VLSI Design Automation
High-Level Synthesis

Instructor : Haidar M. Harmanani

Fall 2020
haidar@lauv.edu.lb

Binding and Sharing Problem

Given: scheduled sequencing graph
Operation concurrency well defined
Consider operation types independently
Problem decomposition (natural)
Perform analysis for each resource type
Operation compatibility
Same type
Non-concurrent

Conflicting operations
Concurrent, different types

Dual to compatibility

Computer Science

2 CSC 835/COE 726: VLS| Design Automation

Allocation (Binding)

Allocation = resource binding
Spatial mapping between operations and resources
Operators can be dedicated or generic (shared)
Operators and registers need to be allocated

Sharing

Assignment of a resource to more than one operation
Constrained resource binding

Resource-dominated circuits
Fixed number and type of resources available

NP-complete problem — need heuristics

-
<
—ll

3 CSC 835/COE 726: VLS| Design Automation ‘m
Computer Science

Binding in Resource-Dominated Circuits

Resource Compatibility Graph G.(V,E)
Vrepresents operations
E represents compatible operation pairs
Compatible operations

(v, v) are compatible if they are not concurrent and can be implemented by
resources of same type

Note: concurrency depends on schedule
Partition the graph into minimum number of cliques in G,(V,E)
Cligue = maximal complete subgraph

Partition the graph into minimum number of cliques, or

Clique cover number, K(G,(V,E))

—J
<
—ll

Computer Science

4 CSC 835/COE 726: VLS| Design Automation

Compatibility Graph G,(V,E)

Minimum Clique coversin G,(V,E)

Q~'
2‘.’;"‘9 620

MuULT ALU

KG.VE)= KIG.(V,E) =2 & @7

2

CSC 835/COE 726: VLS| Design Automation <

Computer Science

Conflict Graph G_(V,E) ”A

é]
1
7

A
Resource Conflict Graph G.(V,E) Q4§§7 : =
Vrepresents operations —= .
E represents conflicting operation pairs Q’,

Conflicting operations ‘Ne

-
~

4
No
p

Two operations are conflicting if they are not

compatible ‘ .

Complementary to compatibility graph MmuLt PoRo,
Find independent set of G (V,E)

A set of mutually compatible operations Conflict graph G(V,E)

Coloring with minimum number of colors

Chromatic number % (G.(V,E))

Compatibility graph G.(V,E)

6 CSC 835/COE 726: VLS| Design Automation S[

T T
[6,]
i
“6
@(C‘
AN
O e
\
= I\)\\\\\
I O e N N
Q1 N
NN _______—‘_)4
\\m Vi
~ ’
us w—®
HE = =

Conflict Graph G_(V,E) - Example

Chromatic numbers in G (V,E)
00 @
®
o b ®

MULT ALU

1(G(V,E)) = 2 1(G(V,E) = 2

CSC 835/COE 726: VLS| Design Automation

Conflict

O—0O

LAU &

Compatibility

ALUIL: L3S

ALU2:24

I Clique vs Coloring - Example

CSC 835/COE 726: VLS| Design Automation

LAU &

Computer Science

Computer Science

‘ 9

Special Graphs

Comparability graph
Graph G(V,E) has an orientation (G(V,F) with transitive property:
(v, v) eFand(v,v) eF=(v,v) €F
Interval graph
Vertices correspond to intervals
Edges correspond to interval intersections
Subset of chordal graphs

Every loop with more than 3 edges has a chord

The compatibility/conflict graphs have special properties
Compatibility => comparability graph
Conflict => interval graph

5
=L
-

Computer Science

CSC 835/COE 726: VLS| Design Automation

Comparability Graph

Representation of compatible relations
* Note: sequencing graph is assumed to be scheduled

N0
‘NOP; -
A ~

m Ql@z ,"':: ‘I"‘x\ \@10
S b4é7 @
- g G

: L Note the orientation of edges,
o compare to compatibility graph.

