg2 Reg5 Reg6ALU4 Reg5 Reg2 Reg7ALU4 Reg5 Reg3 Reg7ALU1 Reg1 Reg2 Reg6TABLE IITest mapping for the data path example�nal test plan is sele
ted by
hoosing the mappings withthe highest weight. For the example datapath in Figure 4,the highest weighted register is Reg2 resulting in the �nallist of sele
ted mappings shown in Table III.The above problem was formulated as a set-
overingproblem and solved in a near optimal approa
h using agreedy te
hnique. The sele
tion algorithm, shown in Fig-ure 6, has a worst
ase run time of O(a2r2) where a is thenumber of ALUs in the input
ir
uit and r is the numberof registers in the initial
ir
uit.IV. The S
heduling Pro
essThe �nal step is the s
heduling of di�erent datapath
omponents into di�erent test sessions. The goal of thisstep is to minimize the number of test sessions by maxi-mizing the number of ALUs tested in the same test session.

However, there are
onditions that restri
t two ALUs frombeing tested in parallel. These
onditions are:1. If two ALUs have the same MISR, then they
annotbe tested at the same time.2. If an ALU's MISR is another ALU's TPGR then thesetwo ALUs
annot be tested at the same time, unlessthe register in
on
ern is a CBILBO, whi
h is not usedat this stage in our systemThe s
heduling pro
ess is divided into two main stepsthat resolve the �rst and the se
ond
ondition. In the �rststep, ALUs that have the same MISR are assigned to dif-ferent test sessions. Ea
h ALU is also assigned a weightthat is equal to the number of times its MISR is used byother ALUs. For the mappings of Table II, ALU1 andALU3 have the same MISR, and thus they are assignedto di�erent test sessions with a weight of two. ALU2 andALU4 are assigned to the �rst test session with weights ofone. The se
ond phase deals with the se
ond
ondition. Inthis phase, every ALU's TPGRs is
ompared with everyother ALUs MISR within the same test session. If they areequals then the ALU with the smallest weight is moved toALU First TPGR Se
ond TPGR MISRALU2 Reg2 Reg3 RegiALU3 Reg2 Reg5 Reg6ALU4 Reg5 Reg2 Reg7ALU1 Reg1 Reg2 Reg6TABLE IIIFinal sele
ted mappings

5Input: A list of all possible test mapping of the datapath ALUsOutput: Minimum
ost test registers mapping for the datapath.For every module in the datapathf if the ALU is random apply the randomness
he
kif the ALU is transparent apply the transparen
y
he
kgSort remaining registers in des
ending order a

ording to their o

urren
e in the mapping.for every register in the list dof get the �rst mapping that
ontains the register at any one of its input portsfor all the mappings of the same ALU that
ontain this registeradd the weights of the sele
tion points.pi
k the highest weighted mapping.pi
k the ALU that
orresponds to the above mapping.remove all other mappings that
ontain this ALU in the sele
tion list.g Fig. 6. The Greedy Set Cover Sele
tion AlgorithmInput: Minimum
ost test registers mapping for the datapath, Mapping[n℄Output: Sub-optimal test s
hedule for the datapath// Two ALUs with the same MISR may not be s
heduled in the same sessionrepeat fCurrentSession 1CurrentMapping Mapping[1℄Session(Mapping[1℄) 1for every other mapping X in list, if its MISR is the same as CurrentMappingCurrentSession CurrentSession +1;Session(X) CurrentSession;Adjust the weight of all the mappings whose session has been
hanged to be CurrentSession.g until there are no more sessions// Two ALUs with the TPGRs of one is the MISR of the other may not be s
heduled in the same session.for every mapping if for every other mapping jif i and j are s
heduled in the same session and if either TPGR is equal to the MISR of the other mappingf if (weight(i) < weight(j))Session(i) weight(i) + 1elseSession(j) weight(j) + 1gg Fig. 7. The test s
heduling algorithmanother test session. For the data path example in Figure4, this results with the following test sessions:Session 1: ALU3, ALU2, ALU4Session 2: ALU1In the se
ond step every ALU's TPGR is
ompared toevery other ALUs MISR within the same session. If theyare equal, then the ALU with the least weight is moved toanother test session. The �nal s
hedule for the example,after using test metri
s, is shown in Table IV.The s
heduling algorithm, shown in Figure 7, has a worst
ase run time equal toO(a2) where a is the number of ALUsin the input
ir
uit. V. ResultsIn order to validate the Redesign for Testability (ReTest)approa
h, we attempted four ben
hmark examples thatwere found in the literature. The examples were automat-i
ally generated using High-Level Synthesis tools. In whatfollows, the experimental pro
edure is �rst explained and

