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1 VLSI Design Automation

Hardware Synthesis
• Starts from an abstract 

behavioral description

• Generates an RTL 
description

• Need to restrict the target 
hardware – otherwise search 
space is too large
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Hardware Synthesis

• How is the behavior specified?

−Natural languages

−C/C++

−VHDL/Verilog

• What is the target architecture 

of the ASIC?
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P1 P2

P3

CPU ASIC

P1 P2 & P3

VLSI Design Tools

• Design Capturing/Entry

• Analysis and Characterization

• Synthesis/Optimization

−Physical (Floor planning, Placement, Routing)

−Logic (FSM, Retiming, Sizing, DFT)

−High Level(RTL, Behavioral)

• Management
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Design Methodology Progress
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Capture and Simulate

Describe and Synthesis

Specify and ???

Design Space Exploration
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Arch I

Arch II

Arch III

Delay

Area
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Productivity

Re-Targetability

Correctness

Why Synthesis?

Unsynthesizability

Performance Loss

Inertial

Why not Synthesis?
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High Level Synthesis (HLS)

• The process of converting a high-level description 

of a design to a netlist

− Input:
• Behavioral description of a system

• A set of constraints

− Area constraints (e.g., # modules of a certain type)

− Delay constraints (e.g., set of operations should finish in l 
clock cycles)

−Output:
• Operation scheduling (time) and binding (resource)

• Control generation and detailed interconnections
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High Level Synthesis
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CDFG

Parsing

Transformation

Synthesis

Structural
RTL

Behavioral
Description

What Went Wrong?

• Too much emphasis on incremental work on 

algorithms and point tools

• Unrealistic assumption on component capability, 

architectures, timing, etc

• Lack of quality-measurement from the low level

• Too much promising on fully automation (silicon 

compiler??)
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Essential Issues

• Behavioral Specification Languages

• Target Architectures

• Intermediate Representation

• Operation Scheduling

• Allocation/Binding

• Control Generation
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Behavioral Specification Languages

• Add hardware-specific constructs  to existing 

languages

−HardwareC

• Popular HDL

−Verilog, VHDL

• Synthesis-oriented HDL

−UDL/I
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Target Architectures

• Bus-based

• Multiplexer-based

• Register file

• Pipelined

• RISC, VLIW

• Interface Protocol
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Hardware Model

• Data path

−Network of functional units, registers, multiplexers and 
buses

• Control

−Takes care of having the data present at the right place 
at a specific time

−Takes care of presenting the right instructions to a 
programmable unit

• Often high-level synthesis concentrates on data 

path synthesis
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Hardware Model - Components 

• Most synthesis systems are targeted towards 

synchronous hardware

• Functional units:

−Can perform one or more computations

−Addition, multiplication, comparison, ALU, etc.

• Registers:

−Store inputs, intermediate results and outputs

−May be organized as a register file
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Hardware Model - Interconnection 

• Multiplexers:

−Select one output from several inputs

• Busses:

−Connection shared between several components

−Only one component can write data at a specific time

−Exclusive writing may be controlled by tri-state drivers
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Hardware Model – Parameters

• Clocking strategy

−Single or multiple phase clocks

• Interconnect

−Allowing or disallowing busses

• Clocking of functional units

−Multicycle operations

−Chaining

−Pipelined units
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Hardware Model – Example
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FSM with Data Path
(FSMD)
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FSM Data
Path

FSM Data
Path FSM Data

Path

Interactive FSMDs

Intermediate Representation
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Scheduling (Temporal Binding)

• Time & Resource Tradeoff

• Time-Constrained

− Integer Linear Programming (ILP)

−Force-Directed

• Resource-Constrained

−List Scheduling

• Other Heuristics

−Simulated Annealing, Tabu Search, ...
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Allocation/Binding
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Functional UnitsOperations

StorageVariables
Signals

Bus/Wire/MuxData Transfers



Controller Specification Generation
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Scheduled
CDFG

Allocated
Datapath

Micro-Operations
for

Every Control Step

HLS Quality Measures

• Performance

• Area Cost

• Power Consumption

• Testability

• Reusability
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Hardware Variations

