
1An Approah for Redesign for Testability at the RTLevelHaidar M. Harmanani and Salam HarfoushKeywords|BIST Insertion, Test SynthesisAbstratThis paper presents a new approah for redesign fortestability at the Register-Transfer Level (RTL). Themethod identi�es hard to test parts in RTL designs thatwere synthesized, either manually or automatially using ahigh-level synthesis tool. The design is modi�ed by insert-ing additional registers that are ative during test mode.The insertion proess is followed by a test seletion pro-ess that uses funtional test metris in order to minimizetest overhead. Finally, test sheduling is performed in orderto minimize the overall test time and the number of testsessions. The system outputs a VHDL desription of theresulting testable data path along with the test plan.I. IntrodutionThe omplexity of VLSI iruitry has ompliated thedesign and test of digital iruits. Reent trends in synthe-sis have been moving synthesis higher in the design hierar-hy. High-level synthesis has emerged as a good approahfor top down design methodology [5℄. Though some re-searhers have reently integrated design and test synthesis[2℄, [6℄, [8℄, [11℄, most other researhers have ignored testa-bility onsiderations at the system level. Add to that thenumerous designs that are manually synthesized withouttesting onsiderations.Design for testability (DFT) tehniques [1℄ emerged asa solution that aims at eÆient and ost e�etive testingby enhaning the ontrollability and observability of theiruit under test; the ontrol and observation of the iruitunder test are entral to implementing its test proedures.Within DFT, Built-In Self-Test (BIST) was proposed withtest generation and response analysis ourring on-hip.The advantage for BIST is that designs an be \tested perlok," potentially enhaning test appliation time, delaytesting, and defet overage. However, it often requires ahigher hardware overhead and indues more delay duringnormal operation mode.A. BakgroundThis paper disusses testing within the sope of pseu-dorandom BIST. In order to test a kernel using the BISTmethodology, every input port has to be fed by a Test Pat-tern Generation Register (TPGR) whih is based on au-tonomous Linear Feedbak Shift Register (LFSR). Everyoutput port must feed a Multiple Input Signature RegisterDepartment of Computer Engineering & Siene, Lebanese Ameri-an University, P.O. Box 36, Byblos, LebanonS. harfoush is with The Central Bank of Lebanon

(a) (b)

R1

R2

Ri

R1

R2

ALU ALU

Fig. 1. a) Non-observable ALU due to self-adjaeny, b) TestableALU after test insertion(MISR) that evaluates the test responses . In our work, wedetermine the fault overage using logi level fault simu-lation. One of the diÆulties in implementing BIST teh-niques is the register self-adjaeny problem1, arising dueto strutures similar to the one shown in Figure 1(a). Inthis iruit, it is not possible to assign R2 as both a TPGRand an MISR in the same test session. Some researhersused the MISR outputs, whih are essentially random ve-tors, as random patterns [15℄. The problem in this ap-proah is that errors in the MISR propagate erroneous testpatterns that are applied to the ALU, whih then tendto produe errors in the BILBO2. This problem an bereti�ed using a onurrent built-in logi-blok observation(CBILBO) register [1℄. The CBILBO register an operatesimultaneously as an MISR and a TPGR. The disadvan-tage of the CBILBO is that it is very ostly in area (about1.75 times the size of a BILBO [2℄) and indues more delayduring normal operation mode.Hudson [12℄ showed that when self-adjaent registers areon�gured as test pattern generators, the additional feed-bak that made the register self-adjaent an greatly redueits ability to retain error information as a signature ana-lyzer. Kim [15℄ showed that random patterns generated bysignature registers are rarely repeated when the number oftest patterns is relatively small ompared to the number ofpossible patterns onluding that signatures registers anbe used as test pattern generators. However, we note thatthis is not the ase with self- adjaent registers sine, whenon�gured as signature registers, they have an inreasedprobability of aliasing.B. Related WorkMany researhers have addressed how to automatiallygenerate testable designs while minimizing test overheads.Lin, Njinda and Breuer [19℄ proposed a system based on1A register is self-adjaent if an output of that register feeds throughombinational logi and bak into itself.2A BILBO is a test register that an at as a TPGR and as anMISR but in di�erent test sessions.

