
VLSI DESIGN AUTOMATION
HIGH-LEVEL SYNTHESIS

Instructor : Haidar M. Harmanani

Fall 2020

1 VLSI Design Automation

Hardware Synthesis
• Starts from an abstract

behavioral description

• Generates an RTL
description

• Need to restrict the target
hardware – otherwise search
space is too large

VLSI Design Automation2

P1 P2

P3

CPU ASIC

P1 P2 & P3

Hardware Synthesis

• How is the behavior specified?

−Natural languages

−C/C++

−VHDL/Verilog

• What is the target architecture

of the ASIC?

3 VLSI Design Automation

P1 P2

P3

CPU ASIC

P1 P2 & P3

VLSI Design Tools

• Design Capturing/Entry

• Analysis and Characterization

• Synthesis/Optimization

−Physical (Floor planning, Placement, Routing)

−Logic (FSM, Retiming, Sizing, DFT)

−High Level(RTL, Behavioral)

• Management

4 VLSI Design Automation

Design Methodology Progress

5 VLSI Design Automation

Capture and Simulate

Describe and Synthesis

Specify and ???

Design Space Exploration

6 VLSI Design Automation

Arch I

Arch II

Arch III

Delay

Area

7 VLSI Design Automation

Productivity

Re-Targetability

Correctness

Why Synthesis?

Unsynthesizability

Performance Loss

Inertial

Why not Synthesis?

8 VLSI Design Automation

Structural Behavioral

Physical

X’tor

Gate

RTL

Block

Boolean

FSM

Algorithm

GDSII

Placement

Floorplan
Y-Chart
Dan D Gajski

9 VLSI Design Automation

Structural Behavioral

Physical

X’tor

Gate

RTL

Block

Boolean

FSM

Algorithm

GDSII

Placement

Floorplan

Layout
Synthesis

10 VLSI Design Automation

Structural Behavioral

Physical

X’tor

Gate

RTL

Block

Boolean

FSM

Algorithm

GDSII

Placement

Floorplan

Logic
Synthesis

11 VLSI Design Automation

Structural Behavioral

Physical

X’tor

Gate

RTL

Block

Boolean

FSM

Algorithm

GDSII

Placement

Floorplan

High-Level
Synthesis

High Level Synthesis (HLS)

• The process of converting a high-level description

of a design to a netlist

− Input:
• Behavioral description of a system

• A set of constraints

− Area constraints (e.g., # modules of a certain type)

− Delay constraints (e.g., set of operations should finish in l
clock cycles)

−Output:
• Operation scheduling (time) and binding (resource)

• Control generation and detailed interconnections

12 VLSI Design Automation

High Level Synthesis

13 VLSI Design Automation

CDFG

Parsing

Transformation

Synthesis

Structural
RTL

Behavioral
Description

What Went Wrong?

• Too much emphasis on incremental work on

algorithms and point tools

• Unrealistic assumption on component capability,

architectures, timing, etc

• Lack of quality-measurement from the low level

• Too much promising on fully automation (silicon

compiler??)

14 VLSI Design Automation

Essential Issues

• Behavioral Specification Languages

• Target Architectures

• Intermediate Representation

• Operation Scheduling

• Allocation/Binding

• Control Generation

15 VLSI Design Automation

Behavioral Specification Languages

• Add hardware-specific constructs to existing

languages

−HardwareC

• Popular HDL

−Verilog, VHDL

• Synthesis-oriented HDL

−UDL/I

16 VLSI Design Automation

Target Architectures

• Bus-based

• Multiplexer-based

• Register file

• Pipelined

• RISC, VLIW

• Interface Protocol

17 VLSI Design Automation

Hardware Model

• Data path

−Network of functional units, registers, multiplexers and
buses

• Control

−Takes care of having the data present at the right place
at a specific time

−Takes care of presenting the right instructions to a
programmable unit

• Often high-level synthesis concentrates on data

path synthesis

18 VLSI Design Automation

Hardware Model - Components

• Most synthesis systems are targeted towards

synchronous hardware

• Functional units:

−Can perform one or more computations

−Addition, multiplication, comparison, ALU, etc.

• Registers:

−Store inputs, intermediate results and outputs

−May be organized as a register file

19 VLSI Design Automation

Hardware Model - Interconnection

• Multiplexers:

−Select one output from several inputs

• Busses:

−Connection shared between several components

−Only one component can write data at a specific time

−Exclusive writing may be controlled by tri-state drivers

20 VLSI Design Automation

Hardware Model – Parameters

• Clocking strategy

−Single or multiple phase clocks

• Interconnect

−Allowing or disallowing busses

• Clocking of functional units

−Multicycle operations

−Chaining

−Pipelined units

21 VLSI Design Automation

Hardware Model – Example

22 VLSI Design Automation

FSM with Data Path
(FSMD)

23 VLSI Design Automation

FSM Data
Path

FSM Data
Path FSM Data

Path

Interactive FSMDs

Intermediate Representation

24 VLSI Design Automation

* *
+

Control Flow Graph

Data Flow Graph

Scheduling (Temporal Binding)

• Time & Resource Tradeoff

• Time-Constrained

− Integer Linear Programming (ILP)

−Force-Directed

• Resource-Constrained

−List Scheduling

• Other Heuristics

−Simulated Annealing, Tabu Search, ...

