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Synthesis tools at the logic and 
register-transfer levels are gaining a 

foothold in industry. The next step is the 
automatic synthesis of a digital system 

from a behavioral description. The 
synthesis algorithms presented here offer 

a technique for scheduling operations 
and allocating registers and buses in 

light of both timing constraints and 
available hardware resources. The 

algorithm enhances current scheduling 
techniques by using a global priority 

function that minimizes storage, 
interconnections, and functional unit 

cost. Algorithms for allocating registers 
and buses minimize storage and 

interconnection costs and take into 
account the interdependence 

of both tasks. 

he recent flurry of activity in high-level synthesis is further 
evidence of its increasing popularity as a research topic. In 
the commercial realm, the success of various logic and T register-transfer-level synthesis tools is prompting many 

companies to extend the scope of their synthesis products. 
This increased interest is a natural consequence of the shifting 

focus in IC design. Designers today are less interested in the details 
of the device than the architecture around the device. High-level 
description languages such as VHDL, which allow for behavioral as 
well as RTL and gate-level descriptions, are becoming more accessi- 
ble. High-level synthesis' fills the gap between these two levels by 
automatically generating an RTL realization from a behavioral de- 
scription. 

In high-level synthesis, we typically divide the t a sk  into data-path 
design and control-path design. Scheduling data-path operations 
into control steps is perhaps the most important task. The scheduling 
strategy must consider both timing and resource constraints as well 
as storage and interconnection costs. The algorithms we describe 
here incorporate such a strategy by offering a new way to explore the 
design space. They are also applicable to more than one method of 
synthesis. Although first implemented in the HAL, they have 
since been integrated into more specialized high-level synthesis 
systems in use by both academia and i n d ~ s t r y . ~  

SCHEDULING 
Scheduling consists of determining a propagation delay for every 

operation of the input behavioral description and then assigning each 
operation to a specific control step (a control step is often equivalent 
to a single state of a finite-state machine. 

One commonly used approach is list scheduling,* in which we 
specify a hardware constraint and use an algorithm to minimize the 
total execution time. The algorithm uses a local priority function to 
defer operations when resource conflicts occur. Another approach, 
called force-directed scheduling, allows us to specify a global time 
constraint, and the algorithm tries to minimize the resources re- 
quired to meet that constraint. This formulation of constraints is 
useful for digital-signal-processing applications in which the system 
throughput is fured and the area must be minimized. 
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TIME CONSTRAINTS 
The force-directed scheduling algorithm reduces the number of 

functional units, registers, and buses required. The strategy is to 
place similar operations in different control steps so as to balance 
the concurrency of the operations assigned to the units without 
increasing the total execution time. By balancing the concurrency of 
operations, we ensure that each structural unit has a high utilization, 
which in turn decreases the total number of units required. This 
balancing is done in three steps: determine the time frame of each 
operation, create a distribution graph, and calculate the force asso- 
ciated with each assignment. 

Determine time frame. We determine the time frame of each 
operation by evaluating the ASAP (as soon as possible) and ALAP (as 
late as possible) schedules. By combining results for both schedules, 
we can ascertain the time frame of each operation. A simple example, 
DiffEq,' illustrates this process. Figure la gives a differential equa- 
tion that we can solve using the iterative algorithm in Figure lb. 
Figures IC and Id depict the control- and data-flow graphs for the 
ASAP and ALAP schedules for the inner loop of the DiffEq example. 
Nodes represent functional operations, while edges represent data 
depedencies between these operations. 

The resulting time frames are given in Figure 2. The width of the 
box containing an operation represents the probability that the 
operation will be eventually placed in some time slot. We assume that 
the probability distribution for each operation is uniform. We chain 
operations by extending their time kames into the previous (or next) 
control step. Before we can extend them, however, their combined 
propagation delays-added to the latch and estimated interconnec- 
tion delaysTmusl be less than the clock cycle. We can extend this 
single-cycle method in a straightforward way to support multicycle 
 operation^.^ 

Create distribution graph. The next step is to add the probabilities 
of each type of operation for each control step, or c-step, of the 
control-flow or data-flow graph. The resulting distribution graphs 
indicate the concurrency of similar operations. For each graph, the 
distribution in c-step i is 

DG(9 =E Prob(0pn.Q 
Opn t ype  

where the sum is over all operations of a given type. Using Figure 2, 
we can calculate the values of the multiplication distribution graph, 
or DG. The result is DG(1) = 2.833, DG(2) = 2.333, DG(3) = 0.833, 
and DG(4) = 0 as depicted in Figure 3a. 