2the BILBO methodology. The system onstruts all possi-ble embeddings for eah kernel3 and determines the om-patibility between eah two embeddings. Two embeddingsare ompatible if they do not have resoure onits andan be exeuted onurrently. The system generates nextrepresentative designs for the testable design spae using abranh and bound proedure. Eah representative designhas its own test time and area overhead and the designeruses these data to hoose between representative designs.An expert system helps the designer in the seletion pro-ess. One the designer makes his seletion, a modi�ationproess is arried out to add the test hardware to the ir-uit under test. Kim, Tront and Ha [15℄ developed theBIDES knowledge-based expert system for test insertionin RTL designs using the BILBO methodology. The de-sign proess onsists of an initial design and subsequentredesign steps that are repeated until an aeptable solu-tion is obtained. Tehniques in AI planning are employedfor baktraking in the redesign steps. A family of testabledesigns an be produed via user interations. The sys-tem works in a loal searh fashion and laks a global viewof the design spae. Craig, Kime and Saluja [4℄ proposedoptimal and sub-optimal proedures for sheduling the exe-ution of tests assoiated with a testable design in order tominimize test time. They formulated the test shedulingproblem for kernels having equal test lengths as a liqueovering problem whih is NP-hard [10℄. For the unequaltest length problem, a transformation is used that parti-tions the tests for the kernels into equal length sub-tests,and the proedure for the equal test length problem is thenemployed. It is obvious that if the longest test length ismuh greater than the shortest test length, the problembeomes intratable.C. Problem Desription and Signi�aneThe problem we address in this paper is as follows:Given an RTL desription of a datapath, the pur-pose of the redesign for testability method is toimprove its testability by: 1) inserting additionalregisters, ative during test mode only, if nees-sary; 2) shedule the resulting struture into theminimal number of test sessions so as to reduethe overall test time.In order to redue test penalty and ensure the datap-ath strutural testability, it is neessary to automate theBIST insertion proess. We solve the BIST insertion prob-lem in two stages. In the �rst stage, neessary registersare inserted in the datapath so as to guarantee the datap-ath strutural testability (setion 2). In the seond stage,datapath registers on�gurations are explored in order toimprove the datapath ost while trading-o� with test timeand quality. The resulting datapath, inluding insertedtest strutures, is �nally synthesized in VHDL and fed toa logi synthesis tool.This paper is organized as follows: in setion 2 we de-sribe the test insertion proess. Setion 3 desribes the3An embedding is de�ned as the struture formed of a kernel andits assoiated Pseudorandom Pattern Generators (PRPGs) and Sig-nature Analyzer (SA).

