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Binding and Sharing Problem
• Given: scheduled sequencing graph

−Operation concurrency well defined
• Consider operation types independently

−Problem decomposition (natural)
−Perform analysis for each resource type

• Operation compatibility
− Same type
−Non-concurrent

• Conflicting operations
−Concurrent, different types
−Dual to compatibility
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Allocation (Binding)

• Allocation = resource binding
− Spatial mapping between operations and resources
−Operators can be dedicated or generic (shared)
−Operators and registers need to be allocated

• Sharing
−Assignment of a resource to more than one operation

• Constrained resource binding
−Resource-dominated circuits
− Fixed number and type of resources available

• NP-complete problem – need heuristics
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Binding in Resource-Dominated Circuits
• Resource Compatibility Graph G+(V,E)

− V represents operations
− E represents compatible operation pairs

• Compatible operations
− (vi, vj) are compatible if they are not concurrent and can be implemented by 

resources of same type
− Note: concurrency depends on schedule

• Partition the graph into minimum number of cliques in G+(V,E)
− Clique = maximal complete subgraph
− Partition the graph into minimum number of cliques, or

− Clique cover number, k(G+(V,E))
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Compatibility Graph G+(V,E)

• Minimum Clique covers in G+(V,E)
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Conflict Graph G-(V,E)

• Resource Conflict Graph G-(V,E)
− V represents operations
− E represents conflicting operation pairs

• Conflicting operations
− Two operations are conflicting if they are not

compatible 

• Complementary to compatibility graph

• Find independent set of G-(V,E)
− A set of mutually compatible operations
− Coloring with minimum number of colors

− Chromatic number c(G-(V,E))
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Conflict Graph G-(V,E) - Example

• Chromatic numbers in G-(V,E)
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Special Graphs

• Comparability graph
− Graph G(V,E) has an orientation (G(V,F) with transitive property:

(vi, vj) Î F  and (vj, vk) Î F Þ (vi, vk) Î F

• Interval graph
− Vertices correspond to intervals
− Edges correspond to interval intersections
− Subset of chordal graphs

• Every loop with more than 3 edges has a chord

• The compatibility/conflict graphs have special properties
− CompatibilityÞ comparability graph

− ConflictÞ interval graph
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Comparability Graph
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Note the orientation of edges,
compare to compatibility graph.

Representation of compatible relations
• Note: sequencing graph is assumed to be scheduled



Interval Graph Representation

Interval representation of conflicting relation
• Note: sequencing graph is assumed to be scheduled

11 CSC 835/COE 726: VLSI Design Automation 

Intervals with “Left” and “Right” coordinates
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Compare with conflict graphs:

Operation Binding - Solution
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Mult1: { 1, 3, 7 }, Mult2: { 2, 6, 8 }
ALU1: { 10,11, 4,5 },  ALU2: { 9 }



Left-Edge Algorithm

• Input
−Set of intervals sorted with left and right edge 

coordinates

• Algorithm 
−Sort intervals by their left edge coordinates
−Assign non-overlapping intervals to first track (color) 

using the sorted list
−When possible intervals are exhausted, increase track 

(color) counter and repeat.

• Efficiency
−Simple, polynomial time algorithm
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Left-Edge Algorithm
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Left-Edge Algorithm - Example
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Input

Solution

ILP Formulation of Operation Binding

• Boolean variables bir
bir =    1       if operator i is bound to resource r

0     otherwise
• Boolean variables xil

xil = 1 if operation i is scheduled to start at step l
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• At each step l, at most one operation can be executing for a given  
resource     (horizontal constraint)

• Each operation is bound to one resource

(a = limit on resource r)



Operation Binding - Solution
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• Equations for two multipliers: 
bi1 + bi2 = 1, i={1,2,3,6,7,8}

åi={1,2,3,6,7,8} bi1xil £ 1,  l 
=1,2,…,5

åi={1,2,3,6,7,8} bi2xil £ 1,  l 
=1,2,…,5

MULT 1:

