
VLSI Design Automation
High-Level Synthesis

Instructor : Haidar M. Harmanani
Fall 2020

haidar@lau.edu.lb

Binding and Sharing Problem
• Given: scheduled sequencing graph

−Operation concurrency well defined
• Consider operation types independently

−Problem decomposition (natural)
−Perform analysis for each resource type

• Operation compatibility
− Same type
−Non-concurrent

• Conflicting operations
−Concurrent, different types
−Dual to compatibility

2 CSC 835/COE 726: VLSI Design Automation

Allocation (Binding)

• Allocation = resource binding
− Spatial mapping between operations and resources
−Operators can be dedicated or generic (shared)
−Operators and registers need to be allocated

• Sharing
−Assignment of a resource to more than one operation

• Constrained resource binding
−Resource-dominated circuits
− Fixed number and type of resources available

• NP-complete problem – need heuristics

3 CSC 835/COE 726: VLSI Design Automation

Binding in Resource-Dominated Circuits
• Resource Compatibility Graph G+(V,E)

− V represents operations
− E represents compatible operation pairs

• Compatible operations
− (vi, vj) are compatible if they are not concurrent and can be implemented by

resources of same type
− Note: concurrency depends on schedule

• Partition the graph into minimum number of cliques in G+(V,E)
− Clique = maximal complete subgraph
− Partition the graph into minimum number of cliques, or

− Clique cover number, k(G+(V,E))

4 CSC 835/COE 726: VLSI Design Automation

Compatibility Graph G+(V,E)

• Minimum Clique covers in G+(V,E)

5 CSC 835/COE 726: VLSI Design Automation

*

NOP

*

*

<

*

*

+

NOP

1 2

3

4

5

6

7
*

8

+
9

10

11

MULT ALU

k(G+(V,E)) =
2

k(G+(V,E)) = 2

7 6 2

3 1 8
9

4 10

5 11

Conflict Graph G-(V,E)

• Resource Conflict Graph G-(V,E)
− V represents operations
− E represents conflicting operation pairs

• Conflicting operations
− Two operations are conflicting if they are not

compatible

• Complementary to compatibility graph

• Find independent set of G-(V,E)
− A set of mutually compatible operations
− Coloring with minimum number of colors

− Chromatic number c(G-(V,E))

6 CSC 835/COE 726: VLSI Design Automation

7 6 2

3 1 8
MULT

7 6 2

3 1 8

Conflict graph G-(V,E)

Compatibility graph G+(V,E)

*

NO
P

*

*

<

*

*

+

NO
P

1 2

3

4

5

6

7 * 8

+ 9

1
0

1
1

Conflict Graph G-(V,E) - Example

• Chromatic numbers in G-(V,E)

7 CSC 835/COE 726: VLSI Design Automation

7 6 2

3 1 8 4 10

5 11
9

MULT ALU

*

NOP

*

*

<

*

*

+

NOP

1 2

3

4

5

6

7
*

8

+
9

10

11

c(G-(V,E)) = 2 c(G-(V,E)) = 2

Clique vs Coloring - Example

8 CSC 835/COE 726: VLSI Design Automation

Special Graphs

• Comparability graph
− Graph G(V,E) has an orientation (G(V,F) with transitive property:

(vi, vj) Î F and (vj, vk) Î F Þ (vi, vk) Î F

• Interval graph
− Vertices correspond to intervals
− Edges correspond to interval intersections
− Subset of chordal graphs

• Every loop with more than 3 edges has a chord

• The compatibility/conflict graphs have special properties
− CompatibilityÞ comparability graph

− ConflictÞ interval graph

9 CSC 835/COE 726: VLSI Design Automation

Comparability Graph

10 CSC 835/COE 726: VLSI Design Automation

Note the orientation of edges,
compare to compatibility graph.