• Functional Units

−Pipelined, Multi-Cycle, Chained, Multi-Function

• Storage

−Register, RF, Multi-Ported, RAM, ROM, FIFO, Distributed

• Interconnect

−Bus, Segmented Bus, Mux, Protocol-Based
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Functional Unit Variations
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Storage/Interconnect Variations
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RF

FU

FU

RF
Segmented
Buses

Distributed
FIFO

Mux

Chaining

Multi-Port

PART I: SYNTHESIS
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High-Level Synthesis Compilation Flow
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Lex
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Compilation
front-end
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Intermediate
form
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Behavioral Optimization

• Techniques used in software compilation
− Expression tree height reduction

− Constant and variable propagation

− Common sub-expression elimination

− Dead-code elimination

− Operator strength reduction (e.g., *4 à << 2)

• Typical Hardware transformations
− Conditional expansion

• If (c) then x=A else x=B
è compute A and B in parallel, x=(C)?A:B

− Loop expansion

• Instead of three iterations of a loop, replicate the loop body three times
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Architectural Synthesis

• Deals with “computational” behavioral descriptions
− Behavior as sequencing graph data flow graph DFG)

− Hardware resources as library elements
• Pipelined or non-pipelined

• Resource performance in terms of execution delay 

− Constraints on operation timing

− Constraints on hardware resource availability

• Objective
− Generate a synchronous, single-phase clock circuit
− Might have multiple feasible solutions (explore tradeoff)

− Satisfy constraints, minimize objective:
• Maximize performance subject to area constraint

• Minimize area subject to performance constraints
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Architectural Optimization

• Optimization in view of design space flexibility

• A multi-criteria optimization problem:

− Determine schedule f and binding b.
− Under area A, latency l and cycle time t objectives
− Find non-dominated points in solution space

• Solution space tradeoff curves:

− Non-linear, discontinuous
− Area/latency / cycle time (more?)
− Evaluate (estimate) cost functions

• Unconstrained optimization problems for resource dominated 

circuits:

− Min area: solve for minimal binding
− Min latency: solve for minimum l scheduling
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Synthesis Methodology 
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implementationdesignspecification

Physical domain

Mathematical domain

specification

create a model 
of the physical 
problem

synthesis

create an 
alogorithm to solve 
the problem

implementation

Transform the 
optimized 
model back to 
the physical 
domain

Input Format

• Input

−Behavior described in textual form

−Conventional programming language

−Hardware description language (HDL)

• Has to be parsed and transformed into an internal 

representation 

• Conventional compiler techniques are used
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Internal Representation
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vertex (node): represent computation

edge: represents precedence relations

• Data-flow graph (DFG)
– Used by most systems
–May or may not contain information on 

control flow

Data Flow
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x := a * b;
y := c + d;
z := x + y;
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DFG Semantics
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a b c d
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Example – Data Flow Graph of DiffEq

• Solve the second order differential equation

− y´´ + 3zy´+ 3y = 0

• Iterative solution
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While (z<a) {
z1 := z + dz;
u1 := u – (3*z*u*dz) – (3*y*dz);
y1 := y + (u*dz);
z := z1; u := u1; y := y1;

}



Example - Result
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High-Level Synthesis Tasks

• Scheduling

−Determine for each operation the time at which it should 
be performed such that no precedence contraint is 
violated

• Allocation

−Specify the hardware resources that will be necessary

• Assignment 

−Provide a mapping from each operation to a specific 
functional unit and from each variable to a register
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High-Level Synthesis Tasks

• Scheduling, allocation and assignment are strongly 

interrelated

−Sometimes solved together but often separately!

• Scheduling is NP-complete

−Heuristics have to be used!