Force calculation. The final step is to calculate the force associated 
with every feasible c-step assignment of each operation. We tem- 
porarily reduce the operation's time frame to the selected c-step. For 
an operation with an initial time frame that extends from c-steps t to 
b, the force associated with its assignment to c-stepj is 

Force01 = D G g  - [a ] 
kt 

y" t 3zy' t 3y = 0 
(a) 

while (z < a) repeat 
ZI := z t dz; 
UI := U - (3 . Z  . U  .dz) - (3 .y .dz); 
yl :=y  t (U adz); 
z := ZI ; U := UI ; y := yl ; 

(b) 

u d z 3 z  3 v u d z  z d z  

Figure 1 .  Simple example, D i m .  to illus- 
trate how to determine the timeframe of an 
operation: Bierential equation to be solved 
(d, iterative solution &), as-soon-as-possi- 
ble schedule (c), and as-late-as-possible 
schedule (4. 
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C-step 1 
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1 112 113 

LA C-step 4 

Figure 2. Timeframes for Diseq example. 

4 
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Figure 3. Distribution graphs for multiply 
(4 and for add, subtract, and compare (b). 
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Figure 4. Calculating the force of assigning 
i to control step 1 :  timeframes (4 and the 
distribution graph for multiply &). 

In other words, the force associated with the tentative assignment of 
an operation to c-step j is equal to the difference between the 
distribution value in that c-step and the average of the distribution 
values for the c-steps bounded by the operation’s initial time frame. 
Figure 4 illustrates this relationship, which we then use to calculate 
the force associated with the assignment of multiplication A! to c-step 
1 .  Here, Equation 2 yields 

Force( 1) = DG( 1) - average DG value over time frame 

= DG(1) - [ D e ]  
bl 

(2.833 + 2.333) = + o.25 
2 

= 2.833 - 

As the shaded columns in Figure 4b show, if we assign multiplication 
i to c-step 1 ,  the distribution is not very well balanced, and multiplier 
costs will be higher. 

We must also calculate the force for all predecessors and successors 
of the current operation whenever their time frames are affected. 
These additional forces are called indirect forces. The total force is 
the sum of the direct and indirect forces. In the force calculation in 
Figure 4, we did not have any indirect force because the time frame 
of the successor multiplication operation, i‘ was not affected. 

However, if we assign i to c-step 2, we are implicitly forcing i’ into 
the third control step, as the shaded bars in Figure 5a illustrate. 
Thus, we are exerting additional force, and the total force becomes 

Force(2) = direct force(i in c-step 2) + indirect force(d‘ in c-step 3) 
= - 0.25 + - 0.75 = - 1.00 

As shown by the shaded columns in Figure 5b, this assignment 
causes a better balancing of the DG. The calculated force is actually 
a negative value. 

After we have calculated the force of all operations, we assign an 
operation to a c-step in a way that yields the lowest force, that is, 
balances the concurrency of the operations most effectively. We 
readjust the time frames accordingly and repeat the entire process 
until all operations are scheduled. 

We consider 1 / 0  operations in the same way we would any regular 
operation. By balancing the concurrency of 1 / 0  operations, we 
minimize the number of required ports. This benefit is particularly 
significant for designs that limit the number of pins. 

A more effective way of calculating force3 is to calculate DGLj)”, the 
distribution value we would get ifwe assigned the operation to control 
step j. We then replace DG(j1 in Equation 2 by DC’bJ, which is 

In Figure 4, DG” = 3.333, which yields 

3.33 - 2.833 = 3.00 
3 DG’( 1) = 2.833 + 

Therefore, 
2.833 + 2.333 = +o.41, 

2 Force( 1) = 3.00 - 

20 IEEE DESIGN & TEST OF COMPUTERS 



This implements a simple form of lookahead that has considerably 
improved the force-directed scheduling algorithm's effectiveness. 

MINIMIZING STORAGE A N D  INTERCONNECTION COST 
Most scheduling algorithms minimize the cost of functional units 

but ignore the associated storage and data-transfer costs, even 
though scheduling has a direct effect on them. For example, the 
fewest buses required for a scheduled control-flow or data-flow graph 
is the number of concurrent data transfers in a control step. The 
fewest registers required is the maximum number of data arcs that 
cross the boundary of a control step. Figure 6 illustrates two simple 
schedules with different hardware costs. The schedule in Figure 6a 
appears to be the best of the two, since it requires only one multiplier. 
However, the schedule in Figure 6b may have a lower global cost 
because the allocation cost for ports and buses and the storage costs 
are considerably lower. 