MULT 2:

• Solution:
b11 = b31 = b71 = 1
b22 = b62 = b82 = 1
all other bij =0

Register Binding Problem

• Registers are storage resources, holding variable values 
across control steps

• Given a schedule, generate:
− Lifetime intervals for variables
− Lifetime overlaps

• Construct a conflict graph (interval graph)
−Vertices V : variables (operations)
− Edges E:    overlaps
−Build an interval graph

• Compatibility graph  (comparability graph)
−Complement of conflict graph
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Minimization of Register Costs

• Given a scheduled sequencing graph
− Minimum set of registers required is given by the largest number of data 

arcs crossing a C-step boundary

• Create storage operations, at output of any operation  that transfers a 
value to a destination in a later C-step 

• Generate Storage DG for these “operations”

• Length of storage operation depends on final schedule
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Register Binding Problem

• Given
−Variable lifetime conflict graph

• Find
−Minimum number of registers storing all variables

• Simple case
−Non-iterative designs: Interval graph

• Solve using left-edge algorithm (polynomial time)
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Register Binding Problem – Example 1

• Non-iterative designs
− Create variable compatibility graph or conflict graph

− Use left-edge algorithm to minimize the number of registers
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Register Binding – Example 2

• Iterative designs
− Sequencing graph and variable lifetimes
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Circular Arc Conflict Graph

• Overlapping lifetimes of variables represent conflicts
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Variable lifetimes as arcs

Variable lifetimes Circular-arc conflict graph

Register Sharing – General Case

• Iterative constructs
−Preserve values across iterations
−Circular-arc conflict graph (not simple intervals)

• Coloring is intractable 

• Hierarchical graphs:
−General conflict graphs

• Coloring is intractable 

• Heuristic algorithms required
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Bus Sharing and Binding

• Buses act as transfer resources 
−See architecture produced by GAUT

• Find the minimum number of buses to 
accommodate all data transfer

• Find the maximum number of data transfers for a 
fixed number of buses

• Similar to memory binding problem
• Possible solutions

− ILP formulation
−Heuristic algorithms
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Bus Sharing and Binding - Example
• One bus

− 3 variables

• Two buses
− All variables can be transferred
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Module Selection Problem

• Resource-type (module) selection problem
− Generalization of the binding problem

• Library of resources:
− More than one resource per type

• Example:
− Ripple-carry adder vs. carry look-ahead adder

• Resource modeling
− Resource subtypes with (area, delay) parameters

• Solution
− ILP formulation:

• Decision variables:  select resource subtype, 
determine (area, delay)

− Heuristic algorithms:
• Determine minimum latency with fastest resource subtypes
• Recover area by using slower resources on non-critical paths
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Module Selection - Example 1

• Latency bound of 5

• Two multipliers available:
− MULT1 with (area, delay) =  (5,1)
− MULT2 with (area, delay) = (2,2)

• Two ALUs available:
− ALU with (area, delay) = (1,1) each
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Area = 5+2+1+1 = 9



Module Selection Example 2

• Latency bound of 4
− Fast multipliers for {v1, v2, v3 }
− Slower multipliers can be used 

elsewhere
• less sharing

• Minimum latency design 
− used fast multipliers only.

• Area recovery
− On non-critical paths replace fast 

(large) multipliers by slow (small) 
ones
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Area = 5+5+1+1=12

High-Level Synthesis for 
Testability
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Background

• Two approaches for test synthesis at the structural 
level
− Design for Test approach – insertion of test structures is 

used to improve testability
• Logic Level and RTL

− Testable Synthesis approach – designs are synthesized 
with testability properties

• Testable High-Level Synthesis
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Background: High-Level Synthesis

• A transformation from behavior to structure

• High-Level Synthesis raises the abstraction level
− Determines the macroscopic structure of a circuit by creating a 