Representation of compatible relations
• Note: sequencing graph is assumed to be scheduled

Interval Graph Representation

Interval representation of conflicting relation
• Note: sequencing graph is assumed to be scheduled

11 CSC 835/COE 726: VLSI Design Automation

Intervals with “Left” and “Right” coordinates

7 6 2

3 1 8 4 10

5 11

9

MULT ALU

Compare with conflict graphs:

Operation Binding - Solution

12 CSC 835/COE 726: VLSI Design Automation

Mult1: { 1, 3, 7 }, Mult2: { 2, 6, 8 }
ALU1: { 10,11, 4,5 }, ALU2: { 9 }

Left-Edge Algorithm

• Input
−Set of intervals sorted with left and right edge

coordinates

• Algorithm
−Sort intervals by their left edge coordinates
−Assign non-overlapping intervals to first track (color)

using the sorted list
−When possible intervals are exhausted, increase track

(color) counter and repeat.

• Efficiency
−Simple, polynomial time algorithm

13 CSC 835/COE 726: VLSI Design Automation

Left-Edge Algorithm

14 CSC 835/COE 726: VLSI Design Automation

Left-Edge Algorithm - Example

15 CSC 835/COE 726: VLSI Design Automation

Input

Solution

ILP Formulation of Operation Binding

• Boolean variables bir
bir = 1 if operator i is bound to resource r

0 otherwise
• Boolean variables xil

xil = 1 if operation i is scheduled to start at step l

16 CSC 835/COE 726: VLSI Design Automation

• At each step l, at most one operation can be executing for a given
resource (horizontal constraint)

• Each operation is bound to one resource

(a = limit on resource r)

Operation Binding - Solution

17 CSC 835/COE 726: VLSI Design Automation

• Equations for two multipliers:
bi1 + bi2 = 1, i={1,2,3,6,7,8}

åi={1,2,3,6,7,8} bi1xil £ 1, l
=1,2,…,5

åi={1,2,3,6,7,8} bi2xil £ 1, l
=1,2,…,5

MULT 1:

MULT 2:

• Solution:
b11 = b31 = b71 = 1
b22 = b62 = b82 = 1
all other bij =0

Register Binding Problem

• Registers are storage resources, holding variable values
across control steps

• Given a schedule, generate:
− Lifetime intervals for variables
− Lifetime overlaps

• Construct a conflict graph (interval graph)
−Vertices V : variables (operations)
− Edges E: overlaps
−Build an interval graph

• Compatibility graph (comparability graph)
−Complement of conflict graph

18 CSC 835/COE 726: VLSI Design Automation

Minimization of Register Costs

• Given a scheduled sequencing graph
− Minimum set of registers required is given by the largest number of data

arcs crossing a C-step boundary

• Create storage operations, at output of any operation that transfers a
value to a destination in a later C-step

• Generate Storage DG for these “operations”

• Length of storage operation depends on final schedule

19 CSC 835/COE 726: VLSI Design Automation

s

ss

d

d d

Storage distribution for S

ASAP Lifetime MAX Lifetime ALAP Lifetime

Register Binding Problem

• Given
−Variable lifetime conflict graph

• Find
−Minimum number of registers storing all variables

• Simple case
−Non-iterative designs: Interval graph

• Solve using left-edge algorithm (polynomial time)

20 CSC 835/COE 726: VLSI Design Automation

Register Binding Problem – Example 1

• Non-iterative designs
− Create variable compatibility graph or conflict graph

− Use left-edge algorithm to minimize the number of registers

21 CSC 835/COE 726: VLSI Design Automation

Register Binding – Example 2

• Iterative designs
− Sequencing graph and variable lifetimes

22 CSC 835/COE 726: VLSI Design Automation

Circular Arc Conflict Graph

• Overlapping lifetimes of variables represent conflicts

23 CSC 835/COE 726: VLSI Design Automation

Variable lifetimes as arcs

Variable lifetimes Circular-arc conflict graph

Register Sharing – General Case

• Iterative constructs
−Preserve values across iterations
−Circular-arc conflict graph (not simple intervals)