Minimizing storage costs. The first step in minimizing the number 
of registers is to create a new class of operations, called storage 
operations. A storage operation is created at the output of every 
source operation that transfers a value to one or more destination 
operations in a later control step. We also need a specid distribution 
graph, called a storage DG. 

We calculate the force of storage operations in much the same way 
as we do for regular operations. The only complication is that the 
length, or lifetime, of a storage operation depends on the final 
schedule. As an  example, consider a simple data-flow graph, in which 
storage operation S has three possible lifetimes. Figure 7a shows the 
ASAP life, which spans c-steps 2 and 3. In our approach, we combine 
the ASAP, ALAP, and maximum lifetimes to calculate a nonuniform 
probability distribution. The sum of the distributions of all the 
storage operations yields the storage DG shown in Figure 7b. The 
gray portion of the graph reflects the contribution of S. 

We add the storage forces to an  operation's direct force by applying 
a mechanism similar to that used for indirect forces caused by a 
predecessor or successors. 

Minimizing bus costs. To minimize the number of concurrent 
transfers and the associated bus costs, we create a special distribu- 
tion graph, called the transfer DG. The transfer DG contains the 
distributions of the data transfers. Since transfers are directly related 
to operations, the transfer DG is simply the sum of every operation 
distribution multiplied by the combined number of distinct inputs 
and outputs. For example, we have only four distinct inputs and 
outputs in c-step 2 of Figure 7a. We calculate the forces from these 
new DGs in the same manner we use for regular operations. 

RES0 URCE CONSTRAINTS 
The force-directed scheduling, or FDS, approach just described 

supports the synthesis of data paths that have a near-minimum cost 
under fixed timing constraints, but does not consider hardware 
constraints. The FDLS (force-directed list scheduling) approach pre- 
sented here solves the opposite problem: finding the fastest schedule 
given fixed hardware constraints. It combines the characteristics and 
strengths of the well-known list scheduling algorithm* as well as the 
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Figure 5. Force calculations for ZC sched- 
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the distribution graph for multiply &). 
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figure 6. Hardware cost of a schedule re- 
quiring one multiplier(4 and two multipliers 
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Forcedirected list 
scheduling is similar to 
list scheduling except 
force is the priority 

f indon ,  not mobility 
or urgency. 

1 

Figure 8. List schedule (4 and force- 
directed schedule &) for a simple example. 

(a) fb) 

Figure 7. Storage distribution graph. 

0 1 2 3 
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FDS algorithm. FDLS uses a global measure of concurrency 
throughout the scheduling process just as FDS does. 

In list scheduling, we sort operations in topological order using 
control and data dependencies. Ready operations are those we can 
assign to the first control step. If there are more ready operations of 
a single type than there are hardware modules to perform them, then 
we must defer one or more operations. Which operations to defer 
often depends on some local priority such as mobility or urgency.’ 
In Figure 8, for example, two add operations may be scheduled in the 
first control step, so we must defer one of them. Since they are both 
on the critical path, they have equal mobilities and the same urgency, 
so we could choose either one. In the figure, the left addition is 
deferred. We repeat this process, which yields the final schedule 
requiring four control steps. 

FDLS is similar to list scheduling except force is the priority 
function, not mobility or urgency. Whenever we exceed a hardware 
constraint during regular scheduling, we calculate the force of the 
operation to select the best operation(s) to defer. The deferral that 
produces the lowest force-that is, the lowest global increase of 
concurrency in the graph-is the best candidate for deferral. We 
repeat these calculations and the deferral process until we meet the 
hardware constraint. Typically, the hardware constraint is given as 
the maximum number of functional units of each type. However, we 
can apply this principle to data-transfer and storage operations by 
using fixed limits on buses and registers. 

Force calculations depend on the existence of time frames, so we 
must temporarily specifL some global constraint. In the FDLS algo- 
rithm, this constraint is the length of the current critical path. This 
path gets longer if we have to defer a critical operation to solve a 
resource conflict. 