Session ALU TPGR1 TPGR2 MISR1 ALU2 Reg2 Reg3 Regi1 ALU3 Reg2 Reg5 Reg61 ALU4 Reg5 Reg2 Reg72 ALU1 Reg1 Reg2 Reg6TABLE IVFinal test plan for the data path examplethen results are presented.A. Experimental Pro
edureIn order to validate our system shown in Figure 8, var-ious published designs for ben
hmark
ir
uits were at-tempted. However, due to the la
k of VHDL des
riptionsfor these designs, they were manually
aptured in stru
-

6

Testable VHDL Description

Test Scheduling

Test Points Selection

Test Insertion

Description
Structural RTL VHDL

Fig. 8. ReTest System Des
ription
TPGR TPGR MISR TPGRREG REG REG REG TPGR

MISR MISR

<*- * +Fig. 9. Datapath from ARYL/LYRAtural VHDL. ReTest translated the designs, expressed instru
tural VHDL, to ISCAS89 format. The
ir
uits werethen fault graded, before and after test insertion, using theHOPE fault simulator [18℄. For the initial designs (beforethe test insertion), all registers at the input ports were
on-�gured as TPGRs, the registers at the output ports were
on�gured as MISRs. The remaining registers were
on�g-ured as BILBOs. The fault simulator was fed random pat-terns generated using the COMPASS LFSR
ompiler. Fourdesigns were attempted for this paper, all derived from theliterature. Detailed results summary are shown in TableVI.A.1 Example 1: ARYL and LYRAThe �rst attempted example was synthesized from be-havioral des
ription using ARYL and LYRA [13℄. The datapath for this example is shown in Figure 9 with the sele
tedtest registers. Only one register was inserted for this ex-ample in order to improve the testability of the subtra
tor.The datapath was s
heduled in three test sessions. Thes
hedule for this example is shown in Table V. The fault
overage of the redesigned
ir
uit improved to 96.41%, from87.94%, an improvement of 10.92%. The fault simulationtime improved from 9.73 se
onds to 6.67 se
onds. Faultsimulation results are shown in Figure 10.A.2 Examples 2 and 3: Di�erential EquationThe se
ond example is the HAL di�erential equationpopularized by Paulin [21℄. Two designs that were gen-erated by [3℄, [22℄ are presented. One register was insertedin the �rst design improving its testability from 58.53% to98.11%. The simulation time also improved from 39.7 se
s

Session ALU TPGR1 TPGR2 MISR1 ALU2 Reg7 Reg1 Reg21 ALU5 Reg9 Reg7 Reg102 ALU1 Reg7 Reg1 Regi2 ALU3 Reg3 Reg7 Reg23 ALU4 Reg7 Reg3 RegiTABLE VFinal test plan for the ARYL/LYRA exampleto 4.41 se
s. The example was s
heduled in four test ses-sions. For the se
ond design, one register was also inserted.The fault
overage improved from 87.97% to 98.71%; how-ever, the fault simulation time did not improve by mu
h(only 0.6 se
s). The example was s
heduled in three testsessions. Fault simulation results for [22℄ are shown in Fig-ure 11.A.3 Example 4: TMS32010The last example is the TMS32010, used by [16℄ as well asby other resear
hers for
omparison purposes. Two regis-ters were inserted improving the fault
overage by 71.24%,from 25.97% to 97.21%. The fault simulation time im-proved by 18.05 se
onds, from 22.81 se
 to 4.77 se
. Theexample was s
heduled in two test sessions. Fault
overageresults are shown in Figure 12.VI. Con
lusionA method for redesign for testability at the register-transfer level was presented. The method improves
ir
uitstestability through test registers insertion. The methodis followed by a test sele
tion and a test s
heduling algo-rithm. What distinguishes our approa
h is the use of fun
-tional test metri
s in order to tradeo� datapath area anddelay with test quality expressed in terms of fault
over-age and test time. The method was implemented and sev-eral ben
hmarks
ir
uits were attempted. The results show
lear improvemnet in test time as well as in fault
overage.