Data Path and Control Unit

− Optimize area/delay/power of the implementation

• Two main steps in HLS
− Scheduling
− Allocation
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Background: BIST Methodology

• Goal is to generate test patterns 

and verify them on chip

• Pseudorandom BIST

− Patterns generated using TPGRs
− Test responses evaluated using 

MISRs

• Determine fault coverage using 

logic level fault simulation

• Select the test length so as to 

achieve an acceptable level of fault 

coverage.
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Motivation

• Goal
−Develop a test synthesis tool based on the BIST 

methodology that operates concurrently with datapath 
allocation

−Generate controller concurrently with least area and 
power

• Key Elements
−Test analysis of designs at the RT level based on metrics

−Test considerations at an early stage

−Test points selection
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Problem Description

• Given a behavioral level description of a circuit 
represented in the form of a scheduled DFG, a technology 
library and a set of constraints, generate a self-testable 
RTL data path such that: 
− The data path conforms to all user constraints
− The overhead of test registers in the data path is minimized

− Power consumption is minimized during test and normal mode
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Approach
• The above tasks are implemented by:

− A model for the testable synthesis of RTL datapath structures.  
This is done through the synthesis of designs with structural 
properties proven to be good for testing.

− A test point selection scheme that concurrently explores, during 
the synthesis process, designs with low test and design cost.

− Concurrent allocation of BIST registers and Functional Units
− Minimizing the cost of test registers using functional test metrics
− Generate a distributed controller, one per test kernel
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Structural Testability
• A structurally testable resource under the BIST methodology is a 

resource such that:

− Test patterns can be applied at the modules input port
− Signature can be observed at the output port

• A datapath is structurally testable if it consists of structurally testable 

resources

• Structural Testability

− Testability as related to the macroscopic circuit structure in terms of 
registers and combinational blocks

− Problems arise when a register has to generate patterns and compress 
a signature during the same test session

• Self adjacency problem

37

Structural Testability
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Testable Functional Block

• A Testable Functional Block (TFB) is a test kernel that 
has:
− An ALU

− At least two registers at the input port that can be configured as 
TPGRs during testing

− One register at the output port that can be configured as MISR 
during testing

• A datapath that consists of TFBs is structurally testable
− Incrementally create a datapath of TFBs
− A TFB cannot have a self-loop
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Testable Allocation

• Generate a compatibility graph for the DFG that indicates 
which nodes are compatible

• Map DFG nodes to TFBs

• Select TFBs one level at a time and merge the TFBs in one 
level and the TFBs in the second level

• Select the test points so as to minimize the cost

• Construct the testable datapath incrementally
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Example

41

(b)

+

+

+*

-

+

*

a1

s6

a4m3

a8

a2

T=1

T=4

T=3

T=2

m3 a4

+

a8

(a)

*
m9

*

*

m10m7

m5

m3

m5

m10

m9

m7

a4

a8s6

a2

a1Level 1

Level 2

Level 3

Level 4

Level 1

Level 2

Level 3

Test Scheduling

• Objective
−Minimize number of test sessions by maximizing the 

number of ALUs tested in the same test session

• Two conditions must be observed
− If two ALUs have the same MISR, then they cannot be 

tested in the same session

− If an ALUs MISR is another ALUs TPGR then these two 
ALUs cannot be tested at the same time (maybe possible 
with a CBILBO)



Test Scheduling

• Two main steps
−ALUs that have the same MISR are assigned to different test 

sessions with each ALU assigned a weight that is equal to the 
number of times its MISR is used by other ALUs

− Every ALUs TPGR is compared to every other ALUs MISR in 
the same test session.  If they use the same register, then the 
one of the two ALUs that has the minimal weight is moved to 
another test session

• Running time of the algorithm is O(a2)

Test Points Selection
• In order to minimize the number of test points, two conditions must be 

satisfied

− The TPGRs at the input ports of an ALU can not be the same due to 
correlation problem

− A TPGR cannot be an MISR for the same ALU in the same test session 
in order to avoid self-adjacency problem 