• Datapath allocation involves various tasks that are 

also NP-complete
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PART II: SCHEDULING
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Algorithm Description à Data Flow Graph
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Scheduling

• Definition
− Determine start times for behavioral operators while satisfying 

timing, power, testability, and/or resource constraints
• Input

− Control DFG
− Constraints

• Cycle Time
• Operations delays expressed in cycles

• Output
− Temporal ordering of individual operations

• Goal
− Exploit parallelism to achieve fastest design while meeting 

contsraints
• Area/latency trade-off
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Example 2
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Taxonomy

• Unconstrained Scheduling

• Scheduling with timing constraints
− Latency
− Detailed Timing Constraints

• Scheduling with resource constraints

• Related Issues
− Pipelining
− Chaining
− Multicycling
− Synchronization
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Minimum-Latency Unconstrained Scheduling

• Problem Description
− Given a set of operations with delays D and a partial order on 

the operations E, find an integer labeling j: V ® Z+ of the 
operations such that:

• ti = j(vi) and ti ³ tj + dj

• tn is minimum

• Simplest model
− Operations have bounded delays in cycles
− No constraints or bounds on area

• Goal
− Minimize latency
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ASAP Scheduling

ASAP(G(V, E)) {
Schedule v0 by setting t0 = 1
do {

Select a vertex vi whose predessors are all scheduled
Schedule vi by setting ti = max tj + dj

} while (vn is not scheduled
return(t)

}
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ASAP Scheduling Algorithm

for each vi Î V do
if Pred = f {

Ei = 1
V = V - {vi}

else
Ei = 0

}

While V ¹ f do
for each node vi Î V {

if all_pred_scheduled(vi, E) + 1 {
Ei = max(predvi, E) + 1
V = V - {vi}

}
}

Schedule an operation Oi into the earliest possible control step 

Determine the nodes that have 
all their predessors
scheduled and assign them to 
the earliest possible
state, max (Predvi, E) + 1

Assign the nodes that do not have any 
predessors to state s1 and the rest to state s0
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Related Issues: Multicycle Operations

• Real functional units have different propagation 
delays based on their design

−A floating point adder is slower than a fixed point adder

• Operations may not finish in one time step

Þ Increase clock cycle to accommodate slowest design 
unit

• Slow units, with propagation delay shorter than the clock cycle, 
remain idle during part of the clock cycle

ÞAn alternative is to shorter the clock period to allow fast 
operations to execute in one clock cycle

• Slower operations, multicycle operations, are scheduled across 
two or more control steps
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Related Issues: Multicycle Operations

• Tradeoff

−Faster latency and Shorter clock cycle

−Need latches to hold operands in front of the multicycle 
units to hold operands until the result is available in the 
next clock cycle(s)

−Larger number of control steps
• Bigger controller

+
*

+

Step i

Step i + 1
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Related Issues: Chaining

• Allow two or more operations to be performed 

serially within one step

• Result is fed directly to the input of some other 

Functional unit

+
*

+
Step i
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Related Issues: Pipelining

• Another alternative is to use pipelined functional 
units

−An effective technique for increasing Parallelism
−Two multipliers can share the same two stage pipelined 

multiplier despite the fact that the two operations are 
executing concurrently

• Each multiplier uses a different stage of the pipelined multiplier
− One pipelined multiplier is needed instead of two

*
Step i

Step i + 1

*
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Related Issues: Conditionals

• Conditionals result in several branches that are 

mutually exclusive

−During execution, only one branch gets executed based 
on the outcome of an evaluated condition

• An effective scheduling algorithm shares resources 

among mutual exclusive operations
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Related Issues: Conditionals

• Schedule both multiplications in the same clock cycle 
even if one multiplier is available in each step

a := a - 1;
if (a < 0)

b := d * c;
else

b := a * c;
c := b + r;

a : = a - 1

a < 0

b := d * c b := a * c

c := b + r
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ALAP Scheduling

ALAP(G(V, E), “l) {
Schedule vn by setting tn = l + 1
do {

Select vertex vi whose successors are all scheduled
Schedule vi by setting ti = min tj - di

} while (v0 is not scheduled)
return(t)

}
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ALAP Scheduling Algorithm

for each node vi Î V {
if succvi = F {

Li = T;
V = V - {vi}

else
Li = 0

}

while V ¹ F {
for each node vi ¹ V {

if all_pred_sched(vi, L) {
Li = min(succvi, L) - 1;
V = V - {vi};

}
}

}

Assign the nodes that do not have 
any 
successors to the last possible state

Determine the nodes that have all their
predessors scheduled and assign them 
to the latest possible state

Question: How to get 
T?
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Example
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General Remarks

• ALAP solves a latency-constrained problem

−Latency bound can be computed by ASAP

• Given a schedule, can we determine the number of 

functional units required to implement the design?