In Figure 8, the initial time constraint was two control steps. We 
had to extend it to three control steps immediately to solve a resource 
conflict between operations on the critical path. The force values in 
Figure 8b are from the enhanced force formulation given in Equation 
3, which has a simple lookahead scheme. In this case, the force 
values for the two addition operations are not equal. Deferring the 
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left addition causes a force of +0.5, while deferring the right addition 
causes only a +0.33 force, so we defer it to c-step 2. 

Even for this simple example, FDLS yields a faster schedule than 
list-scheduling. However, when we take into account the storage and 
transfer distribution graphs, we could get a different schedule. The 
final schedule depends the relative values of storage, interconnec- 
tion, and port costs, as Figure 6 illustrates. 

To summarize, the FDLS algorithm, shown in Figure 9, allows us 
to maintain the advantages of both list scheduling and force-directed 
scheduling by allowing 

high utilization of functional units, as in list scheduling 
fast computation times, since the FDLS algorithm has a worst case 
complexity of an2) ,  where n is the number of operations in the 
control-/data-flow graph, and typically exhibits linear behavior 
global evaluation of all the side effects from assigning an operation 
to a control step, which is a characteristic of force-directed sched- 
uling 

SCHEDULING EXAMPLES 
To illustrate and compare scheduling algorithms, we use the 

fifth-order elliptic wave filter described in Kung et al.’s book on signal 
pro~essing.~ In the first row of Table 1, we summarize the adder and 
multiplier allocations for timing constraints in FDS. In this table, we 
assume that multipliers require two control steps for execution, while 
adders require only one. The minimum timing constraint for this 
example is 17 c-steps. Using retiming, we could reduce that to 16 
c-steps, but to ensure a fair comparison, we do not use retiming. CPU 
times were between two and six minutes on the Xerox 1108, a Lisp 
machine with medium to low performance. 

The second row of the table is the result of taking the FDS 
allocations for 17, 19, and 21 c-steps, setting these a s  a limit of the 
number of functional units allowed, and running the FDLS algorithm 
to get the shortest execution time. For the 17 and 21 c-step alloca- 
tions, we already had optimal results and so the time could not be 
reduced. However, for the 19 c-step allocation (two adders and two 
multipliers), the FDLS algorithm produced a schedule that had one 
c-step less. This result is optimal with respect to functional unit cost. 

Table 1 .  Functional unit allocations for diperent execution times: + = adder; 
x = multiplier, xP= pipelined multiplier: FWS = force-directed schduling, FDLS = 
force-directed list scheduling, ASAP = as soon as possible, LS = list sc/wduling. 

Number of Control Steps 
17 18 19 21 Algorithm 

FDS +++ xxx +++ xx ++ xx ++ x 
FDLS +++ xxx ++ xx ++ x 

ASAP ++++ xxxx 
Ls ++ xx 

FDS, FDLS +++ xpxp +++xp ++ xp 

Initialize time constraint to length of critical path 
for c-step from 1 to time constraint do: 

Determine time frames 
Determine ready operations in c-step 

{operations whose time frame intersects 

while (number of ready operations > number of 
current c-step) 

functional units) do 
if all operations on critical path then 

extend time constraint by 1 c-step 
reevaluate time frames 

calculate forces for possible deferrals 
defer operation with lowest force 
remove it from ready operations 

end; 
Schedule remaining ready operations in current 

c-step 
end; 

Figure 9. The algorithm for force-directed 
list scheduling. 

~~ 
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Regardless of the 
method choosen, the 

designer has an added 
leuel offlexibility With 

this integrated 
scheduling 

methodology. 

CPU times were significantly faster than those for FDS, varying 
between one and two minutes. 

One reason for the improved performance of FDLS is that with this 
algorithm we have more information about the design. We provide 
the number and type of functional units in FDLS, while FDS uses 
only a time constraint. FDLS also requires fewer force calculations, 
which explains the reduced CPU times. 

The third row of Table 1 represents the schedule with ASAP 
scheduling and conditional deferral.5 The fourth row represents the 
result from CMU's System Architect's Workbench' using list sched- 
uling. Finally, the fifth row shows the HAL results when two-stage 
pipelined multipliers are used. The use of this type of functional unit 
involves a simple extension of the force a lg~r i thm.~  Functional unit 
costs were optimal with both FDS and FDLS. Also, HAL'S register and 
interconnection costs compare favorably with those from other sys- 
tems. 