• Coloring is intractable

• Hierarchical graphs:
−General conflict graphs

• Coloring is intractable

• Heuristic algorithms required

24 CSC 835/COE 726: VLSI Design Automation

Bus Sharing and Binding

• Buses act as transfer resources
−See architecture produced by GAUT

• Find the minimum number of buses to
accommodate all data transfer

• Find the maximum number of data transfers for a
fixed number of buses

• Similar to memory binding problem
• Possible solutions

− ILP formulation
−Heuristic algorithms

25 CSC 835/COE 726: VLSI Design Automation

Bus Sharing and Binding - Example
• One bus

− 3 variables

• Two buses
− All variables can be transferred

26 CSC 835/COE 726: VLSI Design Automation

Module Selection Problem

• Resource-type (module) selection problem
− Generalization of the binding problem

• Library of resources:
− More than one resource per type

• Example:
− Ripple-carry adder vs. carry look-ahead adder

• Resource modeling
− Resource subtypes with (area, delay) parameters

• Solution
− ILP formulation:

• Decision variables: select resource subtype,
determine (area, delay)

− Heuristic algorithms:
• Determine minimum latency with fastest resource subtypes
• Recover area by using slower resources on non-critical paths

27 CSC 835/COE 726: VLSI Design Automation

Module Selection - Example 1

• Latency bound of 5

• Two multipliers available:
− MULT1 with (area, delay) = (5,1)
− MULT2 with (area, delay) = (2,2)

• Two ALUs available:
− ALU with (area, delay) = (1,1) each

28 CSC 835/COE 726: VLSI Design Automation

Area = 5+2+1+1 = 9

Module Selection Example 2

• Latency bound of 4
− Fast multipliers for {v1, v2, v3 }
− Slower multipliers can be used

elsewhere
• less sharing

• Minimum latency design
− used fast multipliers only.

• Area recovery
− On non-critical paths replace fast

(large) multipliers by slow (small)
ones

29 CSC 835/COE 726: VLSI Design Automation

Area = 5+5+1+1=12

High-Level Synthesis for
Testability

Haidar M. Harmanani

haidar@lau.edu.lb

CSC 835/COE 726: VLSI Design Automation 30

Background

• Two approaches for test synthesis at the structural
level
− Design for Test approach – insertion of test structures is

used to improve testability
• Logic Level and RTL

− Testable Synthesis approach – designs are synthesized
with testability properties

• Testable High-Level Synthesis

31

Background: High-Level Synthesis

• A transformation from behavior to structure

• High-Level Synthesis raises the abstraction level
− Determines the macroscopic structure of a circuit by creating a

Data Path and Control Unit

− Optimize area/delay/power of the implementation

• Two main steps in HLS
− Scheduling
− Allocation

32

Background: BIST Methodology

• Goal is to generate test patterns

and verify them on chip

• Pseudorandom BIST

− Patterns generated using TPGRs
− Test responses evaluated using

MISRs

• Determine fault coverage using

logic level fault simulation

• Select the test length so as to

achieve an acceptable level of fault

coverage.

33

Motivation

• Goal
−Develop a test synthesis tool based on the BIST

methodology that operates concurrently with datapath
allocation

−Generate controller concurrently with least area and
power

• Key Elements
−Test analysis of designs at the RT level based on metrics

−Test considerations at an early stage

−Test points selection

34

Problem Description

• Given a behavioral level description of a circuit
represented in the form of a scheduled DFG, a technology
library and a set of constraints, generate a self-testable
RTL data path such that:
− The data path conforms to all user constraints
− The overhead of test registers in the data path is minimized

− Power consumption is minimized during test and normal mode

35

Approach
• The above tasks are implemented by:

− A model for the testable synthesis of RTL datapath structures.
This is done through the synthesis of designs with structural
properties proven to be good for testing.