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

F
au

lt
C

ov
er

ag
e

(%
)

Number of Test patterns

Before Insertion
After Insertion

Fig. 10. Fault simulation results using ARYL/LYRA

7Example #Registers Test Register Types # Test Fault Coverage Test TimeInserted TPGR MISR BILBO Sessions Initial Improved Improvement (s)ARYL/LYRA [13℄ 1 4 3 0 3 87.94% 96.41% 3.1Di�erentialEquation [3℄ 1 4 2 1 3 87.97% 98.71% 35.29Di�erentialEquation [22℄ 1 11 3 5 4 58.53% 98.11% 0.6TMS32010 [16℄ 2 1 3 1 2 25.97% 97.21% 18.05TABLE VIResults Summary

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

F
au

lt
C

ov
er

ag
e

(%
)

Number of Test patterns

After Insertion
Before Insertion

Fig. 11. Di�erential Equations fault simulation results using Spli
er
0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

F
au

lt
C

ov
er

ag
e

(%
)

Number of Test patterns

Before Insertion
After Insertion

Fig. 12. Fault simulation results using TM32010 ExampleReferen
es[1℄ M. Abramovi
i, M. Breuer, A. Friedman, Digital Systems Test-ing and Testable Designs, Computer S
ien
e Press, 1990.[2℄ L. Avra, \Allo
ation and Assignment in High-Level Synthesisfor Self-Testable Data Paths," Pro
. ITC, pp. 463-472, 1991.[3℄ S. Chiu, C. Papa
hristou, \A Design for Testability S
heme withAppli
ations to Data Path Synthesis," Pro
. 28th DAC, pp. 271-277, 1991.[4℄ G. Craig, C. Kime, and K. Saluja, \Test S
heduling and Controlfor VLSI Built-In Self-Test," IEEE Trans. On Computers, Vol.C-37, pp. 1099-1109, 1988.[5℄ G. De Mi
heli, Synthesis and Optimization of Digital Cir
uits,M
Graw Hill, 1994.[6℄ M. Fernandez, P. San
hez, E. Villar, \High-Level Synthesis withTestability Criteria," Pro
. Se
ond Annual Atlant
 Test Work-shop, pp. 381-390, 1993.[7℄ M. Flottes, P. Pires, B. Rouzeyre, \Analyzing Testability fromBehavioral to RT Level," Pro
. ED&TC, pp. 1-8, 1997.[8℄ C. Gebotys, M. Elmasri, \VLSI Design Synthesis with Testabil-ity," Pro
. 25th DAC, pp. 16-21., 1988.

[9℄ M. Gentil, A. ElRhalibi, C. Durante, \A New High Level Testa-bility Measure: Des
ription Evaluation," Pro
. ED&TC, 1994.[10℄ M. Garey, D. S. Johnson, Computer and Intra
tability, W. H.Freeman, 1979.[11℄ H. Harmanani, C. Papa
hristou, \An Improved Method for RTLSynthesis with Testability Trade-O�s," in Pro
. of the ICCAD,pp. 30-37, 1993.[12℄ C.L. Hudson, G.D. Peterson, \Parallel Self-Test With Pseudo-Random Test Patterns," Pro
. ITC, pp. 954-963, 1987.[13℄ C. Huang, Y. Chen, Y. Lin, Y. Hsu, \Data Path Allo
ationBased on Bipartite Weighted Mat
hing," Pro
. 27th DAC, pp.499-504, 1990.[14℄ W. Jone, C. Papa
hristou, M. Pereira, \A S
heme for OverlayingCon
urrent Testing of VLSI Cir
uits," Pro
. 26th DAC, pp. 531-536, 1989.[15℄ K. Kim, D. Ha, J. Tront, \On Using Signature Registers as Pseu-dorandom Pattern Generators in Built-In Self-Testing," IEEETrans. CAD, Vol. 8, pp. 919-928, 1988.[16℄ K. Kim, J. Tront, D. Ha, \Automati
 Insertion of BIST Hard-ware Using VHDL," Pro
. 25th DAC, pp. 9-15, 1988.[17℄ K. Kim, J. Tront, and D. Ha, \BIDES: A BIST design expertsystem," JETTA, Vol. 2, pp. 165-179, 1991.[18℄ H. Lee and D. Ha, \HOPE: An EÆ
ient Parallel Fault Simulatorfor Syn
hronous Sequential Cir
uits," Pro
. 29th DAC, pp. 336-340, 1992.[19℄ S. Lin, C. Njinda, M. Breuer, \Generating a Family of TestableDesigns Using the BILBO Methodology," JETTA, Vol. 4, pp.71-89, 1993.[20℄ C. Papa
hristou, S. Chiu, H. Harmanani, \SYNTEST: a methodfor SYNThesis with self-TESTability," Pro
. ICCD, pp. 458-462,1991.[21℄ P. Paulin, J.P. Knight, \For
ed-Dire
ted S
heduling for the Be-havioral Synthesis of ASIC's", IEEE Trans. CAD, pp. 661-679,1989.[22℄ B. Pangrle, \Spli
er: A Heuristi
 Approa
h to Conne
tvity Bind-ing," Pro
. 25th DAC, pp. 536-541, 1988.[23℄ A. Stroele, H. Wunderli
h, \Hardware-Optimal Test RegisterInsertion," IEEE Trans. CAD, pp. 531-539, 1998.