VLSI Design Automation66



Mobility

• Mobility

−Defined for each operation as the difference between 
ALAP and ASAP schedules

−Operations with zero mobility are operations on the 
critical path ({v1 ,v2, v3, v4, v5}

−Operations with mobility one are {v6, v7}

−Operations with mobility two are {v6, v9 , v10 , v11}

• Question

−How can we use mobility to improve our scheduling 
algorithms?

VLSI Design Automation67

Detailed Timing Constraints Scheduling

• Motivation

−Control over operation start time

• Procedure

−Start with a CDFG

−Add forward edges for minimum constraints
• Edge (vi, vj) with weight lij Þ tj ³ ti + lij

−Add backward edges for maximum constraints
• Edge (vj, vi) with weight -uij Þ tj £ ti + uij since tj £ ti + uij Þ ti ³ tj -

uij
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Sequencing Graph
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Sequencing Graph

• Add source and sink nodes (NOP) to the DFG

*

* * + <

* * * + *

NOP

* * + <

* * * +

NOP
Data Flow Graph (DFG)

Sequencing Graph
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Timing Constraints
• Time measured in cycles or control steps

• Imposing relative timing constraints between operators i and j
− max & min timing constraints
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Constraint Graph Gc(V,E)

MULT delay 
=2

ADD delay = 
1
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Existence of Schedule under Timing Constraints

• Example:
− Assume delays: ADD=1, MULT=2

− Path {1 à 2} has weight 2 £ u12=3, that is

cycle {1,2,1} has weight = -1, OK

− No positive cycles in the graph, so it has a 
consistent schedule

• Upper bound (max timing constraint) is a problem
• Examine each max timing constraint (i, j): 

– Longest weighted path between nodes i and j must 
be £ max timing constraint uij.

– Any cycle in Gc including edge (i, j) must be 
negative or zero

• Necessary and sufficient condition:
– The constraint graph Gc must not have positive 

cycles
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Existence of schedule under timing constraints

• Example: satisfying assignment

−Assume delays: ADD=1, MULT=2
−Feasible assignment:

Vertex    Start time

• v0 à step 1
• v1  à step 1
• v2  à step 3
• v3  à step 1
• v4  à step 5
• vn à step 6
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Conclusion 1: Scheduling

• NP-complete Problem
• Optimal solutions for special cases and ILP
• Heuristics - iterative Improvements 
• Heuristics – constructive
• Various versions of the problem

• Unconstrained, minimum latency
• Resource-constrained, minimum latency
• Timing-constrained, minimum latency
• Latency-constrained, minimum resource

• If all resources are identical, problem is reduced to 
multiprocessor scheduling (Hu’s algorithm)

• Minimum latency multiprocessor problem is intractable
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Scheduling Under Resource Constraints

• Classical scheduling problem

−Fix area bound ¾ minimize latency

• The amount of available resources affects the 

achievable latency

• Dual Problem

−Fix Latency ¾ minimize resources

• Assumptions

−All delays bounded and known
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Minimum Latency Resource Constrained

• Given a set of operations V with integer delays D, a 

partial order on the operations E, and upper bounds 

ak, {k = 1, 2, …, nresources}

• Find an integer labeling of the operations

− F: V ® Z+

−Such that
• ti = F (vi)

• ti ³ tj + dj (vi, vj) ÎE

− |{vi| T(vi) = k and ti £ l < ti + di } | £ ak "k and "steps l
• tn is minimum

VLSI Design Automation77

Scheduling Under Resource Constraints

• Problem is NP Hard

−Also called intractable

• Algorithms

−Exact
• Integer Linear Program

• Hu

−Approximate
• List Scheduling

• Force-Directed Scheduling
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Scheduling – a Combinatorial 
Optimization Problem