A NEW EXPLORATION TECHNIQUE 
Taken alone, FDLS allows the user to partially spec@ a target 

architecture by setting the number and type of functional units, as 
well as limits on the total register and bus counts. The flexibility of 
FDLS justifies the small additional effort to implement it. 

We have found, however, that the most powerful method of explor- 
ing the design space is to use both FDS and FDLS. The designer sets 
a maximum time constraint and uses the FDS algorithm to arrive at 
a near-optimal allocation. In this phase, we can take advantage of 
FDS's ability to automatically perform cost tradeoffs among func- 
tional units of different types3 

In the second phase, the designer focuses on one area of the design 
space by using FDLS with the allocation from the first phase to 
determine if he can get a faster schedule. The faster schedule may 
be possible because the scheduler starts out with more information 
about the design. 

Regardless of the method choosen, the designer has an added level 
of flexibility with this integrated scheduling methodology. He can 
explore the design space from either the area dimension or time 
dimension. A simple extension of FDS can also solve two types of 
pipeline scheduling  problem^.^ Thus, FDLS combined with FDS 
provides general algorithms that we can tailor to specific applica- 
tions. Better still, from the implementer's point of view at least, most 
subroutines are common to both algorithms. 

ALLOCATING DATA PATHS 
Once we have the schedule and have allocated the functional units, 

we need to allocate the data paths. Two of the most important 
subtasks are allocating registers and interconnections. This empha- 
sis is justified by McFarland's experien~e,~ which shows that multi- 
plexing costs seem to have the most significant effect on the overall 
cost-speed tradeoff curve.In HAL, we do this allocation by following 
three transformation steps:2 

1 .  Bind operations to functional units. 
2. Bind storage operations to registers. 
3. Bind data-transfer operations to elements such as multiplexers 

and buses. 
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Bind operations to functional units. We bind all arithmetic and 
logic operations to specific functional units so as to minimize the 
number of distinct inputs on each one. 

Bind storage operations to registers. We create a storage opera- 
tion for each data transfer that crosses a c-step boundary. We use a 
novel technique to divide the variable’s life into two intervals. The 
first interval lasts one c-step and is assigned to a local storage 
operation. The remaining c-steps are assigned to the second storage 
operation. Typically, we assign the two storage operations to the same 
register. In many cases, however, we could lower the interconnection 
cost by assigning them to different registers. 

Figure 10 illustrates the benefits of local storage. Figure 10a uses 
regular storage operations and yields the rather complex data path 
shown in the bottom of the figure. In Figure lob, the local storage 
operation in c-step 1 is assigned to R1 while the rest of the operation’s 
life is assigned to R2. The result is a much simpler data path. 

Bind data-transfer operations to interconnections. Here, we 
temporarily bind data transfers to interconnections by creating 
multiplexers and connecting them to the input of every register and 
functional unit. We use these multiplexers to form a transfer path to 
each of their input source objects. We preserve single-input multi- 
plexers because we may want to merge them with other multiplexers 
to form a bus. 

MERGING REGISTERS . 

In this important optimization step, we selectively merge registers 
with disjoint lifetimes. To illustrate the difficulty of this problem, we 
again refer to the DiffEq example. We determine for each register 

.~ 

1 Q R I  

3 

m Multiplexer 2 

Multiplexer 1 &%2l 

1 
I Q RI 

3 

itf Multiplexer 1 

Figure 1 0 .  Comparison of regular storage (a) and local storage (b). 
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In this type of 
partitioning, we reduce 
the compatibility graph 
by considering only the 
registers that have an 

interconnection afinity 
above a certain 

threshold. 
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defined the set of disjoint registers. This yields a register-compatibil- 
ity graph in which each edge represents the disjoint usage times of 
two registers. These registers are candidates for merging. We could 
use exhaustive clique partitioning to generate all possible register 
groupings, but this problem is NP-complete. 

Researchers at the University of Southern California' exploit the 
left-edge algorithm, which yields an optimal track assignment in 
channel routing. Here, we can apply it to guarantee the minimum 
number of registers. 

Another alternative to exhaustive clique partitioning is heuristic 
clique partitioning. The Facet system from Carne ie Mellon Uni- 
versity uses this special form of clique partitioning to determine a 
near-minimum number of registers. It incorporates heuristics based 
on the clique graph structure to prune the graph and reduce the 
number of possible cliques. 

Both these approaches, however, ignore the impact of register 
merging on interconnection costs. An earlier version of HAL2 tried to 
take interconnection costs into account by merging only registers 
that were connected to the same functional units, but this technique 
was not general enough to have much use. 

