Lecture 2 - Netlist and System Partitioning

Lecture 2 - Netlist and System Partitioning

2.1 Introduction
2.2 Terminology
2.3 Optimization Goals
2.4 Partitioning Algorithms
2.4.1 Kernighan-Lin (KL) Algorithm
2.4.2 Extensions of the Kernighan-Lin Algorithm
2.4.3 Fiduccia-Mattheyses (FM) Algorithm
2.5 Framework for Multilevel Partitioning
2.5.1 Clustering
2.5.2 Multilevel Partitioning
2.6 System Partitioning onto Multiple FPGAs

2.1 Introduction

VLSI Physical Design: From Graph Partitioning to Timing Closure
Chapter 2: Netlist and System Partitioning

2.1 Introduction

Circuit:

Cut c_{a} : four external connections

Block $A \quad$ Block B

Cut c_{b} : two external connections

2.2 Terminology

2.3 Optimization Goals

- Given a graph $G(V, E)$ with $|V|$ nodes and $|E|$ edges where each node $v \in V$ and each edge $e \in E$.
- Each node has area $s(v)$ and each edge has cost or weight $w(e)$.
- The objective is to divide the graph G into k disjoint subgraphs such that all optimization goals are achieved and all original edge relations are respected.

2.3 Optimization Goals

- In detail, what are the optimization goals?
- Number of connections between partitions is minimized
- Each partition meets all design constraints (size, number of external connections..)
- Balance every partition as well as possible
- How can we meet these goals?
- Unfortunately, this problem is NP-hard
- Efficient heuristics are developed in the 1970s and 1980s. They are high quality and in low-order polynomial time.
- Constructive algorithms versus iterative improvement algorithms
- Deterministic versus probabilistic algorithms

Some Terminology

- Partitioning: Dividing bigger circuits into a small number of partitions (top down)
- Clustering: cluster small cells into bigger clusters (bottom up).
- Covering / Technology Mapping: Clustering such that each partitions (clusters) have some special structure (e.g., can be implemented by a cell in a cell library).
- k-way Partitioning: Dividing into k partitions.
- Bipartitioning: 2-way partitioning.
- Bisectioning: Bipartitioning such that the two partitions have the same size.

Circuit Representation

- Netlist:
- Gates: A, B, C, D
- Nets: $\{A, B, C\},\{B, D\},\{C, D\}$
- Hypergraph:
- Vertices: A, B, C, D
- Hyperedges: \{A,B,C\}, \{B,D\}, \{C,D\}
- Vertex label: Gate size/area
- Hyperedge label: Importance of net (weight)

Bi-partitioning problem

- Also known as min cut partitioning
- Number of partitions $=2$
- Minimize the nets crossing the partitions
- Size of the two partitions is equal
- Given a graph with N nodes, calculate the number of different bi-partitions!

Bi-partitioning formulation:

Minimize interconnections between partitions

嚐
Minimum cut:
$\min c\left(x, x^{\prime}\right)$

* minimum bisection: min $c\left(x, x^{\prime}\right)$ with $|x|=\left|x^{\prime}\right|$

滕 minimum ratio-cut: min $\mathbf{c}\left(x, x^{\prime}\right) /\|x\| x{ }^{\prime} \mid$

A Bi-Partitioning Example

Min-cut size=13
Min-Bisection size $=300$
Min-ratio-cut size= 19

Ratio-cut helps to identify natural clusters

VLSI Physical Design: From Graph Partitioning to Timing Closure

Circuit Partitioning Formulation (Cont'd)

- General multi-way partitioning formulation:
- Partitioning a network N into $N_{1}, N_{2}, \ldots, N_{k}$ such that
- Each partition has an area constraint

$$
\sum_{v \in N_{i}} a(v) \leq A_{i}
$$

- Each partition has an I/O constraint

Minimize the total interconn $\left.{ }_{i}, N_{i}\right) \leq I$

$$
\sum_{N_{i}} c\left(N_{i}, N-N_{i}\right)
$$

Iterative Partitioning Algorithms

- Greedy iterative improvement method
[Kernighan-Lin 1970]
[Fiduccia-Mattheyses 1982]
[krishnamurthy 1984]
- Simulated Annealing
[Kirkpartrick-Gelatt-Vecchi 1983]
[Greene-Supowit 1984]

2.1 Introduction

2.2 Terminology
2.3 Optimization Goals
2.4 Partitioning Algorithms
2.4.1 Kernighan-Lin (KL) Algorithm
2.4.2 Extensions of the Kernighan-Lin Algorithm
2.4.3 Fiduccia-Mattheyses (FM) Algorithm
2.5 Framework for Multilevel Partitioning
2.5.1 Clustering
2.5.2 Multilevel Partitioning
2.6 System Partitioning onto Multiple FPGAs

2.4.1 Kernighan-Lin (KL) Algorithm

"An Efficient Heuristic Procedure for Partitioning Graphs," The Bell System Tech. Journal, 49(2):291-307, 1970

Given: A graph with $2 n$ nodes where each node has the same weight.
Goal: A partition (division) of the graph into two disjoint subsets A and B with minimum cut cost and $|A|=|B|=n$.

Example: $n=4$

2.4.1 Kernighan-Lin (KL) Algorithm - Terminology

Cost $D(v)$ of moving a node v
$D(v)=\left|E_{\mathrm{c}}(v)\right|-\left|E_{\mathrm{nc}}(v)\right|$,
where
$E_{c}(v)$ is the set of v 's incident edges that are cut by the cut line, and
$E_{\text {nc }}(v)$ is the set of v 's incident edges that are not cut by the cut line.