25 VLSI Design Automation

Allocation/Binding

26 VLSI Design Automation

Functional UnitsOperations

StorageVariables
Signals

Bus/Wire/MuxData Transfers

Controller Specification Generation

27 VLSI Design Automation

Scheduled
CDFG

Allocated
Datapath

Micro-Operations
for

Every Control Step

HLS Quality Measures

• Performance

• Area Cost

• Power Consumption

• Testability

• Reusability

28 VLSI Design Automation

Hardware Variations

• Functional Units

−Pipelined, Multi-Cycle, Chained, Multi-Function

• Storage

−Register, RF, Multi-Ported, RAM, ROM, FIFO, Distributed

• Interconnect

−Bus, Segmented Bus, Mux, Protocol-Based

29 VLSI Design Automation

Functional Unit Variations

30 VLSI Design Automation

+ **

*
*

-
+

Step 1

Step 2

Step 3

Step 4

+
+
+

Storage/Interconnect Variations

31 VLSI Design Automation

RF

FU

FU

RF
Segmented
Buses

Distributed
FIFO

Mux

Chaining

Multi-Port

PART I: SYNTHESIS

32 VLSI Design Automation

High-Level Synthesis Compilation Flow

33 VLSI Design Automation

Lex

Parse

Compilation
front-end

Behavioral
Optimization

Intermediate
form

Arch synth

Logic synth

Lib Binding

HLS backend

x = a + b ´ c + d

+
+

´

a b c d

+

+ ´

a d b c

Behavioral Optimization

• Techniques used in software compilation
− Expression tree height reduction

− Constant and variable propagation

− Common sub-expression elimination

− Dead-code elimination

− Operator strength reduction (e.g., *4 à << 2)

• Typical Hardware transformations
− Conditional expansion

• If (c) then x=A else x=B
è compute A and B in parallel, x=(C)?A:B

− Loop expansion

• Instead of three iterations of a loop, replicate the loop body three times

34 VLSI Design Automation

A

B x

c

Architectural Synthesis

• Deals with “computational” behavioral descriptions
− Behavior as sequencing graph data flow graph DFG)

− Hardware resources as library elements
• Pipelined or non-pipelined

• Resource performance in terms of execution delay

− Constraints on operation timing

− Constraints on hardware resource availability

• Objective
− Generate a synchronous, single-phase clock circuit
− Might have multiple feasible solutions (explore tradeoff)

− Satisfy constraints, minimize objective:
• Maximize performance subject to area constraint

• Minimize area subject to performance constraints

35 VLSI Design Automation

Architectural Optimization

• Optimization in view of design space flexibility

• A multi-criteria optimization problem:

− Determine schedule f and binding b.
− Under area A, latency l and cycle time t objectives
− Find non-dominated points in solution space

• Solution space tradeoff curves:

− Non-linear, discontinuous
− Area/latency / cycle time (more?)
− Evaluate (estimate) cost functions

• Unconstrained optimization problems for resource dominated

circuits:

− Min area: solve for minimal binding
− Min latency: solve for minimum l scheduling

36 VLSI Design Automation

Synthesis Methodology

37 VLSI Design Automation

implementationdesignspecification

Physical domain

Mathematical domain

specification

create a model
of the physical
problem

synthesis

create an
alogorithm to solve
the problem

implementation

Transform the
optimized
model back to
the physical
domain

Input Format

• Input

−Behavior described in textual form

−Conventional programming language

−Hardware description language (HDL)

• Has to be parsed and transformed into an internal

representation

• Conventional compiler techniques are used

38 VLSI Design Automation

Internal Representation

39 VLSI Design Automation

vertex (node): represent computation

edge: represents precedence relations

• Data-flow graph (DFG)
– Used by most systems
–May or may not contain information on

control flow

Data Flow

40 VLSI Design Automation

x := a * b;
y := c + d;
z := x + y;

a b c d

x

*

y

+

z

+

DFG Semantics

41 VLSI Design Automation

a b c d

x

*

y

+

z

+

Example – Data Flow Graph of DiffEq

• Solve the second order differential equation

− y´´ + 3zy´+ 3y = 0

• Iterative solution

42 VLSI Design Automation

While (z<a) {
z1 := z + dz;
u1 := u – (3*z*u*dz) – (3*y*dz);
y1 := y + (u*dz);
z := z1; u := u1; y := y1;

}

Example - Result

43 VLSI Design Automation

+

u1

-

*

-

*

*

* *

* + <

u dz 3 z 3 y udz z dz

y1 ctrl

High-Level Synthesis

44 VLSI Design Automation

a b c d

x y

+

z

+

*

High-Level Synthesis Tasks

• Scheduling

−Determine for each operation the time at which it should
be performed such that no precedence contraint is
violated

• Allocation

−Specify the hardware resources that will be necessary

• Assignment

−Provide a mapping from each operation to a specific
functional unit and from each variable to a register

45 VLSI Design Automation

High-Level Synthesis Tasks

• Scheduling, allocation and assignment are strongly

interrelated

−Sometimes solved together but often separately!