− A test point selection scheme that concurrently explores, during
the synthesis process, designs with low test and design cost.

− Concurrent allocation of BIST registers and Functional Units
− Minimizing the cost of test registers using functional test metrics
− Generate a distributed controller, one per test kernel

36

Structural Testability
• A structurally testable resource under the BIST methodology is a

resource such that:

− Test patterns can be applied at the modules input port
− Signature can be observed at the output port

• A datapath is structurally testable if it consists of structurally testable

resources

• Structural Testability

− Testability as related to the macroscopic circuit structure in terms of
registers and combinational blocks

− Problems arise when a register has to generate patterns and compress
a signature during the same test session

• Self adjacency problem

37

Structural Testability

38

+

TPGR

MISR

+

TPGR

MISR

TPGR

Structurally Testable
Resource

Resource with self-
adjacency

Testable Functional Block

• A Testable Functional Block (TFB) is a test kernel that
has:
− An ALU

− At least two registers at the input port that can be configured as
TPGRs during testing

− One register at the output port that can be configured as MISR
during testing

• A datapath that consists of TFBs is structurally testable
− Incrementally create a datapath of TFBs
− A TFB cannot have a self-loop

39

Testable Allocation

• Generate a compatibility graph for the DFG that indicates
which nodes are compatible

• Map DFG nodes to TFBs

• Select TFBs one level at a time and merge the TFBs in one
level and the TFBs in the second level

• Select the test points so as to minimize the cost

• Construct the testable datapath incrementally

40

Example

41

(b)

+

+

+*

-

+

*

a1

s6

a4m3

a8

a2

T=1

T=4

T=3

T=2

m3 a4

+

a8

(a)

*
m9

*

*

m10m7

m5

m3

m5

m10

m9

m7

a4

a8s6

a2

a1Level 1

Level 2

Level 3

Level 4

Level 1

Level 2

Level 3

Test Scheduling

• Objective
−Minimize number of test sessions by maximizing the

number of ALUs tested in the same test session

• Two conditions must be observed
− If two ALUs have the same MISR, then they cannot be

tested in the same session

− If an ALUs MISR is another ALUs TPGR then these two
ALUs cannot be tested at the same time (maybe possible
with a CBILBO)

Test Scheduling

• Two main steps
−ALUs that have the same MISR are assigned to different test

sessions with each ALU assigned a weight that is equal to the
number of times its MISR is used by other ALUs

− Every ALUs TPGR is compared to every other ALUs MISR in
the same test session. If they use the same register, then the
one of the two ALUs that has the minimal weight is moved to
another test session

• Running time of the algorithm is O(a2)

Test Points Selection
• In order to minimize the number of test points, two conditions must be

satisfied

− The TPGRs at the input ports of an ALU can not be the same due to
correlation problem

− A TPGR cannot be an MISR for the same ALU in the same test session
in order to avoid self-adjacency problem

• An initial test point selection based on BILBO and characterized by a

high fault coverage can selected by assigning:

− All registers at the primary input to be TPGR
− Primary Output MISR
− Registers that are in between are BILBOs
− Test points are next relaxed through concurrent selection

44

Concurrent Test: Registers

• Registers in the data path can be:
−Controllable – TPGR

−Observable – MISR

−Pseudo-controllable – A normal register through which
random patterns are sensitized

−Pseudo-observable – A normal register that is
transparent enough to pass faults unaltered to a real
MISR

45

Test Merger Algorithm

• Four Steps
− TFBs pseudo merger
− Select input test registers

− Select output test registers
− Breaking functional self-loop

46

TFBs Pseudo Merger

• Based on the merging algorithm and a cost
function, select the TFBs whose merger will have
the least cost and then combine them into one

• Link test plans into a preliminary “merged test
plan.”