5
=L
-

Computer Science

CSC 835/COE 726: VLS| Design Automation

Interval Graph Representation

[}

1
: 85

(bi‘ Compare with conflict graphs:
'>3< O
oo 200

MULT ALU

TIME 4

—— Eés | @6 }
s b4 é7
- &

LAU &

CSC 835/COE 726: VLS| Design Automation

Computer Science

Operation Binding - Solution

Mult1: {1,3,7}, Mul2: { 2, 6, 8}
ALUT: { 10,11, 4,5}, ALU2: {9}

LAU &

Interval representation of conflicting relation
Note: sequencing graph is assumed to be scheduled
nor Intervals with “Left” and “Right” coordinates
~J@ o [B B @
11
‘ 1

2 CSC 835/COE 726: VLS| Design Automation

Computer Science

Left-Edge Algorithm

Input

Set of intervals sorted with left and right edge
coordinates

Algorithm
Sort intervals by their left edge coordinates

Assign non-overlapping intervals to first track (color)
using the sorted list

When possible intervals are exhausted, increase track
(color) counter and repeat.

Efficiency
Simple, polynomial time algorithm

CSC 835/COE 726: VLS| Design Automation

Computer Science

Left-Edge Algorithm

LEFT_EDGE(I) {
Sort elements of I in a list L in ascending order of [;;
c=0;
while (some interval has not been colored) do {
S=1;
r=0;
while (3s € L such that s > r) do{
s = First element in the list L with s > 7;
S=85uU{s}
T =Ts,
Delete s from L;

}
c=c—+1;
Label elements of .S with color ¢;

14 CSC 835/COE 726: VLS| Design Automation s[

Computer Science

] = | |
LAU &
8

Left-Edge Algorithm - Example

01 2 34 5 6 78

1

5

Input

o‘ p o 01 2 3 4 5 678
T 1 3 Solution
b 7 E

» ¢ I —

>
=L
-

15 CSC 835/COE 726: VLS| Design Automation ‘m
Computer Science

ILP Formulation of Operation Binding

Boolean variables b,
b,= 1 | ifoperatoriisbound to resourcer
o{ otherwise
Boolean variables x;
x; = 1if operation i is scheduled to start at step [

* Each operation is bound to one resource

a@
Zbir = 1 Vi (a=Ilimiton resource r)

r—

* At each step |, at most one operation can be executing for a given

resource (horizontal constraint)
Tl i

D bir D wm < 1 VIV

=1 m=I—d+1

>
=L
-

Computer Science

16 CSC 835/COE 726: VLS| Design Automation

Operation Binding - Solution

Register Binding Problem

aa

LAU &

Computer

Registers are storage resources, holding variable values

across control steps

Given a schedule, generate:
Lifetime intervals for variables

Lifetime overlaps

Construct a conflict graph (interval graph)
Vertices V : variables (operations)

Edges E: overlaps
Build an interval graph

Compatibility graph (comparability graph)
Complement of conflict graph

18 CSC 835/COE 726: VLS| Design Automation

* Equations for two multipliers
bi1 + bi2 = 1/ i={1/2/3/6/7/8}
MULT 1:
Di=f1,23,678 bixg< 1, |
=1,2,....5
MULT 2:
Zi={1,2,3,6,7,8} biQXiI < 1,1
=1,2,..,5
e Solution:
by =bs1 =bs; =1
by, =bgy =bgy, =1
all other b; =0
17 CSC 835/COE 726: VLS| Design Automation

LAU &

Computer

Science

Science

Minimization of Register Costs

Given a scheduled sequencing graph

Minimum set of registers required is given by the largest number of data
arcs crossing a C-step boundary

Create storage operations, at output of any operation that transfers a
value to a destination in a later C-step

Generate Storage DG for these “operations”

Length of storage operation depends on final schedule

Q QL Q

QO QT O\ ©®
Q W Q Q0
Q Q_ Q_®
O] o]

ASAP Lifetime MAX Lifetime ALAP Lifetime

=2

S

»N

[<)

F

on

<
i

Computer Science

19 CSC 835/COE 726: VLS| Design Automation

Register Binding Problem

Given
Variable lifetime conflict graph

Find

Minimum number of registers storing all variables

Simple case

Non-iterative designs: Interval graph

Solve using left-edge algorithm (polynomial time)