• Scheduling is NP-complete

−Heuristics have to be used!

• Datapath allocation involves various tasks that are

also NP-complete

46 VLSI Design Automation

PART II: SCHEDULING

47 VLSI Design Automation

Algorithm Description à Data Flow Graph

48 VLSI Design Automation

Scheduling

• Definition
− Determine start times for behavioral operators while satisfying

timing, power, testability, and/or resource constraints
• Input

− Control DFG
− Constraints

• Cycle Time
• Operations delays expressed in cycles

• Output
− Temporal ordering of individual operations

• Goal
− Exploit parallelism to achieve fastest design while meeting

contsraints
• Area/latency trade-off

VLSI Design Automation49

Example 1

*

-

*

*

**

-

+

*

<

+

*

-

*

*

**

-

+

*

<

+Time 1

Time 2

Time 3

Time 4

Input DFG Scheduled DFG

VLSI Design Automation50

Example 2

*

-

*

*

**

-

+

*

<

+

*-

**

**

- +

*

<

+Time 1

Time 2

Time 3

Time 4

Input DFG Scheduled DFG

VLSI Design Automation51

Taxonomy

• Unconstrained Scheduling

• Scheduling with timing constraints
− Latency
− Detailed Timing Constraints

• Scheduling with resource constraints

• Related Issues
− Pipelining
− Chaining
− Multicycling
− Synchronization

VLSI Design Automation52

Minimum-Latency Unconstrained Scheduling

• Problem Description
− Given a set of operations with delays D and a partial order on

the operations E, find an integer labeling j: V ® Z+ of the
operations such that:

• ti = j(vi) and ti ³ tj + dj

• tn is minimum

• Simplest model
− Operations have bounded delays in cycles
− No constraints or bounds on area

• Goal
− Minimize latency

VLSI Design Automation53

ASAP Scheduling

ASAP(G(V, E)) {
Schedule v0 by setting t0 = 1
do {

Select a vertex vi whose predessors are all scheduled
Schedule vi by setting ti = max tj + dj

} while (vn is not scheduled
return(t)

}

VLSI Design Automation54

ASAP Scheduling Algorithm

for each vi Î V do
if Pred = f {

Ei = 1
V = V - {vi}

else
Ei = 0

}

While V ¹ f do
for each node vi Î V {

if all_pred_scheduled(vi, E) + 1 {
Ei = max(predvi, E) + 1
V = V - {vi}

}
}

Schedule an operation Oi into the earliest possible control step

Determine the nodes that have
all their predessors
scheduled and assign them to
the earliest possible
state, max (Predvi, E) + 1

Assign the nodes that do not have any
predessors to state s1 and the rest to state s0

VLSI Design Automation55

Example

*

-

*

*

**

-

+

*

<

+Time 1

Time 2

Time 3

Time 4

ASAP DFG

2

3

4

5

6 8

9

10

7 11

1

VLSI Design Automation56

Related Issues: Multicycle Operations

• Real functional units have different propagation
delays based on their design

−A floating point adder is slower than a fixed point adder

• Operations may not finish in one time step

Þ Increase clock cycle to accommodate slowest design
unit

• Slow units, with propagation delay shorter than the clock cycle,
remain idle during part of the clock cycle

ÞAn alternative is to shorter the clock period to allow fast
operations to execute in one clock cycle

• Slower operations, multicycle operations, are scheduled across
two or more control steps

VLSI Design Automation57

Related Issues: Multicycle Operations

• Tradeoff

−Faster latency and Shorter clock cycle

−Need latches to hold operands in front of the multicycle
units to hold operands until the result is available in the
next clock cycle(s)

−Larger number of control steps
• Bigger controller

+
*

+

Step i

Step i + 1

VLSI Design Automation58

Related Issues: Chaining

• Allow two or more operations to be performed

serially within one step

• Result is fed directly to the input of some other

Functional unit

+
*

+
Step i

VLSI Design Automation59

Related Issues: Pipelining

• Another alternative is to use pipelined functional
units

−An effective technique for increasing Parallelism
−Two multipliers can share the same two stage pipelined

multiplier despite the fact that the two operations are
executing concurrently

• Each multiplier uses a different stage of the pipelined multiplier
− One pipelined multiplier is needed instead of two