47

Select Input Registers

• Need to select a TPGR for every port in the
datapath after the TFBs pseudo-merger

• Selection priority is sorted in least cost
−Normal, MISR, TPGR, and BILBO

• If current TFB is transparent then set the TFB
output register to be a pseudo-TPGR

48

Select Output Registers

• Next, there are three cases that may result from the
merger of two TFBs:
�Both TFBs have a BIST register at the output

• If one is MISR and one is TPGR, assign register to be a BILBO

• If both are TPGR and pseudo-MISR, then resulting register is a

TPGR and a pseudo-MISR

• If both are MISR, then attribute is MISR and pseudo-TPGR

− Remove the attribute (TPGR or MISR) if test time is not exceeded

50

Select Output Registers

• There are three cases that may result from the
merger of two TFBs:
�Both TFBS have normal registers at the output

• Resulting register is normal unless

− Module is not random enough and test time is exceeded in

which case we set the register attribute to TPGR

− Patterns originate from a non-transparent module, then we

set the register to MISR

51

Select Output Registers

• There are three cases that may result from the
merger of two TFBs:
�One TFB has a BIST register and one has a Normal

register
• If the BIST is TPGR then it can be pseudo-TPGR if test time can

be increased without increasing the maximum time

• Otherwise, it remains a TPGR

52

Self-Loops Breaking

• Resulting datapath cannot have self-loops due to
merger and compatibility rules
−Structural testability property of the TFB

• However, we may have functional loops after test
points removals in the previous step

53

Self-Loops Breaking
• Traverse the datapath starting at every module

− Generate a list of all children and store in a queue

− For every node, check for a cycle.

• If yes, then add to the node an implementation attribute (TPGR or
MISR)

54

Test Control Design
• Controller design must support both normal and test modes
• Two styles were implemented

− Central Mode
− Distributed

• Central control is implemented as an FSM where the total number of states
corresponds to the schedules clock cycles
− Implemented for comparison purposes

• Distributed control implemented concurrently with the synthesis process
− Associate a controller with each test kernel (TFB) active during the

corresponding clock cycles
− Control the distributed controllers with a relatively small central controller

55

Distributed Control Design
• First, test kernels are formed based on test kernels and

the underlying test registers
− It is possible that registers may belong to two test kernels
− External I/O are handled by the main controller
− Construct a decoding table for each sub-controller

• The algorithm adds the cost of the distributed controller
to the TFB thus optimizing datapath and control in the
same time
− Also minimizes power consumption through the RTL gating of

distributed controllers

56

Distributed Control: Kernels

57

MODE

CBILBO

TPGR NORMAL TPGR NORMAL

*

MODE

OP OP

MODE+

NORMAL MODE
CYCLE OP OPERATION

1 0 mo, m2
2 1 m1, m3

TESTING MODE
CYCLE OP OPERATION

=Z 0 TESTING

CBILBO

CBILBO

I

CBILBOR

+
a0,a1
a2,a3

MODE+

MODE+

SEL

MODE+

OP1
OP2

NORMAL MODE
CYCLE SEL OP2 OPERATION

1 0 0 ao

2 1 0 a1

3 1 1 a2

4 1 1 a3

TESTING MODE
CYCLE SEL OP1 OP2 OPERATION

=Z 1 1 TESTING

MODE + MODE TYPE
11 NORMAL
- TPGR

SHIFT00
TPGR/MISR10

OP1
00
00
01
10

00

MODE MODE + MODE TYPE
11 NORMAL
- TPGR

SHIFT00

11
01
00

TPGR/MISR10

Experimental Procedure

• Use benchmark circuits in the literature
− Synthesize using high-level synthesis tool
− Generate various test styles based on the tradeoff mechansim

− Generate Test Controller
− Compare results based on the Synopsys CAD Tools

− Generate fault simulation for one example for validation (DCT)