• An initial test point selection based on BILBO and characterized by a 

high fault coverage can selected by assigning:

− All registers at the primary input to be TPGR
− Primary Output MISR
− Registers that are in between are BILBOs
− Test points are next relaxed through concurrent selection
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Concurrent Test: Registers

• Registers in the data path can be: 
−Controllable – TPGR

−Observable – MISR 

−Pseudo-controllable – A normal register through which 
random patterns are sensitized

−Pseudo-observable – A normal register that is 
transparent enough to pass faults unaltered to a real 
MISR
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Test Merger Algorithm

• Four Steps
− TFBs pseudo merger
− Select input test registers

− Select output test registers
− Breaking functional self-loop
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TFBs Pseudo Merger

• Based on the merging algorithm and a cost 
function, select the TFBs whose merger will have 
the least cost and then combine them into one

• Link test plans into a preliminary “merged test 
plan.”

47

Select Input Registers

• Need to select a TPGR for every port in the 
datapath after the TFBs pseudo-merger

• Selection priority is sorted in least cost
−Normal, MISR, TPGR, and BILBO

• If current TFB is transparent then set the TFB 
output register to be a pseudo-TPGR
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Select Output Registers

• Next, there are three cases that may result from the 
merger of two TFBs:
�Both TFBs have a BIST register at the output

• If one is MISR and one is TPGR, assign register to be a BILBO

• If both are TPGR and pseudo-MISR, then resulting register is a 

TPGR and a pseudo-MISR

• If both are MISR, then attribute is MISR and pseudo-TPGR

− Remove the attribute (TPGR or MISR) if test time is not exceeded
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Select Output Registers

• There are three cases that may result from the 
merger of two TFBs:
�Both TFBS have normal registers at the output

• Resulting register is normal unless

− Module is not random enough and test time is exceeded in 

which case we set the register attribute to TPGR

− Patterns originate from a non-transparent module, then we 

set the register to MISR
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Select Output Registers

• There are three cases that may result from the 
merger of two TFBs:
�One TFB has a BIST register and one has a Normal 

register
• If the BIST is TPGR then it can be pseudo-TPGR if test time can 

be increased without increasing the maximum time

• Otherwise, it remains a TPGR
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Self-Loops Breaking

• Resulting datapath cannot have self-loops due to 
merger and compatibility rules
−Structural testability property of the TFB

• However, we may have functional loops after test 
points removals in the previous step
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Self-Loops Breaking
• Traverse the datapath starting at every module

− Generate a list of all children and store in a queue

− For every node, check for a cycle.

• If yes, then add to the node an implementation attribute (TPGR or 
MISR)
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Test Control Design
• Controller design must support both normal and test modes
• Two styles were implemented

− Central Mode
− Distributed

• Central control is implemented as an FSM where the total number of states 
corresponds to the schedules clock cycles
− Implemented for comparison purposes

• Distributed control implemented concurrently with the synthesis process
− Associate a controller with each test kernel (TFB) active during the 

corresponding clock cycles
− Control the distributed controllers with a relatively small central controller
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Distributed Control Design
• First, test kernels are formed based on test kernels and 

the  underlying test registers
− It is possible that registers may belong to two test kernels
− External I/O are handled by the main controller
− Construct a decoding table for each sub-controller

• The algorithm adds the cost of the distributed controller 
to the TFB thus optimizing datapath and control in the 
same time
− Also minimizes power consumption through the RTL gating of 

distributed controllers
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Distributed Control: Kernels
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Experimental Procedure

• Use benchmark circuits in the literature
− Synthesize using high-level synthesis tool
− Generate various test styles based on the tradeoff mechansim

− Generate Test Controller
− Compare results based on the Synopsys CAD Tools

− Generate fault simulation for one example for validation (DCT)
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DFG Example: DIFFEQ
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Distributed Control: Diffeq
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Diffeq Results – Central Control Style
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Diffeq Results – Central Control Style