• NP-complete Problem
• Optimal solutions for special cases and for ILP

− Integer linear program (ILP)
− Branch and bound

• Heuristics
− iterative Improvements, constructive

• Various versions of the problem
• Minimum latency, unconstrained (ASAP)
• Latency-constrained scheduling (ALAP)
• Minimum latency under resource constraints (ML-RC)
• Minimum resource schedule under latency constraint (MR-LC)

• If all resources are identical, problem is reduced to multiprocessor 
scheduling (Hu’s algorithm)

• In general, minimum latency multiprocessor problem is intractable under resource 
constraint

• Under certain constraints (G(VE) is a tree), greedy algorithm gives optimum solution

VLSI Design Automation79

ILP Model of Scheduling
• Binary decision variables xil

xil = 1 if operation vi starts in step l, 
otherwise xil = 0

i = 0, 1, …, n (operations)
l= 1, 2, … l+1 (steps, with limit l )

• Start time of each operation vi is unique:

ål xil = å
xil

l=ti S

l=ti L

where:
t iS = time of operation I computed with ASAP
t iL = time of operation I computed with ALAP

Note:
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ILP Model of Scheduling - constraints
• Start time for vi:

• Precedence relationships must be satisfied

• Resource constraints must be met
− let upper bound on number of resources of type k be ak
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Latency Minimization - Objective Function

• Function to be minimized:    F = cTt,  where 

• Minimum latency schedule: c = [0, 0, …, 1]T

− F = tn = ål l xnl

− if sink has no mobility (xn,s = 1), any feasible schedule is optimum

• ASAP: c = [1, 1, …, 1]T

− finds earliest start times for all operations åiål xil

− or equivalently:
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Minimum-Latency Scheduling under 
Resource Constraints  (ML-RC)

• Let t be the vector whose entries are start times
t = [ t0, t1,…., tn ]

• Formal ILP model
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Example 1 – multiple resources

• Two types of 
resources

−MULT
−ALU

• Adder, Subtractor

• Comparator

• Each take 1 cycle of execution 

time

• Assume upper bound on 

latency, L = 4 

• Use ALAP and ASAP to derive 

bounds on start times for 

each operator
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Example 1 (cont’d.)

• Start time must be  unique

ål xil = å xil
l=ti S

l=ti L

where:   
t iS = ti computed with ASAP 
t iL = ti computed with ALAP

Recall:
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Example 1 (cont’d.)
• Precedence constraints

−Note: only non-trivial ones listed 
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Example 1 (cont’d.)

• Resource constraints

MULT
a1=2

ALU
a2=2
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Example 1 (cont’d.)

• Objective function (some possibilities): F = cTt

• F1: c = [0, 0, …, 1]T

− Minimum latency schedule
− since sink has no mobility (xn,5 = 1), any feasible schedule is 

optimum
• F2: c = [1, 1, …, 1] T

− finds earliest start times for all operations å i å l xil

− or equivalently:
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Example Solution 1: 
Min. Latency Schedule Under Resource Constraint
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Minimum Resource Scheduling 
under Latency Constraint

• Special case
− Identical operations, each executing in one cycle time

• Given a set of operations {v1,v2,...,vn}, 

− find the minimum number of operation units needed to 
complete the execution in k control steps (MR-LC problem)

• Integer Linear Programming (ILP):
− Let y0 be an integer variable (# units to be minimized)
− for each control step l =1, …, k, define variable xil as

xil =  1, if computation vi is executed in the l-th control step

0, otherwise

− define variable yl (number of units in control step l )

yl = x1l + x2l +  ... + xnl = Si xil
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ILP Scheduling – simple MR-LC 

• Minimize: y0

Subject to:

• Each computation vi can start only once:

xil= 1 for only one value of l (control step) 
• For each precedence relation: 

− If vj has to be executed after vi
xj1 + 2 xj2+ ... + k xjk ³ xi1 + 2 xi2 + ... + k xik+ d(i)

• yl£ y0 for all l= 1,…, k (steps)

• Meaning of  y0:
upper bound on the number of units, to be minimized
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Example 2 - Formulation
n = 6 computations
k = 3  control steps
d(i) = 1

v1 v2 v3

v4

v6

v5

• Dependency constraints: e.g. v4 executes after v1

x41 + 2x42+ 3x43 ³ x11 + 2x12 + 3x13 +1
. . .  . . . . etc.