58

DFG Example: DIFFEQ

s0

s4

s3

s2

s1

u dx
x

3 y dx u

m2 m1 +

m2 m1

m1m2-

- +

t1 t2 3 t3

t4
dx dx

t5

t6 t7 t8

u y x

59

Distributed Control: Diffeq

ALU1

Reg1

ALU2

Reg2

MUX2

ALU3

Reg3

MUX4

Reg8

ALU4

MUX5

Reg4

Reg6

Reg5

MUX1
MUX3

Reg7

Reg9

MISR MISR MISR MISR

NORMAL

NORMAL

NORMAL

NORMAL

NORMAL

Kernel 1 Control Kernel 4 ControlKernel 3 ControlKernel 2 Control

Centralized Controller

Status
Signals

Control
Signals

Distributed
Controllers

60

Diffeq Results – Central Control Style

61

Area Of The Different Datapath Components

0
50000

100000
150000
200000
250000

Ad
der

/Su
b Su

b

Multip
lier MUX2

MUX3
BIL

BO
TP

GR

Regi
ste

r

Cent
ral

Cont
roll

er

N
um

be
r o

f N
A

N
D

 g
at

es

Area Of The Different Datapath
Components

Diffeq Results – Central Control Style

62

Component Area (units)

NAND4 2

OR2 2

NAND8 7

Multiplier 211,734

Adder/Subtractor 19,413

Sub 17,415

2-to-1 Mux 14,796

3-to-1 Mux 14,796

BILBO Register 30,771

TPG Register 25,344

Normal Register 20,898

Controller (Central) 13,266

Overall Design 1,108,017

Central Control Style Analytic Power

Estimation (V=1.8v)

63

Component Internal
Power (uw)

Switching
Power (uw)

Dynamic
Power (u)

Leakage
Power
(nw)

Multipler 899.6268 793,4720 1.6931 (mw) 138.5580

Sub 92.9174 168.9458 261.8632 14.0698

Adder/Sub 106.1745 175.5958 281.7703 15.7282

2-to-1 Mux 40.4850 11.3344 51.8194 7.0472

3-to-1 Mux 53.5307 19.4851 73.0158 12.0218

BILBO 91.0881 103.6256 194.7137 26.0170

TPGR 75.0382 74.9551 149.9933 23.0786

Register 76.9240 82.4911 159.4151 18.9777

Central Control 9.1441 5.9083 15.0525 9.9557

Overall Design 1.0088 (mw) 10.8958 (mw) 11.9046 (mw) 819.7382

Central Control Style – Dynamic Power

estimation

64

Total Dynamic Power with Central Controller

0
200
400
600
800

1000
1200
1400
1600
1800

Add
er/

Sub Sub

M
ult

ipl
ier

M
UX2

M
UX3

BILB
O

TP
GR

Reg
ist

er

Cen
tra

l C
on

tro
lle

r

uW Total Dynamic Power

Distributed Control Style – Analytical Power
Estimation (V=1.8v)