Normal NormalMISR

TPGR TPGR

ALU

...Fig. 2. Testable Funtional Blok (TFB)seletion proess while setion 4 desribes our shedulingapproah. Results are presented and disussed in setion5. We onlude with remarks in setion 6.II. BIST Test Points InsertionThe insertion proess is based on the notion of struturaltestability, introdued in our earlier work [11℄. The keyelement of the strutural testability model is the TestableFuntional Blok (TFB) shown in Figure 2. A TFB onsistsof an ALU and a set of input and output registers. Thereare at least two registers at the input ports of a TFB thatan be on�gured as TPGRs during test mode. The out-put port of a TFB is onneted to a set of registers, one ofwhih is on�gured as an MISR in test mode. Although abasi TFB onsists of two TPGRs and one MISR, it shouldbe noted that these BIST registers maybe shared by otherTFBs in the datapath. This means that some of these reg-isters at the TFB output port maybe on�gured as BILBOregisters. Furthermore, some other non-BIST registers atthe TFB output port may have to be on�gured as TPGRsif they ontrol the input port of other TFBs. A datapaththat onsists of TFBs is struturally testable [11℄.The insertion problem then beomes one of inserting reg-isters in order to transform the datapath into a struturallytestable one. The idea is to modify the datapath in orderto reate TFBs by: 1) breaking self-loops that are feedinga module output bak to its input, and 2) inserting addi-tional registers to over every port in the datapath with atleast one register, to be onverted in the next stage into atest point.Based on the above, there are two general ases that mayrequire test insertion for testability enhanements. In the�rst ase, a CLB output feeds immediately an input port ofone or more other CLBs, either diretly or through a multi-plexer as shown in Figure 3(a). In this ase, a register mustbe inserted between both CLBs if no other register oversthis port. The inserted register would generate patternsfor one of the CLBs and ompress the signature for theother one. The seond ase is due to register self adjaenyproblem shown earlier in Figure 1(a).The above ases ould feed into CLBs diretly or througha multiplexer. For a non-trivial iruit, there are manypaths to hek and thus a lot of possibilities to make ittestable; hene, the diÆulty in the above problem. Itshould be noted that not all self-adjaent registers reatea testing problem as shown in Figure 3(b) and 3(). If anALU has two or more output registers, one of whih is self-

3
(a) (b)

(c)

regreg

reg reg

regALU

ALU
ALU

ALUFig. 3. Insertion Cases
(*)(-)

(+) (*)

Reg 1 Reg 2 Reg 3 Reg4

Reg4 Reg 5
Reg i

Reg 6 Reg 7

ALU 1 ALU 2

ALU 3 ALU 4Fig. 4. Data path exampleadjaent, then the self-adjaent register may be on�guredas a TPGR to the ALU and one of the other output reg-isters would be on�gured as an MISR (Figure 3()). Theinsertion algorithm, shown in Figure 5, has a worst aserun time in the order of O(n3), where n is the number ofomponents in the input iruit.To illustrate our method we will use the simple datapathexample in Figure 4. In order to be able to test ALU2under BIST, we need to insert an additional register, Regi,in order to ompress the test patterns. Regi may also beused to generate random patterns for ALU4.III. BIST Test Points SeletionOne the datapath has been ensured to be struturallytestable, test points must be seleted. There are two on-ditions that should be satis�ed:1. The TPGRs at the input ports of a single ALU annotbe the same due to orrelation problems.2. A TPGR annot be used as an MISR for the sameALU in order to avoid the self-adjaeny problem.An initial and straightforward seletion is to on�gureall registers onneted to primary inputs as TPGRs, andregisters onneted to the primary outputs as MISRs. Therest of the registers are on�gured as BILBOs. This sele-tion is possible sine every datapath port is overed by at

ALU First TPGR Seond TPGR MISRALU1 Reg1 Reg2 Reg4ALU2 Reg2 Reg3 RegiALU3 Reg4 Reg5 Reg6ALU4 Reg5 Regi Reg7TABLE IInitial test mapping for the data path exampleleast one register due to its struturally testability. Obvi-ously, this will result in a datapath haraterized with highfault overage but whih inurs additional hardware over-head and delay. Another approah is to redue the testhardware overhead by onsidering modules funtionality,using the test metris developed in [3℄. Thus, the seletionproess will result in two possible extreme solutions thoughit is possible to explore in between additional testable de-signs by adding or removing test points. It should be notedthat other test metris, suh as the ones in [6℄, [7℄, [9℄, ouldalso be used in this ase in our method.We use two test metris, randomness and transpareny.A module is random if its output is random enough to atas a random pattern generator for all modules onneted toits output port. On the other hand, a module is transparentif it an pass the faults generated by other modules to itsMISR. Thus, we remove a TPGR if it is at the outputport of a module whose responses are random. In the sametoken, an MISR is removed if the faults an be propagatedthrough an intermediate module to another MISR withouta loss in randomness. For example in Figure 4, ALU3 istransparent; therefore we an use register reg6 as an MISRfor ALU1 as well as for ALU3. On the other hand, if anALU is random, then its output maybe used as randompatterns for other ALUs. In Figure 4, ALU1 is random,and therefore its output may be used to generate randompatterns for ALU3.A. BIST Seletion AlgorithmThe seletion algorithm starts by generating all possiblemappings of the datapath ALUs with all di�erent possibleTPGRs and MISRs. For the data path example of Figure4, the initial test mapping is shown in Table I.A further redution of test points is explored next usingfuntional test metris [3℄; thus, additional mappings areadded to list of test mappings (Table I). Note that insome ases, by removing a test point due to test metris, aregister maybe saved if this register was inserted during theinsertion phase. The new mappings after the randomnessand transpareny metris are shown in Table II.One all possible mappings have been generated, the sys-tem removes TPGRs that are at the same input ports of anALU due to the orrelation ondition. Furthermore, regis-ters that are TPGRs and MISRs for the same ALU in thesame session are removed due to self-adjaeny. The up-dated list of registers is next sorted aording to the num-ber of times a register is used in the test mapping. The