<
i

Computer Science

20 CSC 835/COE 726: VLS| Design Automation

Register Binding Problem — Example 1

Non-iterative designs
Create variable compatibility graph or conflict graph
Use left-edge algorithm to minimize the number of registers

TIME 1 Q’ @:
FA F¥4

3 € z1 22
TIME 2 @

z3 z4 23 24

4 ?
TIME 3
z5 156 25 26

TIME 4 || L

21 CSC 835/COE 726: VLS| Design Automation

LAU &

Computer Science

Register Binding — Example 2

lterative designs
Sequencing graph and variable lifetimes

y
prem—
TIME 1 g 8 ‘
-
i 2 3 3
TIME 2 ’ —
z3| |2
z3 24 L
P dx p— —
TIME 3 »
x)’ 5 w7
z 6 7 By B) B -
TIME 4 - DE ||
i
. H

LAU &

22 CSC 835/COE 726: VLS| Design Automation

Computer Science

Circular Arc Conflict Graph

Overlapping lifetimes of variables represent conflicts

- 1
= - z2

T8 7

4
7

Q

m
25 6 7
— = E ﬁ Variable lifetimes as arcs
[et
Variable lifetimes Circular-arc conflict graph

23 CSC 835/COE 726: VLS| Design Automation S[

Computer Science

Register Sharing — General Case

Iterative constructs
Preserve values across iterations
Circular-arc conflict graph (not simple intervals)
Coloring is intractable
Hierarchical graphs:
General conflict graphs

Coloring is intractable

Heuristic algorithms required

LAU &

24 CSC 835/COE 726: VLS| Design Automation

Computer Science

Bus Sharing and Binding

Buses act as transfer resources
See architecture produced by GAUT

Find the minimum number of buses to
accommodate all data transfer

Find the maximum number of data transfers for a
fixed number of buses

Similar to memory binding problem

Possible solutions
ILP formulation
Heuristic algorithms

>
25 CSC 835/COE 726: VLS| Design Automation CE .y
omputer Science
Bus Sharing and Binding - Example
One bus
3 variables
Two buses
All variables can be transferred
TIME 1 Q g)
e 2 1]
TIME 2 d Q 1
TIME 3 | L
TIME 4 L] L
>
26 CSC 835/COE 726: VLS| Design Automation 5

Computer Science

Module Selection Problem

Resource-type (module) selection problem
Generalization of the binding problem
Library of resources:
More than one resource per type
Example:
Ripple-carry adder vs. carry look-ahead adder
Resource modeling
Resource subtypes with (areq, delay) parameters
Solution
ILP formulation:
Decision variables: select resource subtype,
determine (area, delay)
Heuristic algorithms:
Determine minimum latency with fastest resource subtypes
Recover area by using slower resources on non-critical paths
2
<

Computer Science

27 CSC 835/COE 726: VLS| Design Automation

Module Selection - Example 1

Latency bound of 5

Two multipliers available: >
MULTz with (area, delay) = (5,1)
MULT2 with (areq, delay) = (2,2)

Two ALUs available: . w0

TNEZ

0n [P

TNEY

ALU with (areq, delay) = (1,1) each
TNES

TNE4

@

Area = 5+2+1+]1 =9 ™=

w

;
=L
-

Computer Science

28 CSC 835/COE 726: VLS| Design Automation

Module Selection Example 2

Latency bound of 4
Fast multipliers for {v,, v,, v,}

Slower multipliers can be used

elsewhere .
less sharing ™=
w,
Minimum latency design s ‘

used fast multipliers only.

Area recovery ™3

On non-critical paths replace fast ;
(large) multipliers by slow (small) ™4 O} (0 |

ones

CSC 835/COE 726: VLS| Design Automation

High-Level Synthesis for
Testability

Haidar M. Harmanani
haidar@lau.edu.lb

C 835/COE 726: VLSI Design Automatio 30

Sw—
&
Krea = 5+5+1+1=12

LAU &

Computer Science

LAU &

Computer Science

Background

Two approaches for test synthesis at the structural
level

Design for Test approach — insertion of test structures is
used to improve testability

Logic Level and RTL

Testable Synthesis approach — designs are synthesized
with testability properties