65

Component Cell Area Dynamic Power (uw) Leakage Power

Central Control 12,060 14.9929 9.0107

Sub Control 1 810 3.1426 709.5832

Sub Control 2 810 3.1417 709.5851

Sub Control 3 1,341 4.8498 1.1556

Sub Control 4 1,458 6.2736 1.2673

Sub Control 5 1,467 6.3050 1.2918

Overall Design 1,113,237 12.4411 (mw) 827.6843

Datapath Components Area

66

Area Of The Different Datapath Components

0

50000

100000

150000

200000

Adde
r/S

ub

Multi
plie

r
MUX3

TP
GR

Main
 Con

t

Sub
Con

t2

Sub
Con

t4

Nu
m

be
r o

f N
AN

D
G

at
es

Area Of The Different Datapath
Components

6th Order FIR Filter

 -1
z

 -1
z

 -1
z

 -1
z

 -1
z

 -1
z

x0 x1 x2 x3 x4 x5

h0 h1 h2 h3 h4 h5 h6

y = h0x0 + h1x1 + h2x2 + h3x3 + h4x4 + h5x5 + h6x6

x6

67

6th Order FIR Filter DFG

* *

s0

s5

s4

s2

s1

s7

s6

x0 x1
h0 h1

+

M2 M1

M3

t0 t1

*

h2 x2

M1

t2

+ *

+ *

+ *

+ *

+

h3
x3

M2M3

t3

M3

x4

h4

t4

M3

M1

h5

x5

M2

t5

x6

M1

h6

t6

M3

M3

y

t7

t8

t9

t10

t11

t12

68

3rd Order IIR Filter DFG

69

* *

s0

s5

s4

s3

s2

s1

s7

s6

+

M2
M1

M3

t1_1

+ *

* +

+ *

+ *

*

M2M3

M3

t1

M3

M1

M2

M1M3

M3

y

t0

a1_1 a1_2

w1_1

t1_2

x

*
M1

w1_2

b1_1 b1_2

b1_0
u1_2u1_1w1_0

u1_0

out1 t2_1 b2_1

w2_1

+

M2

s8

b2_0 w2_0
u2_1

u2_0

w1_0
w2_0

Total Dynamic Power: FIR

70

Total Dynamic Power Using Distributed Controller Option 1

0
200
400
600
800

1000
1200
1400
1600

Add
er/

Sub Sub

Mult
ipli

er
MUX2

MUX3

BILB
O

TPGR

Reg
iste

r

Main
 C

on
t

Sub
 C

on
t1

Sub
 C

on
t2

Sub
 C

on
t3

Sub
 C

on
t4

Sub
 C

on
t5

uW Total Dynamic Power

Sub-Controller Power Estimation: FIR

71

Dynamic Power Of The Different Controllers
Option1

0
2
4
6
8

10
12
14
16

Main
Cont

Sub
Cont1

Sub
Cont2

Sub
Cont3

Sub
Cont4

Sub
Cont5

uW Dynamic Power

Power Simulation Results

72

Control Mode Mode Dynamic Power (mw) Cell Leakage (nw)
Distributed Normal Mode 1.4454 825.0923

Test Mode 1.1184 827.9899

Central Normal Mode 1.5172 878.4852

Test Mode 1.1690 876.544

6-tap Wavelet Filter

s0

s5

s4

s3

s2

s1

s7

s6

s8

s9

s10

s11

*

*

*

*

*

*

+

x4
a4

M1
t4

x5
a5

M1
t5

x3
a3

M1
t3

M2x2
a2

x1
a1

x0
a0

- M3M1
t2

M1
t1

M1
t0

+ M2

- M3

+ M2

+ M2

+ M2

+ M2

+ M2 - M3

t6

t7

t8

t9
t10

t12

t11

Approximation Detail

73

4-Point Discrete Cosine Transfer (DCT)
DFG

s0

s5

s4

s3

s2

s1

s6

In1 In2

-

*

-*+

In0 In3

+

**- +

sina

cosaa2

a3

sina cosa

+ * -

* +

m1

m0

a1a0

b1 beta "0"
m3 m2

b0 beta

Out0 Out1 Out3Out2

74

Other Results Comparison

OH%AreaMBILBOMISRTPGRRTypeCkt

197672800012481Tseng

27.462724400388152004162

33.60297640015520102403

254467200018721Diffeq
(2) 9.142800960060810242082

34.563888105615520128003

308880000022881Diffeq
(1) 17.26373257638860815366242

30.45444057623280153603

3852114800027041DCT4

18.94475212480304153616642

31.075588108819400256003

75

Results Comparison (Cont.)

OH%AreaMBILBOMISRTPGRRTypeCkt

4224131200029121Wavelet6

14.42493611120304102424962

30.576084132819400281603

4140102000031201IIR3

8.8945449920608128016642

20.87523286415520281603

368076800029121Fir6

17.2744487520608204810402

28.13512075215520281603

76