4Input: A list of all datapath ALUs and the registers at their ports.Output: A list that ontains all ALUs and their possible TPGRs and MISRs.Chek the onnetion at every ALUs port in the listif it is a self-adjaent output register and there is no other output register theninsert a registerif it is an ALU that diretly feeds into the input port theninsert a register between both ALUs.elseif another ALU is fed at the output port by the urrent ALUif the urrent ALU has other output register(s)if the register is self-adjaent theninsert a registerelseinsert a registerif it is a multiplexer at the input port and if the inputs of the MUX do not inlude registers theninsert a registerelseif the inputs to the MUX inlude only one self-adjaent register theninsert a registerif the MUX is at the output port of the ALUif the ALU has a self-adjaent register at its output portthen insert a registerelseif the ALU has no registers at the output portif at the output of the MUX there is a self-adjaent register theninsert a registerelse if there is no registers at the output of the MUX theninsert a register Fig. 5. Test Insertion AlgorithmALU First TPGR Seond TPGR MISRALU1 Reg1 Reg2 Reg4ALU2 Reg2 Reg3 RegiALU3 Reg4 Reg5 Reg6ALU4 Reg5 Regi Reg7ALU3 Reg1 Reg5 Reg6ALU3 Reg2 Reg5 Reg6ALU4 Reg5 Reg2 Reg7ALU4 Reg5 Reg3 Reg7ALU1 Reg1 Reg2 Reg6TABLE IITest mapping for the data path example�nal test plan is seleted by hoosing the mappings withthe highest weight. For the example datapath in Figure 4,the highest weighted register is Reg2 resulting in the �nallist of seleted mappings shown in Table III.The above problem was formulated as a set-overingproblem and solved in a near optimal approah using agreedy tehnique. The seletion algorithm, shown in Fig-ure 6, has a worst ase run time of O(a2r2) where a is thenumber of ALUs in the input iruit and r is the numberof registers in the initial iruit.IV. The Sheduling ProessThe �nal step is the sheduling of di�erent datapathomponents into di�erent test sessions. The goal of thisstep is to minimize the number of test sessions by maxi-mizing the number of ALUs tested in the same test session.

However, there are onditions that restrit two ALUs frombeing tested in parallel. These onditions are:1. If two ALUs have the same MISR, then they annotbe tested at the same time.2. If an ALU's MISR is another ALU's TPGR then thesetwo ALUs annot be tested at the same time, unlessthe register in onern is a CBILBO, whih is not usedat this stage in our systemThe sheduling proess is divided into two main stepsthat resolve the �rst and the seond ondition. In the �rststep, ALUs that have the same MISR are assigned to dif-ferent test sessions. Eah ALU is also assigned a weightthat is equal to the number of times its MISR is used byother ALUs. For the mappings of Table II, ALU1 andALU3 have the same MISR, and thus they are assignedto di�erent test sessions with a weight of two. ALU2 andALU4 are assigned to the �rst test session with weights ofone. The seond phase deals with the seond ondition. Inthis phase, every ALU's TPGRs is ompared with everyother ALUs MISR within the same test session. If they areequals then the ALU with the smallest weight is moved toALU First TPGR Seond TPGR MISRALU2 Reg2 Reg3 RegiALU3 Reg2 Reg5 Reg6ALU4 Reg5 Reg2 Reg7ALU1 Reg1 Reg2 Reg6TABLE IIIFinal seleted mappings