*
Step i

Step i + 1

*

VLSI Design Automation60

Related Issues: Conditionals

• Conditionals result in several branches that are

mutually exclusive

−During execution, only one branch gets executed based
on the outcome of an evaluated condition

• An effective scheduling algorithm shares resources

among mutual exclusive operations

VLSI Design Automation61

Related Issues: Conditionals

• Schedule both multiplications in the same clock cycle
even if one multiplier is available in each step

a := a - 1;
if (a < 0)

b := d * c;
else

b := a * c;
c := b + r;

a : = a - 1

a < 0

b := d * c b := a * c

c := b + r

VLSI Design Automation62

ALAP Scheduling

ALAP(G(V, E), “l) {
Schedule vn by setting tn = l + 1
do {

Select vertex vi whose successors are all scheduled
Schedule vi by setting ti = min tj - di

} while (v0 is not scheduled)
return(t)

}

VLSI Design Automation63

ALAP Scheduling Algorithm

for each node vi Î V {
if succvi = F {

Li = T;
V = V - {vi}

else
Li = 0

}

while V ¹ F {
for each node vi ¹ V {

if all_pred_sched(vi, L) {
Li = min(succvi, L) - 1;
V = V - {vi};

}
}

}

Assign the nodes that do not have
any
successors to the last possible state

Determine the nodes that have all their
predessors scheduled and assign them
to the latest possible state

Question: How to get
T?

VLSI Design Automation64

Example

*-

**

**

- +

*

<

+

Time 1

Time 2

Time 3

Time 4

ALAP DFG

2

3

4

5

6

8

9

107

11

1

VLSI Design Automation65

General Remarks

• ALAP solves a latency-constrained problem

−Latency bound can be computed by ASAP

• Given a schedule, can we determine the number of

functional units required to implement the design?

VLSI Design Automation66

Mobility

• Mobility

−Defined for each operation as the difference between
ALAP and ASAP schedules

−Operations with zero mobility are operations on the
critical path ({v1 ,v2, v3, v4, v5}

−Operations with mobility one are {v6, v7}

−Operations with mobility two are {v6, v9 , v10 , v11}

• Question

−How can we use mobility to improve our scheduling
algorithms?

VLSI Design Automation67

Detailed Timing Constraints Scheduling

• Motivation

−Control over operation start time

• Procedure

−Start with a CDFG

−Add forward edges for minimum constraints
• Edge (vi, vj) with weight lij Þ tj ³ ti + lij

−Add backward edges for maximum constraints
• Edge (vj, vi) with weight -uij Þ tj £ ti + uij since tj £ ti + uij Þ ti ³ tj -

uij

VLSI Design Automation68

Sequencing Graph

VLSI Design Automation69

Sequencing Graph

• Add source and sink nodes (NOP) to the DFG

*

* * + <

* * * + *

NOP

* * + <

* * * +

NOP
Data Flow Graph (DFG)

Sequencing Graph
VLSI Design Automation70

Timing Constraints
• Time measured in cycles or control steps

• Imposing relative timing constraints between operators i and j
− max & min timing constraints

VLSI Design Automation71

Constraint Graph Gc(V,E)

MULT delay
=2

ADD delay =
1

VLSI Design Automation72

Existence of Schedule under Timing Constraints

• Example:
− Assume delays: ADD=1, MULT=2

− Path {1 à 2} has weight 2 £ u12=3, that is

cycle {1,2,1} has weight = -1, OK

− No positive cycles in the graph, so it has a
consistent schedule

• Upper bound (max timing constraint) is a problem
• Examine each max timing constraint (i, j):

– Longest weighted path between nodes i and j must
be £ max timing constraint uij.

– Any cycle in Gc including edge (i, j) must be
negative or zero

• Necessary and sufficient condition:
– The constraint graph Gc must not have positive

cycles

VLSI Design Automation73

Existence of schedule under timing constraints

• Example: satisfying assignment

−Assume delays: ADD=1, MULT=2
−Feasible assignment:

Vertex Start time

• v0 à step 1
• v1 à step 1
• v2 à step 3
• v3 à step 1
• v4 à step 5
• vn à step 6

VLSI Design Automation74

Conclusion 1: Scheduling

• NP-complete Problem
• Optimal solutions for special cases and ILP
• Heuristics - iterative Improvements
• Heuristics – constructive
• Various versions of the problem

• Unconstrained, minimum latency
• Resource-constrained, minimum latency
• Timing-constrained, minimum latency
• Latency-constrained, minimum resource

• If all resources are identical, problem is reduced to
multiprocessor scheduling (Hu’s algorithm)