The current version of HAL uses exhaustive clique partitioning but 
with reduced compatibility graphs, so the problem is no longer 
NP-complete. This extended version of the earlier HAL register-merg- 
ing algorithm is called weight-directed clique partitioning. In this type 
of partitioning, we reduce the compatibility graph by considering only 
the registers that have an interconnection affinity, or structural 
weight, above a certain threshold. We progressively lower this 
threshold as we get fewer compatible pairs after each iteration of the 
merging routine. We determine the structural weights from the 
preliminary binding of functional units, multiplexers, and intercon- 
nections we performed earlier. The register pairs whose merging gives 
the lowest interconnection cost are give the highest weight, as Figure 
1 1  shows. The weight values of 1 to 4 are for illustration only. The 
actual values are an estimate of the interconnection area that would 

B -  

Weight = 4 Weight = 3 Weight = 2 Weight = 1 

1 

ps 

gg 
D2 D3 

Figure 1 1 .  Interconnection weights for di@erent register merges before (4 and 
after (b) the merge. 
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be saved. We evaluate this area using a function that represents the 
cost of the interconnection area. Thus, weights can be either positive 
or negative. 

If we set the weight threshold high enough, we can limit the 
complexity of the clique graph at  will. For example,.by applying a 
weight threshold of 4 to the clique graph of Figure 12,-we reduce it 
to the graph represented by the dotted edges. As we refine the 
selection of registers for merging, the weight value selected varies 
with the number of remaining edges in the compatibility graph. This 
number must be small enough to allow exhaustive (or semiexhaus- 
tive) clique partitioning in a reasonable time. We then generate all 
possible merges. For each of these, we evaluate the associated 
interconnection costs and select the one with the lowest combined 
register and interconnection cost. For the DiffEq example, the regis- 
ter groups chosen are 
(R20, R21). (R17. R25). (R16, R23). R18. R19, R22). 

We naturally get fewer compatible register pairs with each merge, 
and we repeat the process until no more merges are possible. In our 
example, by lowering the threshold to 3, we obtain the final solution 
which is a clique made up  of five register groups: 

This is the smallest number of registers possible and-perhaps more 
important-represents a configuration with a very low interconnec- 
tion cost. 

(R20, R21). (R17. R24, R25). (R16, R23), (R18, R19). R22) 

MERGING MULTIPLEXERS 
A multiplexer is a data-transfer element that has multiple inputs 

and a single output. while a bus is an element with multiple inputs 
and multiple outputs. The problem of merging multiplexers into 
buses is somewhat the same as  the problem of merging registers 
except that a multiplexer is not used continuously. Thus, a multi- 
plexer created in the method described is assigned to a series of 
c-steps that are not necessarily contiguous. We cannot use algo- 
rithms like the left edge for this reason. We can, however, iise a clique 
partitioning method similar to what we used for register merging. 

Our threshold for merging multiplexers is not interconnection 
weights, but the number of common inputs between multiplexer 
pairs. A merge cannot create more than two levels of buses or 
multiplexers for each transfer path from register to functional unit 
to register. Thus. we ensure that the dela through the interconnec- 
tion paths is minimal. SA@ and Splicer allow up to four levels of 
buses arid multiplexers. 

~ 

fs 

DESIGN PARTITIONING 
The data paths in Figures 13, 14, and 15 show that in addition to 

low register and interconnection costs, we have a good structural 
partitioning of the design. The reason is that we group highly 
connected elements and so use interconnection information to prune 
the design space. Although the two merging algorithms we have 
described are aimed at  a general distributed architecture, we can 
refine them for specific applications. We can introduce different 
weights to enforce predefmed structural or physical partitions that 
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Our threshold for 
merging multiplexers is 

not interconnection 
weights, but the number 

of common inputs 
between multiplexer 
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Figure 13.  HAL. datapath using nonpipelinedfunctional units. 
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Figure 14 .  HAL datapath for D i m  using a pipelined multiplier. 
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Figure 15. Data path for waveflter example: x p= pipelined multiplier. 

I v  I 

28 IEEE DESIGN & TEST OF COMPUTERS 



correspond to a specific architecture. Registers (multiplexers) within 
the same partition would have the highest weight to ensure that they 
are merged first. By varying the value of the weight, we can experi- 
ment with compromises in reducing the total number of interconnec- 
tion lines and preserving the design partitions. 