5Input: A list of all possible test mapping of the datapath ALUsOutput: Minimum ost test registers mapping for the datapath.For every module in the datapathf if the ALU is random apply the randomness hekif the ALU is transparent apply the transpareny hekgSort remaining registers in desending order aording to their ourrene in the mapping.for every register in the list dof get the �rst mapping that ontains the register at any one of its input portsfor all the mappings of the same ALU that ontain this registeradd the weights of the seletion points.pik the highest weighted mapping.pik the ALU that orresponds to the above mapping.remove all other mappings that ontain this ALU in the seletion list.g Fig. 6. The Greedy Set Cover Seletion AlgorithmInput: Minimum ost test registers mapping for the datapath, Mapping[n℄Output: Sub-optimal test shedule for the datapath// Two ALUs with the same MISR may not be sheduled in the same sessionrepeat fCurrentSession 1CurrentMapping Mapping[1℄Session(Mapping[1℄) 1for every other mapping X in list, if its MISR is the same as CurrentMappingCurrentSession CurrentSession +1;Session(X) CurrentSession;Adjust the weight of all the mappings whose session has been hanged to be CurrentSession.g until there are no more sessions// Two ALUs with the TPGRs of one is the MISR of the other may not be sheduled in the same session.for every mapping if for every other mapping jif i and j are sheduled in the same session and if either TPGR is equal to the MISR of the other mappingf if (weight(i) < weight(j))Session(i) weight(i) + 1elseSession(j) weight(j) + 1gg Fig. 7. The test sheduling algorithmanother test session. For the data path example in Figure4, this results with the following test sessions:Session 1: ALU3, ALU2, ALU4Session 2: ALU1In the seond step every ALU's TPGR is ompared toevery other ALUs MISR within the same session. If theyare equal, then the ALU with the least weight is moved toanother test session. The �nal shedule for the example,after using test metris, is shown in Table IV.The sheduling algorithm, shown in Figure 7, has a worstase run time equal toO(a2) where a is the number of ALUsin the input iruit. V. ResultsIn order to validate the Redesign for Testability (ReTest)approah, we attempted four benhmark examples thatwere found in the literature. The examples were automat-ially generated using High-Level Synthesis tools. In whatfollows, the experimental proedure is �rst explained and

Session ALU TPGR1 TPGR2 MISR1 ALU2 Reg2 Reg3 Regi1 ALU3 Reg2 Reg5 Reg61 ALU4 Reg5 Reg2 Reg72 ALU1 Reg1 Reg2 Reg6TABLE IVFinal test plan for the data path examplethen results are presented.A. Experimental ProedureIn order to validate our system shown in Figure 8, var-ious published designs for benhmark iruits were at-tempted. However, due to the lak of VHDL desriptionsfor these designs, they were manually aptured in stru-