• Resource constraints:
yl = x1l + x2l + x3l+ x4l + x5l + x6l for l = 1,…, 3 (steps)

• Execution constraints:

xi1 + xi2 + xi3 = 1 for i = 1,…, 6
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Example 2 - Solution

• Minimize:   y0

• Subject to:
yl£ y0 for l = 1,…, 3

− Starting time constraints …
− Precedence constraints …

• One possible solution:

y0 = 2
x11 = 1, x21 = 1,
x32 = 1, x42 = 1,
x53 = 1, x63 = 1.   

all other xil = 0

v1 v2

v3v4

v6 v5
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Minimum Resource Scheduling 
under Latency Constraint – general case

• General case: several operation units (resources)

• Given
− vector c = [c1, …, cr] of resource costs (areas)
− vector a = [a1, …, ar] of number of resources (unknown)

• Minimize total cost of resources
min cTa

• Resource constraints are expressed in terms of variables
ak = number of operators of type k
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Example 3 – Min. Resources under Latency Constraint
• Let c = [5, 1]

− MULT costs = 5 units of area, c1 = 5

− ALU costs = 1 unit of area, c2 = 1

• Starting time constraint – as before

• Sequencing constraints - as before

• Resource constraints – similar to previous ones, but expressed in 
terms of unknown variables a1 and a2

a1 = number of multipliers

a2 = number of ALUs (add/sub)
• Objective function:

cTa = 5·a1 + 1·a2
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Example 3 (contd.)

• Resource constraints

MULT

ALU
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Example 3 - Solution

• Minimize

cTa = 5·a1 + 1·a2

• Solution with cost = 12
a1 = 2

a2 = 2
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Precedence-constrained
Multiprocessor Scheduling

• All operations performed by the same type of 

resource

− intractable problem; even if operations have unit delay

−except when the Gc is a tree (then it is optimal and O(n))
• Hu’s algorithm
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Scheduling Under Resource Constraints

• Hu’s Algorithm

−Label vertices with distance from sink

−Greedy strategy

−Exact solution

• Assumptions

• Graph is a forest

• All operations have unit delay

• All operations have the same type
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Hu’s Algorithm

• Simple case of the scheduling problem

− Operations of unit delay
− Operations (and resources) of the same type (“multiprocessor” operation)

• Hu’s algorithm

− Greedy
− Polynomial time and optimal for trees
− Computes lower bound on number of resources for a given latency (MR-

LCS),  or 
− computes lower bound on latency subject to resource constraints (ML-RCS)

• Basic idea:

− Label operations based on their distances from the sink
− Try to schedule nodes with higher labels first

(i.e., most “critical” operations have priority)
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Hu’s Algorithm

• Labeling of nodes
– Label operations based on their distances from the sink

• Notation
– aI = label of node i
– a = maxi ai
– p(j) = # vertices with label j

• Theorem (Hu)
Lower bound on the number of resources to 

complete schedule with latency L is
amin = maxg éå g

j=1 p(a +1- j) / (g+L-a )ù
where g is a positive integer (1 £ g £ a +1)

• In this case: amin= 3
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Hu’s Algorithm
HU (G(V,E), a) {

Label the vertices // label = length of longest path
passing through the vertex

l = 1
repeat {

U = unscheduled vertices in V whose predecessors 
have been scheduled (or have no predecessors)

Select S Í U such that  |S| £ a  and labels in S are maximal
Schedule the S operations at step l by setting

ti=l,  " i: viÎ S;
l = l + 1;

} until vn is scheduled.
}
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Hu’s Algorithm:    Example (a=3)
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Example
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Set step l = 1;
do {