EXPERIMENTAL RESULTS 
We present two examples to cpmpare our approach with other 

systems: the DiffEq differential equation described earlier and a 
fifth-order waveform elliptic wave which we used earlier to 
compare scheduling algorithms. We did not fine-tune our algorithm 
to suit either of these applications. The CPU execution times on a 
Xerox 1108 are for complete synthesis, including scheduling, allo- 
cating functional units, and binding registers and buses. 

DIFFERENTIfi EQUATION 
The DiffEq example, first presented in a paper from the 1986 Design 

Automation Conference,2 is used in Splicer8 and Cat~-ee.~ The first 
four columns of Table 2 are a summary of costs for these systems 
without pipelined functional units and for the current version of HAL 
using the register and bus merging algorithms. The results of an  
earlier version of HAL are given as the baseline for the other systems' 
percentages. Figure 13 shows the HAL data path using nonpipelined 
functional units. 

In column five of the table, we show results for Splicer with a 
two-stage, pipelined multiplier. The cost of the functional units in 
this configuration is consequently much lower. In column six of the 
table, we show results from HAL when we use force-directed sched- 
uling and weight-directed clique partitioning, as shown in Figure 14. 

As the table shows, Splicer and Catree improved on the early HAL'S 
results, but the current HAL'S register cost is equal to the best result 
achieved in the other systems, while the interconnection costs are 
significantly lower. 

WAVE FILTER 
Table 3 compares the HAL designs with those of SAW,' Splicer,' 

and Catree.g The table includes the number of multiplexer inputs 
required-a crude measure of relative interconnection costs. Since 
HAL also uses buses, this value is actually the combined number of 
inputs to multiplexers and buses, where we consider a bus the same 
as a multiplexer with multiple outputs. To help isolate the effects of 
strategies to allocate registers and interconnections, we compare 
results with identical time constraints and functional unit alloca- 
tions. 

For all these examples, and with all other costs being equal, the 
interconnection costs are significantly lower with HAL. Roughly half 
these savings are the result of using local storage operations, which 
divide each variable's life into two parts. The total CPU time varies 
between two and eight minutes. 

The bottom row indicates the overall best result from HAL. In this 
case, HAL uses a two-stage, pipelined multiplier. This design has the 
lowest interconnection cost of all the examples. The data path for this 
result is given in Figure 15. The right operand of the pipelined 
multiplier is a small ROM that contains the filter coefficients. 

Our results clearly 
illustrate the 

@ectiveness of using 
time fi-ames, 

distribution graphs, 
and concurrency 

balancing. 

DECEMBER 1989 29 



HIGH-LEVEL SYNTHESIS 

We still have issues to 
address such as the 
need to incorporate 
preliminary floor- 

planning information 
into synthesis. 

We can make three observations about the data path in the figure. 

1. We used six buses, which is relatively few. The connections to and 
from these buses are mostly local. 

2. Because the path from a single register to a functional unit to a 
register never crosses more than two levels of multiplexers or 
buses, we reduce the clock-cycle time. Data paths in SAW and 
Splicer cross up to four levels. 

3. As in the DiffEq example, most interconnections are local to the 
area defined by a single functional unit. The bipartition in SAW is 
more clearly defined, however, and probably would be easier to 
lay out. 

0 ur algorithms complete two important tasks in high-level 
synthesis: scheduling under time and resource constraints 
and allocating buses and registers to minimize interconnec- 
tion costs. The force-directed scheduling and force-directed 

list scheduling algorithms take into account the cost of functional 
units as well as the cost of storage and interconnections. Also, by 
combining these algorithms, we have a flexible stepwise refinement 
approach to exploring the design space. Our results clearly illustrate 
the effectiveness of using time frames, distribution graphs, and 
concurrency balancing. This is confirmed by results from systems 

Table 2. Summary of area costs for L X i q  example. 

System HAL86 Splicer Catree HAL89 

CPU 40sec N/A N/A 50 sec 
Intercon- 
nection (Yo) 100 86 93 79 
Register (%) 100 100 83 83 
Functional. 
Unit (Yo) 100 100 100 100 

Splicer HAL89 
~~ ~ 

N/A 120sec 

107 84 
100 83 

64 57 

Table 3. Comparison of register and interconnection requirements; + = adder. 
x = multiplier. 2 = pipelined multiplier. 