6

Testable VHDL Description

Test Scheduling

Test Points Selection

Test Insertion

Description
Structural RTL VHDL

Fig. 8. ReTest System Desription
TPGR TPGR MISR TPGRREG REG REG REG TPGR

MISR MISR

<*- * +Fig. 9. Datapath from ARYL/LYRAtural VHDL. ReTest translated the designs, expressed instrutural VHDL, to ISCAS89 format. The iruits werethen fault graded, before and after test insertion, using theHOPE fault simulator [18℄. For the initial designs (beforethe test insertion), all registers at the input ports were on-�gured as TPGRs, the registers at the output ports wereon�gured as MISRs. The remaining registers were on�g-ured as BILBOs. The fault simulator was fed random pat-terns generated using the COMPASS LFSR ompiler. Fourdesigns were attempted for this paper, all derived from theliterature. Detailed results summary are shown in TableVI.A.1 Example 1: ARYL and LYRAThe �rst attempted example was synthesized from be-havioral desription using ARYL and LYRA [13℄. The datapath for this example is shown in Figure 9 with the seletedtest registers. Only one register was inserted for this ex-ample in order to improve the testability of the subtrator.The datapath was sheduled in three test sessions. Theshedule for this example is shown in Table V. The faultoverage of the redesigned iruit improved to 96.41%, from87.94%, an improvement of 10.92%. The fault simulationtime improved from 9.73 seonds to 6.67 seonds. Faultsimulation results are shown in Figure 10.A.2 Examples 2 and 3: Di�erential EquationThe seond example is the HAL di�erential equationpopularized by Paulin [21℄. Two designs that were gen-erated by [3℄, [22℄ are presented. One register was insertedin the �rst design improving its testability from 58.53% to98.11%. The simulation time also improved from 39.7 ses

Session ALU TPGR1 TPGR2 MISR1 ALU2 Reg7 Reg1 Reg21 ALU5 Reg9 Reg7 Reg102 ALU1 Reg7 Reg1 Regi2 ALU3 Reg3 Reg7 Reg23 ALU4 Reg7 Reg3 RegiTABLE VFinal test plan for the ARYL/LYRA exampleto 4.41 ses. The example was sheduled in four test ses-sions. For the seond design, one register was also inserted.The fault overage improved from 87.97% to 98.71%; how-ever, the fault simulation time did not improve by muh(only 0.6 ses). The example was sheduled in three testsessions. Fault simulation results for [22℄ are shown in Fig-ure 11.A.3 Example 4: TMS32010The last example is the TMS32010, used by [16℄ as well asby other researhers for omparison purposes. Two regis-ters were inserted improving the fault overage by 71.24%,from 25.97% to 97.21%. The fault simulation time im-proved by 18.05 seonds, from 22.81 se to 4.77 se. Theexample was sheduled in two test sessions. Fault overageresults are shown in Figure 12.VI. ConlusionA method for redesign for testability at the register-transfer level was presented. The method improves iruitstestability through test registers insertion. The methodis followed by a test seletion and a test sheduling algo-rithm. What distinguishes our approah is the use of fun-tional test metris in order to tradeo� datapath area anddelay with test quality expressed in terms of fault over-age and test time. The method was implemented and sev-eral benhmarks iruits were attempted. The results showlear improvemnet in test time as well as in fault overage.

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

F
au

lt
C

ov
er

ag
e

(%
)

Number of Test patterns

Before Insertion
After Insertion

Fig. 10. Fault simulation results using ARYL/LYRA

7Example #Registers Test Register Types # Test Fault Coverage Test TimeInserted TPGR MISR BILBO Sessions Initial Improved Improvement (s)ARYL/LYRA [13℄ 1 4 3 0 3 87.94% 96.41% 3.1Di�erentialEquation [3℄ 1 4 2 1 3 87.97% 98.71% 35.29Di�erentialEquation [22℄ 1 11 3 5 4 58.53% 98.11% 0.6TMS32010 [16℄ 2 1 3 1 2 25.97% 97.21% 18.05TABLE VIResults Summary

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

F
au

lt
C

ov
er

ag
e

(%
)

Number of Test patterns

After Insertion
Before Insertion

Fig. 11. Di�erential Equations fault simulation results using Splier
0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

F
au

lt
C

ov
er

ag
e

(%
)