Testable High-Level Synthesis

=(m)
31 |

Computer Science

A transformation from behavior to structure

High-Level Synthesis raises the abstraction level

Determines the macroscopic structure of a circuit by creating a
Data Path and Control Unit

Optimize area/delay/power of the implementation
Two main steps in HLS
Scheduling

Allocation

=(m)
32 |

Computer Science

‘ Background: High-Level Synthesis

34

Background: BIST Methodology

Goal is to generate test patterns
and verify them on chip

Pseudorandom BIST
Patterns generated using TPGRs

Test responses evaluated using
MISRs

Determine fault coverage using
logic level fault simulation

Select the test length so as to
achieve an acceptable level of fault
coverage.

Motivation

Goal
Develop a test synthesis tool based on the BIST

Computer Science

methodology that operates concurrently with datapath

allocation

Generate controller concurrently with least area and

power

Key Elements

Test analysis of designs at the RT level based on metrics

Test considerations at an early stage

Test points selection

Computer Science

Problem Description

Given a behavioral level description of a circuit
represented in the form of a scheduled DFG, a technology
library and a set of constraints, generate a self-testable
RTL data path such that:

The data path conforms to all user constraints
The overhead of test registers in the data path is minimized

Power consumption is minimized during test and normal mode

™

=
35 |

Computer Science

Approach

The above tasks are implemented by:

A model for the testable synthesis of RTL datapath structures.
This is done through the synthesis of designs with structural
properties proven to be good for testing.

A test point selection scheme that concurrently explores, during
the synthesis process, designs with low test and design cost.

Concurrent allocation of BIST registers and Functional Units
Minimizing the cost of test registers using functional test metrics
Generate a distributed controller, one per test kernel

™

=
36 |

Computer Science

Structural Testability

A structurally testable resource under the BIST methodology is a
resource such that:

Test patterns can be applied at the modules input port
Signature can be observed at the output port

A datapath is structurally testable if it consists of structurally testable
resources

Structural Testability

Testability as related to the macroscopic circuit structure in terms of
registers and combinational blocks

Problems arise when a register has to generate patterns and compress
a signature during the same test session

Self adjacency problem

™

=,
<
i

Computer Science

37

EER o \ [
N/

: 4
S

'MISR

|

AN

™

=,
<
i

Computer Science

38

‘ Structural Testability

Testable Functional Block

A Testable Functional Block (TFB) is a test kernel that
has:

An ALU

At least two registers at the input port that can be configured as
TPGRs during testing

One register at the output port that can be configured as MISR
during testing

A datapath that consists of TFBs is structurally testable

Incrementally create a datapath of TFBs
A TFB cannot have a self-loop

LAU &

39

Generate a compatibility graph for the DFG that indicates
which nodes are compatible

Map DFG nodes to TFBs

Select TFBs one level at a time and merge the TFBs in one
level and the TFBs in the second level

Select the test points so as to minimize the cost

Construct the testable datapath incrementally

LAU &

40

‘ Testable Allocation

Computer Science

Computer Science

Computer Science

M ()
Test Scheduling

Objective
Minimize number of test sessions by maximizing the
number of ALUs tested in the same test session

Two conditions must be observed

If two ALUs have the same MISR, then they cannot be
tested in the same session

If an ALUs MISR is another ALUs TPGR then these two
ALUs cannot be tested at the same time (maybe possible
with a CBILBO)

T=1 Pt / .
-7 \
///// \\ //
T=2 + y21_ \ [a8] K
6 a8 mS R \\ L
- 20 S
m9
a2
T=4 .
m7 m10
ooy
(a)
Level 1 @ Level 1 Q @
Level 2 ’@ Level 2 @ @
Level 3 @4
s (D

Computer Science

Test Scheduling

Two main steps

ALUs that have the same MISR are assigned to different test
sessions with each ALU assigned a weight that is equal to the
number of times its MISR is used by other ALUs

Every ALUs TPGR is compared to every other ALUs MISR in
the same test session. If they use the same register, then the
one of the two ALUs that has the minimal weight is moved to
another test session

Running time of the algorithm is O(a?)