• Minimum latency multiprocessor problem is intractable

VLSI Design Automation75

Scheduling Under Resource Constraints

• Classical scheduling problem

−Fix area bound ¾ minimize latency

• The amount of available resources affects the

achievable latency

• Dual Problem

−Fix Latency ¾ minimize resources

• Assumptions

−All delays bounded and known

VLSI Design Automation76

Minimum Latency Resource Constrained

• Given a set of operations V with integer delays D, a

partial order on the operations E, and upper bounds

ak, {k = 1, 2, …, nresources}

• Find an integer labeling of the operations

− F: V ® Z+

−Such that
• ti = F (vi)

• ti ³ tj + dj (vi, vj) ÎE

− |{vi| T(vi) = k and ti £ l < ti + di } | £ ak "k and "steps l
• tn is minimum

VLSI Design Automation77

Scheduling Under Resource Constraints

• Problem is NP Hard

−Also called intractable

• Algorithms

−Exact
• Integer Linear Program

• Hu

−Approximate
• List Scheduling

• Force-Directed Scheduling

VLSI Design Automation78

Scheduling – a Combinatorial
Optimization Problem

• NP-complete Problem
• Optimal solutions for special cases and for ILP

− Integer linear program (ILP)
− Branch and bound

• Heuristics
− iterative Improvements, constructive

• Various versions of the problem
• Minimum latency, unconstrained (ASAP)
• Latency-constrained scheduling (ALAP)
• Minimum latency under resource constraints (ML-RC)
• Minimum resource schedule under latency constraint (MR-LC)

• If all resources are identical, problem is reduced to multiprocessor
scheduling (Hu’s algorithm)

• In general, minimum latency multiprocessor problem is intractable under resource
constraint

• Under certain constraints (G(VE) is a tree), greedy algorithm gives optimum solution

VLSI Design Automation79

ILP Model of Scheduling
• Binary decision variables xil

xil = 1 if operation vi starts in step l,
otherwise xil = 0

i = 0, 1, …, n (operations)
l= 1, 2, … l+1 (steps, with limit l)

• Start time of each operation vi is unique:

ål xil = å
xil

l=ti S

l=ti L

where:
t iS = time of operation I computed with ASAP
t iL = time of operation I computed with ALAP

Note:

VLSI Design Automation80

ILP Model of Scheduling - constraints
• Start time for vi:

• Precedence relationships must be satisfied

• Resource constraints must be met
− let upper bound on number of resources of type k be ak

VLSI Design Automation81

Latency Minimization - Objective Function

• Function to be minimized: F = cTt, where

• Minimum latency schedule: c = [0, 0, …, 1]T

− F = tn = ål l xnl

− if sink has no mobility (xn,s = 1), any feasible schedule is optimum

• ASAP: c = [1, 1, …, 1]T

− finds earliest start times for all operations åiål xil

− or equivalently:

VLSI Design Automation82

Minimum-Latency Scheduling under
Resource Constraints (ML-RC)

• Let t be the vector whose entries are start times
t = [t0, t1,…., tn]

• Formal ILP model

VLSI Design Automation83

Example 1 – multiple resources

• Two types of
resources

−MULT
−ALU

• Adder, Subtractor

• Comparator

• Each take 1 cycle of execution

time

• Assume upper bound on

latency, L = 4

• Use ALAP and ASAP to derive

bounds on start times for

each operator

VLSI Design Automation84

Example 1 (cont’d.)

• Start time must be unique

ål xil = å xil
l=ti S

l=ti L

where:
t iS = ti computed with ASAP
t iL = ti computed with ALAP

Recall:

VLSI Design Automation85

Example 1 (cont’d.)
• Precedence constraints

−Note: only non-trivial ones listed

VLSI Design Automation86

Example 1 (cont’d.)

• Resource constraints

MULT
a1=2

ALU
a2=2

VLSI Design Automation87

Example 1 (cont’d.)

• Objective function (some possibilities): F = cTt

• F1: c = [0, 0, …, 1]T

− Minimum latency schedule
− since sink has no mobility (xn,5 = 1), any feasible schedule is

optimum
• F2: c = [1, 1, …, 1] T

− finds earliest start times for all operations å i å l xil

− or equivalently:

VLSI Design Automation88

Example Solution 1:
Min. Latency Schedule Under Resource Constraint

VLSI Design Automation89

Minimum Resource Scheduling
under Latency Constraint

• Special case
− Identical operations, each executing in one cycle time

• Given a set of operations {v1,v2,...,vn},

− find the minimum number of operation units needed to
complete the execution in k control steps (MR-LC problem)

• Integer Linear Programming (ILP):
− Let y0 be an integer variable (# units to be minimized)
− for each control step l =1, …, k, define variable xil as

xil = 1, if computation vi is executed in the l-th control step

0, otherwise

− define variable yl (number of units in control step l)

yl = x1l + x2l + ... + xnl = Si xil

VLSI Design Automation90

ILP Scheduling – simple MR-LC

• Minimize: y0

Subject to:

• Each computation vi can start only once:

xil= 1 for only one value of l (control step)
• For each precedence relation:

− If vj has to be executed after vi
xj1 + 2 xj2+ ... + k xjk ³ xi1 + 2 xi2 + ... + k xik+ d(i)

• yl£ y0 for all l= 1,…, k (steps)

• Meaning of y0:
upper bound on the number of units, to be minimized

VLSI Design Automation91

Example 2 - Formulation
n = 6 computations
k = 3 control steps
d(i) = 1

v1 v2 v3

v4

v6

v5

• Dependency constraints: e.g. v4 executes after v1

x41 + 2x42+ 3x43 ³ x11 + 2x12 + 3x13 +1
. etc.