Select s £ a resources with:
- All predecessors scheduled
- Maximal labels

Schedule the s operations at step l
l = l + 1;

} while all operations are not scheduled;

Minimum latency with a = 3 resources

Step 1: Select {v1, v2, v6}

Step 2: Select {v3, v7, v8}

Step 3: Select { v4, v9, v10}

Step 4: Select {v5, v11}
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List Scheduling Algorithms

• Heuristic Method for
− Minimum latency subject to resource bound
− Minimum resource subject to latency bound

• Greedy strategy
• General Graphs
• Use priority list heuristics

− Longest path to sink
− Longest path to timing constraint

• Similar to Hu’s algorithm
− Operation selection decided by criticality
− O(n) time complexity
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List Scheduling Algorithms
• Algorithm 1: Minimize latency under resource constraint  (ML-RC)

− Resource constraint represented by vector a (indexed by resource type)

• Example: two resources, MULT, ADD; a1=1, a2=2

• The candidate operations Ul,k

− those operations of type k whose predecessors have already been scheduled 
early enough so that they are completed at step l:

Ul,k = { vi Í V: type(vi) = k and tj + dj £ l, for all j: (vi, vj) Í E

• The unfinished operations Tl,k

− those operations of type k that started at earlier cycles but whose execution is 
not finished at step l:

Tl,k = { vi Í V: type(vi) = k and ti + di > l

• Priority list
− List operators according to some heuristic urgency measure

− Common priority list: labeled by position on the longest path in decreasing order

• Algorithm 2: Minimize resources under latency constraint  (MR-LC)

VLSI Design Automation106



ML-RC Scheduling: Example (a=[3,1])
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List Scheduling – Example 1a (a=[2,2])
Minimize latency under resource constraint (with d = 1)

• Assumptions
− All operations have unit delay (di =1)

− Resource constraints:

MULT: a1 = 2, ALU: a2 = 2

• Step 1:

− U1,1 = {v1,v2, v6, v8},  select {v1,v2} 
− U1,2 = {v10}, select + schedule

• Step 2:

− U2,1 = {v3,v6, v8},  select {v3,v6} 
− U2,2 = {v11}, select + schedule

• Step 3:

− U3,1 = {v7,v8},  select + schedule

− U3,2 = {v4}, select + schedule

• Step 4:

− U4,2 = {v5,v9},  select + schedule
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List Scheduling – Example 1b (a = [3,1]) 
Minimize latency under resource constraint (with d1=2, d2=1 )

• Assumptions
− Operations have different delay:

delMULT = 2, delALU = 1

− Resource constraints:

MULT: a1 = 3, ALU: a2 = 1

• MUTL          ALU     start time

{v1, v2, v6} v10 1
-- v11 2

{v3, v7, v8} -- 3
-- -- 4

-- v4 5
-- v5 6

-- v9 7
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List Scheduling – Example 2
Minimize resources under latency constraint

• Assumptions

− All operations have unit delay (di =1)
− Latency constraint: L = 4

• Use slack information to guide the 
scheduling
− Schedule operations with slack = 0 first
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List Scheduling - Minimum Latency

List_Sch(G(V, E), a) {
l = 1;
do {

for each resource type k = 1, 2, … nresources {
Determine candidate operations Ul,k;
Determine unfinished operations Tl,k
Select Sk Í Ul,k vertices s.t. |Sk| + |Tl,k| £ ak
Schedule the Sk operations at step l;
}

l = l + 1;
} while vn is not scheduled;
return(t);

}
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Example

• Assumptions

− a1 = 3 multipliers with delay 2

− a2 = 1 ALUs with delay 1
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Example
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List Scheduling - Minimum Resource

List_Sch_Resources(G(V, E), l) {
a = 1;
Compute the latest possible start times tL by ALAP(G(V, E), l)
if (TL