™

-
<
i

Computer Science

In order to minimize the number of test points, two conditions must be
satisfied

The TPGRs at the input ports of an ALU can not be the same due to
correlation problem

A TPGR cannot be an MISR for the same ALU in the same test session
in order to avoid self-adjacency problem

An initial test point selection based on BILBO and characterized by a
high fault coverage can selected by assigning:

All registers at the primary input to be TPGR

Primary Output MISR

Registers that are in between are BILBOs

Test points are next relaxed through concurrent selection

‘ Test Points Selection

=
44 wl

Computer Science

Concurrent Test: Registers

Registers in the data path can be:
Controllable - TPGR
Observable — MISR

Pseudo-controllable — A normal register through which
random patterns are sensitized

Pseudo-observable — A normal register that is

transparent enough to pass faults unaltered to a real
MISR
1)
“ =\ S

Test Merger Algorithm

Four Steps
TFBs pseudo merger
Select input test registers
Select output test registers

Breaking functional self-loop

&
46 <

Computer Science

TFBs Pseudo Merger

47

Based on the merging algorithm and a cost
function, select the TFBs whose merger will have
the least cost and then combine them into one

Link test plans into a preliminary "merged test
plan.”

Select Input Registers

48

Need to select a TPGR for every port in the
datapath after the TFBs pseudo-merger

Selection priority is sorted in least cost
Normal, MISR, TPGR, and BILBO

If current TFB is transparent then set the TFB
output register to be a pseudo-TPGR

Select Output Registers

Next, there are three cases that may result from the
merger of two TFBs:
Both TFBs have a BIST register at the output
If one is MISR and one is TPGR, assign register to be a BILBO

If both are TPGR and pseudo-MISR, then resulting register is a
TPGR and a pseudo-MISR

If both are MISR, then attribute is MISR and pseudo-TPGR
Remove the attribute (TPGR or MISR) if test time is not exceeded

50 ()

Computer Science

There are three cases that may result from the
merger of two TFBs:

Both TFBS have normal registers at the output
Resulting register is normal unless

Module is not random enough and test time is exceeded in
which case we set the register attribute to TPGR

Patterns originate from a non-transparent module, then we
set the register to MISR

Computer Science

‘ Select Output Registers

Select Output Registers

There are three cases that may result from the
merger of two TFBs:
One TFB has a BIST register and one has a Normal
register

If the BIST is TPGR then it can be pseudo-TPGR if test time can
be increased without increasing the maximum time

Otherwise, it remains a TPGR

Self-Loops Breaking

Resulting datapath cannot have self-loops due to
merger and compatibility rules

Structural testability property of the TFB

However, we may have functional loops after test
points removals in the previous step

: ()

Computer Science

=[
5 3 ‘m
Computer Science

Self-Loops Breaking

Traverse the datapath starting at every module
Generate a list of all children and store in a queue
For every node, check for a cycle.

If yes, then add to the node an implementation attribute (TPGR or
MISR)

Test Control Design

Controller design must support both normal and test modes
Two styles were implemented

Central Mode

Distributed

Central control isimplemented as an FSM where the total number of states
corresponds to the schedules clock cycles

Implemented for comparison purposes
Distributed control implemented concurrently with the synthesis process

Associate a controller with each test kernel (TFB) active during the
corresponding clock cycles

Control the distributed controllers with a relatively small central controller

&
<
i

Computer Science

55

=[
54 3 ‘m
Computer Science

Distributed Control Design

First, test kernels are formed based on test kernels and
the underlying test registers

It is possible that registers may belong to two test kernels
External I/O are handled by the main controller
Construct a decoding table for each sub-controller

The algorithm adds the cost of the distributed controller
to the TFB thus optimizing datapath and control in the
same time

Also minimizes power consumption through the RTL gating of
distributed controllers
=
56 |
Computer Science
MO0 TPGR NORM
opP
T — Ty
MODE+
CYCLE oP OPERATION CYCLE] oP OPERATION
MODE* aieo
JODE+
0OP2’
OP1
MODE + MODE TYPE
0 RATTSR %
MODE+
‘
i .
=z 1 00 1 S