62

Component Area (units)

NAND4 2

OR2 2

NAND8 7

Multiplier 211,734

Adder/Subtractor 19,413

Sub 17,415

2-to-1 Mux 14,796

3-to-1 Mux 14,796

BILBO Register 30,771

TPG Register 25,344

Normal Register 20,898

Controller (Central) 13,266

Overall Design 1,108,017

Central Control Style Analytic Power 

Estimation (V=1.8v)
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Component Internal 
Power (uw)

Switching 
Power (uw)

Dynamic 
Power (u)

Leakage 
Power 
(nw)

Multipler 899.6268 793,4720 1.6931 (mw) 138.5580

Sub 92.9174 168.9458 261.8632 14.0698

Adder/Sub 106.1745 175.5958 281.7703 15.7282

2-to-1 Mux 40.4850 11.3344 51.8194 7.0472

3-to-1 Mux 53.5307 19.4851 73.0158 12.0218

BILBO 91.0881 103.6256 194.7137 26.0170

TPGR 75.0382 74.9551 149.9933 23.0786

Register 76.9240 82.4911 159.4151 18.9777

Central Control 9.1441 5.9083 15.0525 9.9557

Overall Design 1.0088 (mw) 10.8958 (mw) 11.9046 (mw) 819.7382



Central Control Style – Dynamic Power 

estimation
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Total Dynamic Power with Central Controller
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Distributed Control Style – Analytical Power 
Estimation (V=1.8v)
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Component Cell Area Dynamic Power (uw) Leakage Power

Central Control 12,060 14.9929 9.0107

Sub Control 1 810 3.1426 709.5832

Sub Control 2 810 3.1417 709.5851

Sub Control 3 1,341 4.8498 1.1556

Sub Control 4 1,458 6.2736 1.2673

Sub Control 5 1,467 6.3050 1.2918

Overall Design 1,113,237 12.4411 (mw) 827.6843



Datapath Components Area
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Area Of The Different Datapath Components
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6th Order FIR Filter
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6th Order FIR Filter DFG
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3rd Order IIR Filter DFG
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Total Dynamic Power: FIR
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Total Dynamic Power Using Distributed  Controller Option 1
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Sub-Controller Power Estimation: FIR
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Power Simulation Results
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Control Mode Mode Dynamic Power (mw) Cell Leakage (nw)
Distributed Normal Mode 1.4454 825.0923

Test Mode 1.1184 827.9899

Central Normal Mode 1.5172 878.4852

Test Mode 1.1690 876.544

6-tap Wavelet Filter

s0

s5

s4

s3

s2

s1

s7

s6

s8

s9

s10

s11

*

*

*

*

*

*

+

x4
a4

M1
t4

x5
a5

M1
t5

x3
a3

M1
t3

M2x2
a2

x1
a1

x0
a0

- M3M1
t2

M1
t1

M1
t0

+ M2

- M3

+ M2

+ M2

+ M2

+ M2

+ M2 - M3

t6

t7

t8

t9
t10

t12

t11

Approximation Detail

73



4-Point Discrete Cosine Transfer (DCT) 
DFG
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Other Results Comparison

OH%AreaMBILBOMISRTPGRRTypeCkt

197672800012481Tseng 

27.462724400388152004162

33.60297640015520102403

254467200018721Diffeq
(2) 9.142800960060810242082

34.563888105615520128003

308880000022881Diffeq
(1) 17.26373257638860815366242

30.45444057623280153603

3852114800027041DCT4

18.94475212480304153616642

31.075588108819400256003
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Results Comparison (Cont.)

OH%AreaMBILBOMISRTPGRRTypeCkt

4224131200029121Wavelet6

14.42493611120304102424962

30.576084132819400281603

4140102000031201IIR3

8.8945449920608128016642

20.87523286415520281603

368076800029121Fir6

17.2744487520608204810402

28.13512075215520281603
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