0 < 0) return (f);
l = 1;

do {
foreach resource type k = 1, 2, …, nres { 

Determine candidate operations Ulk;
Compute the slacks {si = tLi - l  " vi Î Ulk
Schedule candidate operations with zero slack and update a
Schedule candidate operations that do not require additional resources;
}

l = l + 1;
} while (vn is not scheduled);
return(t, a);
}
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Example
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Scheduling – a Combinatorial 
Optimization Problem

• NP-complete Problem

• Optimal solutions for special cases (trees) and ILP

• Heuristics 

− iterative Improvements 
− constructive

• Various versions of the problem

• Minimum latency, unconstrained (ASAP)

• Latency-constrained scheduling (ALAP)

• Minimum latency under resource constraints (ML-RC)

• Minimum resource schedule under latency constraint (MR-LC)

• If all resources are identical, problem is reduced to multiprocessor 
scheduling (Hu’s algorithm)

• Minimum latency multiprocessor problem is intractable for general graphs

• For trees greedy algorithm gives optimum solution
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Force Directed Scheduling

• Heuristics scheduling methods

−Minimum latency subject to resource constraints
• A variation of list scheduling where the force is used as a priority 

function

−Minimum resource subject to latency constraint
• Schedule one operation at a time

• Goal

−Achieve uniform distribution of operations across 
schedule steps
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Force-Directed Scheduling

• Definitions

−Operations interval, computed using ASAP and ALAP
• Mobility plus one

−Operation Probability pi(l) 
• Probability of an operation to execute in a given step

• 1/(mobility+1) inside interval; 0 elsewhere

−Operation type distribution, qk(l)

−Sum of the operations probability for each type
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Example
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FDS: Example 
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ASAP Schedule ALAP Schedule

mobility of operations vi ; i = 1, 2, 3, 4, 5, is zero
mobility of operations {v6, v7} is one
mobility of remaining nodes is two
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Example

v1 has zero mobility Þ p1(1) = 1; p1(2) = p1(3) = 
p1(4) = 0 

v2 has zero mobility Þ p2(1) = 1; p2(2) = p2(3) = 
p2(4) = 0 

v6 has mobility one.  Time frame is [1, 2] 
Þ

p6(1)=  p6(2) = 0.5
p6(3) = p6(4) = 0 

v8 has mobility two.  Time frame is [1, 3] 
Þ

p8(1)=  p8(2) = p6(3) = 0.3
p8(4) = 0 

Type distribution for the multiplier (k = 1) at step 1 is q1(1) = 1 + 1 + 0.5 + 0.3 = 2.8
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Example: Distribution Graph
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Force

• Used as a priority function and related to concurrency
− Sort operations for least force

• Mechanical analogy
− Force = constant x displacement

− Constant = operation-type distribution
− displacement = change in probability

• Self-Force
− Sum of forces to other steps
− Self force operation vi in step l:

• Successor force
− Related to the successors
− Delaying an operation implies delaying its successors
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Example: operation v6

• It can be scehduled in the first two steps

−p(1) = 0.5; p(2) = 0.5; p(3) = 0; p(4) = 0;

• Distribution

−q(1) = 2.8; q(2) = 2.3

• Assign v6 to step 1

−Variation in probability 1 - 0.5 = 0.5 for step 1

−Variation in probability 0 - 0.5 = -0.5 for step 2

• Self-Force

−2.8 * 0.5 -2.3*0.5 = +0.25

VLSI Design Automation124



Example: operation v6
• Assign v6 to step 2

− Variation in probability 0 - 0.5 for step 1
− Variation in probability 1 - 0.5 = 0.5 for step 2

• Self-Force
− -2.8*0.5+ 2.3*0.5= -0.25

• Successor force
− Operation v7 assigned to step 3

− 2.3 * (0 - 0.5) + 0.8 * (1 - 0.5) = - 0.75

• Total Force is -1

• Conclusion
− Least force is for step 2
− Assigning v6 to step 2 reduces concurrency
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FDS Algorithm

FDS( G(V, E), l) {
do {

Compute time frames;
Compute the operation and type probabilities;
Compute the self-forces, predecessor/successor forces and total 

forces;
Schedule the operation with least force and update the time-frame:

} while (not all operations are scheduled);
return (t);
} 
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