Distributed Control: Kernels

zzzzzzzz

=)
<
ll

Computer Science

57

Experimental Procedure

Use benchmark circuits in the literature
Synthesize using high-level synthesis tool
Generate various test styles based on the tradeoff mechansim
Generate Test Controller
Compare results based on the Synopsys CAD Tools

Generate fault simulation for one example for validation (DCT)

58 ()

Computer Science

DFG Example: DIFFEQ

u X 3 dx u
P dx \ y

dJ, 0. =,
@ 6,

[dx e

: ()

Computer Science

Distributed Control: Diffeq

Reg9
NORMAL
Reg8
NORMAL
Reg?
NORMAL
NORMAL
NORMAL[rego | . ‘
MUX2 ” \MUX3 MUX4,” \ MUX5
MuUXx1
—
Regt | MISR Reg2 | MISR Regd | MISR [rest] misR
Control Status
Signals Signals
A)
Distributed Kernel 1 Control Kernel 2 Control Kernel 3 Control Kernel 4 Control
Controllers

1 1 1 1

‘ Centralized Controller ‘

)
=
-

Computer Science

60

Diffeq Results — Central Control Style

Area Of The Different Datapath Components
§
8, 250000
g 200000 ™
<zt 150000 O Area Of The Different Datapath
% 100000 Components
@ 50000
-E 0 '_|I'_|I I'_|I'_|I'_|I|_|I'_|I'_|
S
=z >
v o & S SF L @
P PP T L e
A\ &
O
é@
(¢

)
=
-

Computer Science

61

Diffeq Results — Central Control Style

Component Area (units)
NAND4 2

OR2 2

NAND8 7
Multiplier 211,734
Adder/Subtractor 19,413
Sub 17,415
2-to-1 Mux 14,796
3-to-1 Mux 14,796
BILBO Register 30,771
TPG Register 25,344
Normal Register 20,898
Controller (Central) 13,266
Overall Design 1,108,017

62

Central Control Style Analytic Power
Estimation (V=1.8v)

Component Internal Switching Dynamic Leakage
Power (uw) Power (uw) Power (u) Power
(nw)
Multipler 899.6268 793,4720 1.6931 (mw) 138.5580
Sub 92.9174 168.9458 261.8632 14.0698
Adder/Sub 106.1745 175.5958 281.7703 15.7282
2-to-1 Mux 40.4850 11.3344 51.8194 7.0472
3-to-1 Mux 53.5307 19.4851 73.0158 12.0218
BILBO 91.0881 103.6256 194.7137 26.0170
TPGR 75.0382 74.9551 149.9933 23.0786
Register 76.9240 82.4911 159.4151 18.9777
Central Control 9.1441 5.9083 15.0525 9.9557
Overall Design 1.0088 (mw) 10.8958 (mw) | 11.9046 (mw) 819.7382

63

=]
<

wll
Computer Science

—]
<

wll
Computer Science

Central Control Style - Dynamic Power
estimation

Total Dynamic Power with Central Controller

1800
1600
1400
1200
1%8(0) |E| Total Dynamic Power
600
400

200 1T Hm|||—|r|,

uw

¢ ¥ &
é@\) %;\§Q \) 0 %/ Q @é éé\é
S

v >

O

—]
=L
-

Computer Science

64

Distributed Control Style — Analytical Power
Estimation (V=1.8v)

Component Cell Area Dynamic Power (uw) Leakage Power
Central Control 12,060 14.9929 9.0107

Sub Control 1 810 3.1426 709.5832

Sub Control 2 810 3.1417 709.5851

Sub Control 3 1,341 4.8498 1.1556

Sub Control 4 1,458 6.2736 1.2673

Sub Control 5 1,467 6.3050 1.2918

Overall Design 1,113,237 12.4411 (mw) 827.6843

—]
=L
-

Computer Science

65

Datapath Components Area

Area Of The Different Datapath Components

200000

150000 -
O Area Of The Different Datapath

100000 Components

50000
0|_||_| .—||—||_||_|I_Ir|

Number of NAND Gates

S
F & FE S

& &
O A
S & & P

6th Order FIR Filter

x0 1 x1 1 x2 1 x3 1 x4 1 x5 1 | x6

hO h1 h2 h3§7 h4 h5 h6

y = hOx0 + h1x1 + h2x2 + h3x3 + h4x4 + h5x5 + h6x6

67 -l
Computer Science

<
66 -l
Computer Science

6th Order FIR Filter DFG

t11

M1

t12

x0 x1
¥ ho h1
M2 M1
s1
x5
10 (N
M3
M1
s2
x3 x4
17 2 1]
M3 M2
x6
t8 t3 ha
s M3 O\ M1t
© Y hs
M2
s5 M3 :
t10 5
hé