Number of Test patterns

Before Insertion
After Insertion

Fig. 12. Fault simulation results using TM32010 ExampleReferenes[1℄ M. Abramovii, M. Breuer, A. Friedman, Digital Systems Test-ing and Testable Designs, Computer Siene Press, 1990.[2℄ L. Avra, \Alloation and Assignment in High-Level Synthesisfor Self-Testable Data Paths," Pro. ITC, pp. 463-472, 1991.[3℄ S. Chiu, C. Papahristou, \A Design for Testability Sheme withAppliations to Data Path Synthesis," Pro. 28th DAC, pp. 271-277, 1991.[4℄ G. Craig, C. Kime, and K. Saluja, \Test Sheduling and Controlfor VLSI Built-In Self-Test," IEEE Trans. On Computers, Vol.C-37, pp. 1099-1109, 1988.[5℄ G. De Miheli, Synthesis and Optimization of Digital Ciruits,MGraw Hill, 1994.[6℄ M. Fernandez, P. Sanhez, E. Villar, \High-Level Synthesis withTestability Criteria," Pro. Seond Annual Atlant Test Work-shop, pp. 381-390, 1993.[7℄ M. Flottes, P. Pires, B. Rouzeyre, \Analyzing Testability fromBehavioral to RT Level," Pro. ED&TC, pp. 1-8, 1997.[8℄ C. Gebotys, M. Elmasri, \VLSI Design Synthesis with Testabil-ity," Pro. 25th DAC, pp. 16-21., 1988.

[9℄ M. Gentil, A. ElRhalibi, C. Durante, \A New High Level Testa-bility Measure: Desription Evaluation," Pro. ED&TC, 1994.[10℄ M. Garey, D. S. Johnson, Computer and Intratability, W. H.Freeman, 1979.[11℄ H. Harmanani, C. Papahristou, \An Improved Method for RTLSynthesis with Testability Trade-O�s," in Pro. of the ICCAD,pp. 30-37, 1993.[12℄ C.L. Hudson, G.D. Peterson, \Parallel Self-Test With Pseudo-Random Test Patterns," Pro. ITC, pp. 954-963, 1987.[13℄ C. Huang, Y. Chen, Y. Lin, Y. Hsu, \Data Path AlloationBased on Bipartite Weighted Mathing," Pro. 27th DAC, pp.499-504, 1990.[14℄ W. Jone, C. Papahristou, M. Pereira, \A Sheme for OverlayingConurrent Testing of VLSI Ciruits," Pro. 26th DAC, pp. 531-536, 1989.[15℄ K. Kim, D. Ha, J. Tront, \On Using Signature Registers as Pseu-dorandom Pattern Generators in Built-In Self-Testing," IEEETrans. CAD, Vol. 8, pp. 919-928, 1988.[16℄ K. Kim, J. Tront, D. Ha, \Automati Insertion of BIST Hard-ware Using VHDL," Pro. 25th DAC, pp. 9-15, 1988.[17℄ K. Kim, J. Tront, and D. Ha, \BIDES: A BIST design expertsystem," JETTA, Vol. 2, pp. 165-179, 1991.[18℄ H. Lee and D. Ha, \HOPE: An EÆient Parallel Fault Simulatorfor Synhronous Sequential Ciruits," Pro. 29th DAC, pp. 336-340, 1992.[19℄ S. Lin, C. Njinda, M. Breuer, \Generating a Family of TestableDesigns Using the BILBO Methodology," JETTA, Vol. 4, pp.71-89, 1993.[20℄ C. Papahristou, S. Chiu, H. Harmanani, \SYNTEST: a methodfor SYNThesis with self-TESTability," Pro. ICCD, pp. 458-462,1991.[21℄ P. Paulin, J.P. Knight, \Fored-Direted Sheduling for the Be-havioral Synthesis of ASIC's", IEEE Trans. CAD, pp. 661-679,1989.[22℄ B. Pangrle, \Splier: A Heuristi Approah to Connetvity Bind-ing," Pro. 25th DAC, pp. 536-541, 1988.[23℄ A. Stroele, H. Wunderlih, \Hardware-Optimal Test RegisterInsertion," IEEE Trans. CAD, pp. 531-539, 1998.