• Resource constraints:
yl = x1l + x2l + x3l+ x4l + x5l + x6l for l = 1,…, 3 (steps)

• Execution constraints:

xi1 + xi2 + xi3 = 1 for i = 1,…, 6

VLSI Design Automation92

Example 2 - Solution

• Minimize: y0

• Subject to:
yl£ y0 for l = 1,…, 3

− Starting time constraints …
− Precedence constraints …

• One possible solution:

y0 = 2
x11 = 1, x21 = 1,
x32 = 1, x42 = 1,
x53 = 1, x63 = 1.

all other xil = 0

v1 v2

v3v4

v6 v5

VLSI Design Automation93

Minimum Resource Scheduling
under Latency Constraint – general case

• General case: several operation units (resources)

• Given
− vector c = [c1, …, cr] of resource costs (areas)
− vector a = [a1, …, ar] of number of resources (unknown)

• Minimize total cost of resources
min cTa

• Resource constraints are expressed in terms of variables
ak = number of operators of type k

VLSI Design Automation94

Example 3 – Min. Resources under Latency Constraint
• Let c = [5, 1]

− MULT costs = 5 units of area, c1 = 5

− ALU costs = 1 unit of area, c2 = 1

• Starting time constraint – as before

• Sequencing constraints - as before

• Resource constraints – similar to previous ones, but expressed in
terms of unknown variables a1 and a2

a1 = number of multipliers

a2 = number of ALUs (add/sub)
• Objective function:

cTa = 5·a1 + 1·a2

VLSI Design Automation95

Example 3 (contd.)

• Resource constraints

MULT

ALU

VLSI Design Automation96

Example 3 - Solution

• Minimize

cTa = 5·a1 + 1·a2

• Solution with cost = 12
a1 = 2

a2 = 2

VLSI Design Automation97

Precedence-constrained
Multiprocessor Scheduling

• All operations performed by the same type of

resource

− intractable problem; even if operations have unit delay

−except when the Gc is a tree (then it is optimal and O(n))
• Hu’s algorithm

98 VLSI Design Automation

Scheduling Under Resource Constraints

• Hu’s Algorithm

−Label vertices with distance from sink

−Greedy strategy

−Exact solution

• Assumptions

• Graph is a forest

• All operations have unit delay

• All operations have the same type

VLSI Design Automation99

Hu’s Algorithm

• Simple case of the scheduling problem

− Operations of unit delay
− Operations (and resources) of the same type (“multiprocessor” operation)

• Hu’s algorithm

− Greedy
− Polynomial time and optimal for trees
− Computes lower bound on number of resources for a given latency (MR-

LCS), or
− computes lower bound on latency subject to resource constraints (ML-RCS)

• Basic idea:

− Label operations based on their distances from the sink
− Try to schedule nodes with higher labels first

(i.e., most “critical” operations have priority)

VLSI Design Automation100

Hu’s Algorithm

• Labeling of nodes
– Label operations based on their distances from the sink

• Notation
– aI = label of node i
– a = maxi ai
– p(j) = # vertices with label j

• Theorem (Hu)
Lower bound on the number of resources to

complete schedule with latency L is
amin = maxg éå g

j=1 p(a +1- j) / (g+L-a)ù
where g is a positive integer (1 £ g £ a +1)

• In this case: amin= 3

VLSI Design Automation101

Hu’s Algorithm
HU (G(V,E), a) {

Label the vertices // label = length of longest path
passing through the vertex

l = 1
repeat {

U = unscheduled vertices in V whose predecessors
have been scheduled (or have no predecessors)

Select S Í U such that |S| £ a and labels in S are maximal
Schedule the S operations at step l by setting

ti=l, " i: viÎ S;
l = l + 1;

} until vn is scheduled.
}

VLSI Design Automation102

Hu’s Algorithm: Example (a=3)

[©Gupta]VLSI Design Automation103

Example

*

-

*

*

**

-

+

*

<

+

0

Set step l = 1;
do {

Select s £ a resources with:
- All predecessors scheduled
- Maximal labels

Schedule the s operations at step l
l = l + 1;

} while all operations are not scheduled;

Minimum latency with a = 3 resources

Step 1: Select {v1, v2, v6}

Step 2: Select {v3, v7, v8}

Step 3: Select { v4, v9, v10}

Step 4: Select {v5, v11}

2

3

5

4

7

61 8

9

10

11

VLSI Design Automation104

List Scheduling Algorithms

• Heuristic Method for
− Minimum latency subject to resource bound
− Minimum resource subject to latency bound