—]
=L
-

Computer Science

>
=L
-

Computer Science

Total Dynamic Power: FIR

Total Dynamic Power Using Distributed Controller Option 1
1600 B
1400
1200
= 1000 _
S 800 @ Total Dynamic Power
600
400
200 -| |—ﬂ—
ol == anf —
A LA R S i SN O O
& TLEITEL S S
»
& N FEF P P o

70

Sub-Controller Power Estimation: FIR

Dynamic Power Of The Different Controllers
Option1

A HF

Main Sub Sub Sub Sub Sub
Cont Cont1 Cont2 Cont3 Cont4 Cont5

% 8 1 @ Dynamic Power

71

5
=L
-

Computer Science

5
=L
-

Computer Science

73

Power Simulation Results

72

Computer Science

Control Mode Mode Dynamic Power (mw) | Cell Leakage (nw)
Distributed Normal Mode 1.4454 825.0923
Test Mode 1.1184 827.9899
Central Normal Mode 1.5172 878.4852
Test Mode 1.1690 876.544
5
=
—ll
s0 x4
a4 ‘
L M1 x5
s1 \CS\M ab ‘
s2 X3 jbw
a3 | t5
3 x2 \@l'v” M2
a2 | (6]
1 N M1 M3
s a1 X] \tStZ /ESKG
0 M1
- On [\ | W
to t
M3
" \ [\ | ST
. \ 1054 \1o
9 \ + MZ\
t12
s10 /\ t';"12
s11 Gj M2 M3
! 1
Approximation Detail

>
=L
-

Computer Science

4-Point Discrete Cosine Transfer (DCT)
DFG

s0 In1 In2

s1 In0 2/ cosa In3

; S (G
s3 Gj(ao / at ?{ éf m1
st b1 betgé "o"\@/

@s

% bOGj betaC@/ m3\ / m2
s6 qs/ é
l l
Out0 Out1 Out2 Out3
2
& Compoier Sdente
I Other Results Comparison
Ckt Type | R TPGR MISR BILBO | M Area OH%
Tseng |1 1248 |0 0 0 728 | 1976
2 416 |0 1520 | 388 400 |2724 |27.46
3 0 1024 0 1552 | 400 |2976 |33.60
Diffeq | 1 1872 |0 0 0 672 | 2544
(2) 2 208 | 1024 608 0 960 |2800 |9.14
3 0 1280 0 1552 | 1056 | 3888 | 34.56
Diffeq | 1 2288 |0 0 0 800 | 3088
(1) 2 624 | 1536 608 388 576 |3732 |17.26
3 0 1536 0 2328 | 576 |4440 |30.45
DCT4 |1 2704 |0 0 0 1148 | 3852
2 1664 | 1536 304 0 1248 | 4752 |18.94
3 0 2560 0 1940 | 1088 |5588 |31.07
2
75 -l

Computer Science

Results Comparison (Cont.)

76

Ckt Type | R TPGR MISR | BILBO M Area OH%
Wavelet6 1 2912 |0 0 0 1312 | 4224
2 2496 | 1024 304 0 1112 | 4936 14.42
3 0 2816 0 1940 1328 | 6084 30.57
IIR3 1 3120 | O 0 0 1020 | 4140
2 1664 | 1280 608 0 992 4544 8.89
3 0 2816 0 1552 864 5232 20.87
Firé 1 2912 |0 0 0 768 3680
2 1040 | 2048 608 0 752 4448 17.27
3 0 2816 0 1552 752 5120 28.13

>
=L
-

Computer Science