Number of Number of 
system Number of Of Multiplexer 

Control Steps ~ ~ ‘ & ~ e ~  Registers Inputs 

HAL 19 2x, 2+ 12 28 
SAW 19 2x, 2+ 12 34 (+2 1YO) 
HAL 21 lx, 2+ 12 30 
Splicer 21 lx, 2+ N/A 35 (+170/) 
HAL 17 2xp. 3+ 12 31 
Catree 
HAL 19 lXP, 2+ 12 26 

17 2xp, 3+ 12 38 (+22%) 
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that exploit the same principles, as reported at  this year’s High-Level 
Synthesis Workshop. 

The approach we have described for allocating registers and buses 
exploits a simple but powerful weight-directed clique partitioning 
algorithm based on merging highly interconnected elements. This 
algorithm prunes the exploration space while favoring merges that 
reduce interconnection costs. 

We still have issues to address such as the need to include floor- 
planning information in synthesis. We could do this by assigning 
higher weights to the merging of registers (or buses) in the same 
floor-plan partition. On the other hand, the whole issue of control 
costs has gone largely ignored. Although balancing the concurrency 
of data-path events should reduce the number of control lines, and 
making the schedule shorter usually reduces the controller size, 
more accurate metrics for control cost still have to be developed. @3 

ACKNOWLEDGMENTS 
We thank Jenny Midwinter for her insight and advice on interconnection 

allocation and Emil Girczyc who helped lay the groundwork for the original FDS 
algorithm. 

This research was funded in part by grants from the National Society of 
Electronics Research Council of Canada, from Carleton University, and from BNR. 
Ottawa, as part of a cooperative PhD project. 

REFERENCES 
1. M. McFarland, A. Parker, and R. Camposano, ‘Tutorial on High-Level Syn- 

thesis,” Roc. 25th Design Automation Conf., July 1988, pp. 330-336. 

2. P. Paulin, J. Knight, and E. Girczyc, “HAL: A Multi-Paradigm Approach to 
Automatic Data Path Synthesis,” Roc. Design Automation Conf., July 1986, 

3. P. Paulin and J .  Knight, “Force-Directed Scheduling for the Behavioral 
Synthesis ofASICs,” IEEE 7Yans. Computer-Aided Design, Vol. CAD-8, Vol. 6, 
June 1989, pp. 661-679. 

4. S. Davidson et al., “Some Experiments in Local Microcode Compaction for 
Horizontal Machines,” IEEE Trans. Computers, Vol. C-30, No. 7. July 1981, 

5. S. Kung, H. Whitehouse, and T. Kailath, V L S I  and Modern Signal Processing, 
Prentice Hall, Englewood Cliffs, N.J., 1985. 

6. D. Thomas et al., ‘The System Architect‘s Workbench,” Proc. Design Automa- 
tion Conf., July 1988, pp. 337-343. 

7. M. McFarland, “Reevaluating the Design Space for Register-Transfer Hard- 
ware Synthesis.” Proc. Int‘l Conf. Computer-Aided Design, Nov. 1987, pp. 

8. B. Pangrle, “Splicer: A Heuristic Approach to Connectivity Binding,” Roc. 

9. C. Gebotys and M. Elmasry, * W I  Design Synthesis with Testability,” Proc. 

pp. 263-270. 

pp. 460-477. 

262-265. 

Design Automation Cont. July 1988, pp. 536-541. 

Design Automation Conf.. July 1988, pp. 16-21. 

Pierre G. Paulin is a member of the VLSI 
System Design and Synthesis Department at 
Bell-Northern Research. Prior to joining BNR 
full time. he was part of a cooperative research 
project with Carleton University and BNR to 
do the work reported in this article. He holds 
a BSc in engineering physics and an MScA in 
electrical engineering from Lava1 University 
and a PhD in electronics from Carleton Uni- 
versity. He is a member of the IEEE Computer 
Society. 

John P. Knight is an associate professor in 
the Department of Electronics, Carleton Uni- 
versity, Ottawa. He holds a BSc from Queen’s 
University and an MScA and a a PhD from the 
University of Toronto-all in electrical engi- 
neering. 

Direct comments or questions on this article 
to P. Paulin. BNR, PO 35 1 1 ,  Station C, Ot- 
tawa, K1Y 4H7. Canada, or to J. Knight, 
Carleton Univ., Dept. of Electronics, Ottawa, 
K1S 5B6, Canada. 

DECEMBER 1989 31 