• Greedy strategy
• General Graphs
• Use priority list heuristics

− Longest path to sink
− Longest path to timing constraint

• Similar to Hu’s algorithm
− Operation selection decided by criticality
− O(n) time complexity

VLSI Design Automation105

List Scheduling Algorithms
• Algorithm 1: Minimize latency under resource constraint (ML-RC)

− Resource constraint represented by vector a (indexed by resource type)

• Example: two resources, MULT, ADD; a1=1, a2=2

• The candidate operations Ul,k

− those operations of type k whose predecessors have already been scheduled
early enough so that they are completed at step l:

Ul,k = { vi Í V: type(vi) = k and tj + dj £ l, for all j: (vi, vj) Í E

• The unfinished operations Tl,k

− those operations of type k that started at earlier cycles but whose execution is
not finished at step l:

Tl,k = { vi Í V: type(vi) = k and ti + di > l

• Priority list
− List operators according to some heuristic urgency measure

− Common priority list: labeled by position on the longest path in decreasing order

• Algorithm 2: Minimize resources under latency constraint (MR-LC)

VLSI Design Automation106

ML-RC Scheduling: Example (a=[3,1])

VLSI Design Automation107

List Scheduling – Example 1a (a=[2,2])
Minimize latency under resource constraint (with d = 1)

• Assumptions
− All operations have unit delay (di =1)

− Resource constraints:

MULT: a1 = 2, ALU: a2 = 2

• Step 1:

− U1,1 = {v1,v2, v6, v8}, select {v1,v2}
− U1,2 = {v10}, select + schedule

• Step 2:

− U2,1 = {v3,v6, v8}, select {v3,v6}
− U2,2 = {v11}, select + schedule

• Step 3:

− U3,1 = {v7,v8}, select + schedule

− U3,2 = {v4}, select + schedule

• Step 4:

− U4,2 = {v5,v9}, select + schedule

*

NOP

*

*

<

*

*

+

NOP

1 2

3

4

5

6

7
*

8

+ 9

10

11

0

n

T1

T2

T3

T4

VLSI Design Automation108

List Scheduling – Example 1b (a = [3,1])
Minimize latency under resource constraint (with d1=2, d2=1)

• Assumptions
− Operations have different delay:

delMULT = 2, delALU = 1

− Resource constraints:

MULT: a1 = 3, ALU: a2 = 1

• MUTL ALU start time

{v1, v2, v6} v10 1
-- v11 2

{v3, v7, v8} -- 3
-- -- 4

-- v4 5
-- v5 6

-- v9 7

*

NOP

<

+

NOP

1 2

3

4

5

6

7 8

+ 9

10

11

n

* *

* * *

T1

T2

T3

T4

T5

T6

T7

VLSI Design Automation109

List Scheduling – Example 2
Minimize resources under latency constraint

• Assumptions

− All operations have unit delay (di =1)
− Latency constraint: L = 4

• Use slack information to guide the
scheduling
− Schedule operations with slack = 0 first

*

NOP

*

*

<

*

*

+

NOP

1 2

3

4

5

6

7
*

8

+ 9

10

11

0

n

T1

T2

T3

T4

VLSI Design Automation110

List Scheduling - Minimum Latency

List_Sch(G(V, E), a) {
l = 1;
do {

for each resource type k = 1, 2, … nresources {
Determine candidate operations Ul,k;
Determine unfinished operations Tl,k
Select Sk Í Ul,k vertices s.t. |Sk| + |Tl,k| £ ak
Schedule the Sk operations at step l;
}

l = l + 1;
} while vn is not scheduled;
return(t);

}

VLSI Design Automation111

Example

• Assumptions

− a1 = 3 multipliers with delay 2

− a2 = 1 ALUs with delay 1

*

-

*

*

**

-

+

*

<

+

Nop

2

3

5

4

7

61 8

9

10

11

Nop

VLSI Design Automation112

Example

*

-

-

+

<

+

Nop

2

3

5

4

7

61

8

9

10

11

Nop

Time 1

Time 2

Time 3

Time 4

Time 5

Time 6

Time 7

**

VLSI Design Automation113

List Scheduling - Minimum Resource

List_Sch_Resources(G(V, E), l) {
a = 1;
Compute the latest possible start times tL by ALAP(G(V, E), l)
if (TL

0 < 0) return (f);
l = 1;

do {
foreach resource type k = 1, 2, …, nres {

Determine candidate operations Ulk;
Compute the slacks {si = tLi - l " vi Î Ulk
Schedule candidate operations with zero slack and update a
Schedule candidate operations that do not require additional resources;
}

l = l + 1;
} while (vn is not scheduled);
return(t, a);
}

VLSI Design Automation114

Example

*-

**

**

- +

*

<

+Time 1

Time 2

Time 3

Time 4

2

3

4

5

6

8

9

10

7

11

1

*

-

*

*

**

-

+

*

<

+

Nop

2

3

5

4

7

61 8

9

10

11

Nop Nop

Nop

VLSI Design Automation115

Scheduling – a Combinatorial
Optimization Problem

• NP-complete Problem

• Optimal solutions for special cases (trees) and ILP

• Heuristics

− iterative Improvements
− constructive

• Various versions of the problem

• Minimum latency, unconstrained (ASAP)

• Latency-constrained scheduling (ALAP)

• Minimum latency under resource constraints (ML-RC)

• Minimum resource schedule under latency constraint (MR-LC)

• If all resources are identical, problem is reduced to multiprocessor
scheduling (Hu’s algorithm)

• Minimum latency multiprocessor problem is intractable for general graphs

• For trees greedy algorithm gives optimum solution

VLSI Design Automation116

Force Directed Scheduling

• Heuristics scheduling methods

−Minimum latency subject to resource constraints
• A variation of list scheduling where the force is used as a priority

function

−Minimum resource subject to latency constraint
• Schedule one operation at a time

• Goal

−Achieve uniform distribution of operations across
schedule steps

VLSI Design Automation117

Force-Directed Scheduling

• Definitions

−Operations interval, computed using ASAP and ALAP
• Mobility plus one

−Operation Probability pi(l)
• Probability of an operation to execute in a given step

• 1/(mobility+1) inside interval; 0 elsewhere

−Operation type distribution, qk(l)

−Sum of the operations probability for each type

VLSI Design Automation118

Example

*

-

*

*

**

-

+

*

<

+

Nop

2

3

5

4

7

61 8

9

10

11

Nop

VLSI Design Automation119

*-

**

**

- +

*

<

+

2

3

4

5

6

8

9

107

11

1

FDS: Example

*

-

*

*

**

-

+

*

<

+Time 1

Time 2

Time 3

Time 4

2

3

4

5

6 8

9

10

7 11

1

ASAP Schedule ALAP Schedule

mobility of operations vi ; i = 1, 2, 3, 4, 5, is zero
mobility of operations {v6, v7} is one
mobility of remaining nodes is two

VLSI Design Automation120

Example

v1 has zero mobility Þ p1(1) = 1; p1(2) = p1(3) =
p1(4) = 0

v2 has zero mobility Þ p2(1) = 1; p2(2) = p2(3) =
p2(4) = 0

v6 has mobility one. Time frame is [1, 2]
Þ

p6(1)= p6(2) = 0.5
p6(3) = p6(4) = 0

v8 has mobility two. Time frame is [1, 3]
Þ

p8(1)= p8(2) = p6(3) = 0.3
p8(4) = 0

Type distribution for the multiplier (k = 1) at step 1 is q1(1) = 1 + 1 + 0.5 + 0.3 = 2.8

VLSI Design Automation121

Example: Distribution Graph

1

2

3

4

0 31 2

1

2

3

4

0 31 2

VLSI Design Automation122

Force

• Used as a priority function and related to concurrency
− Sort operations for least force

• Mechanical analogy
− Force = constant x displacement

− Constant = operation-type distribution
− displacement = change in probability

• Self-Force
− Sum of forces to other steps
− Self force operation vi in step l:

• Successor force
− Related to the successors
− Delaying an operation implies delaying its successors

q
km ti

S

ti
L

m
lm

p
i
m

=
å -()(())d

VLSI Design Automation123

Example: operation v6

• It can be scehduled in the first two steps

−p(1) = 0.5; p(2) = 0.5; p(3) = 0; p(4) = 0;

• Distribution

−q(1) = 2.8; q(2) = 2.3

• Assign v6 to step 1

−Variation in probability 1 - 0.5 = 0.5 for step 1

−Variation in probability 0 - 0.5 = -0.5 for step 2

• Self-Force

−2.8 * 0.5 -2.3*0.5 = +0.25

VLSI Design Automation124

Example: operation v6
• Assign v6 to step 2

− Variation in probability 0 - 0.5 for step 1
− Variation in probability 1 - 0.5 = 0.5 for step 2

• Self-Force
− -2.8*0.5+ 2.3*0.5= -0.25

• Successor force
− Operation v7 assigned to step 3

− 2.3 * (0 - 0.5) + 0.8 * (1 - 0.5) = - 0.75

• Total Force is -1

• Conclusion
− Least force is for step 2
− Assigning v6 to step 2 reduces concurrency

VLSI Design Automation125

FDS Algorithm

FDS(G(V, E), l) {
do {

Compute time frames;
Compute the operation and type probabilities;
Compute the self-forces, predecessor/successor forces and total

forces;
Schedule the operation with least force and update the time-frame:

} while (not all operations are scheduled);
return (t);
}

VLSI Design Automation126