High costs ($D>0$) indicate that the node should move, while low costs ($D<0$) indicate that the node should stay within the same partition.

Node 3:

$$
D(3)=3-1=2
$$

Node 7:

$$
D(7)=2-1=1
$$

2.4.1 Kernighan-Lin (KL) Algorithm - Terminology

Gain of swapping a pair of nodes a and b
$\Delta g=D(a)+D(b)-2 * c(a, b)$,

where

- $D(a), D(b)$ are the respective costs of nodes a, b
- $c(a, b)$ is the connection weight between a and b :
 If an edge exists between a and b, then $c(a, b)=$ edge weight (here 1), otherwise, $c(a, b)=0$.

The gain Δg indicates how useful the swap between two nodes will be

The larger Δg, the more the total cut cost will be reduced

2.4.1 Kernighan-Lin (KL) Algorithm - Terminology

Gain of swapping a pair of nodes a and b
$\Delta g=D(a)+D(b)-2 * c(a, b)$,
where

- $D(a), D(b)$ are the respective costs of nodes a, b
- $c(a, b)$ is the connection weight between a and b : If an edge exists between a and b, then $c(a, b)=$ edge weight (here 1), otherwise, $c(a, b)=0$.

$$
\Delta g(3,7)=D(3)+D(7)-2 * c(a, b)=2+1-2=1
$$

=> Swapping nodes 3 and 7 would reduce the cut size by 1

Node 7:
$D(7)=2-1=1$

Node 3:
$D(3)=3-1=2$

2.4.1 Kernighan-Lin (KL) Algorithm - Terminology

Gain of swapping a pair of nodes a and b
$\Delta g=D(a)+D(b)-2^{*} c(a, b)$,

where

- $D(a), D(b)$ are the respective costs of nodes a, b
- $c(a, b)$ is the connection weight between a and b : If an edge exists between a and b, then $c(a, b)=$ edge weight (here 1), otherwise, $c(a, b)=0$.

$$
\Delta g(3,5)=D(3)+D(5)-2 * c(a, b)=2+1-0=3
$$

=> Swapping nodes 3 and 5 would reduce the cut size by 3

2.4.1 Kernighan-Lin (KL) Algorithm - Terminology

Gain of swapping a pair of nodes a and b

The goal is to find a pair of nodes a and b to exchange such that Δg is maximized and swap them.

2.4.1 Kernighan-Lin (KL) Algorithm - Terminology

Maximum positive gain G_{m} of a pass

The maximum positive gain G_{m} corresponds to the best prefix of m swaps within the swap sequence of a given pass.

These m swaps lead to the partition with the minimum cut cost encountered during the pass.
G_{m} is computed as the sum of Δg values over the first m swaps of the pass, with m chosen such that G_{m} is maximized.

$$
G_{m}=\sum_{i=1}^{m} \Delta g_{i}
$$

2.4.1 Kernighan-Lin (KL) Algorithm - One pass

Step 0:

- $\quad V=2 n$ nodes
$-\quad\{A, B\}$ is an initial arbitrary partitioning
Step 1:
- $\quad i=1$
- Compute $D(v)$ for all nodes $v \in V$

Step 2:

- Choose a_{i} and b_{i} such that $\Delta g_{i}=D\left(a_{i}\right)+D\left(b_{i}\right)-2{ }^{*} c\left(a_{i} b_{i}\right)$ is maximized
- Swap and fix a_{i} and b_{i}

Step 3:

- If all nodes are fixed, go to Step 4. Otherwise
- Compute and update D values for all nodes that are connected to a_{i} and b_{i} and are not fixed.
$-\quad i=i+1$
- Go to Step 2

Step 4:

- Find the move sequence $1 \ldots m(1 \leq m \leq i)$, such that $G_{m}=\sum_{i=1}^{m} \Delta g_{i}$ is maximized
$-\quad$ If $G_{m}>0$, go to Step 5. Otherwise, END Step 5:
- Execute m swaps, reset remaining nodes
- Go to Step 1

2.4.1 Kernighan-Lin (KL) Algorithm - Example

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

2.4.1 Kernighan-Lin (KL) Algorithm - Example

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

Costs $D(v)$ of each node:

```
D(1)=1}\quadD(5)=
D(2)=1 D(6)=2
D(3)=2\longleftarrowD(7)=1
Nodes that lead to
maximum gain
D(4)=1}D(8)=
```


2.4.1 Kernighan-Lin (KL) Algorithm - Example

Cut cost: 9
 Not fixed:
 1,2,3,4,5,6,7,8

Costs $D(v)$ of each node:

$D(1)=1 \quad D(5)=1$
$D(2)=1 \quad D(6)=2$
$D(3)=2 \longleftarrow D(7)=1$
$D(4)=1 \quad D(8)=1$
$\Delta g_{1}=2+1-0=3 \longleftarrow$ Gain after node swapping
Swap (3,5)
$G_{1}=\Delta g_{1}=3$ \qquad Gain in the current pass

2.4.1 Kernighan-Lin (KL) Algorithm - Example

Cut cost: 9
Not fixed:
1,2,3,4,5,6,7,8

2.4.1 Kernighan-Lin (KL) Algorithm - Example

Cut cost: 9
Not fixed:
$1,2,3,4,5,6,7,8$

> Cut cost: 6
> Not fixed: $1,2,4,6,7,8$

$D(1)=1$	$D(5)=1$
$D(2)=1$	$D(6)=2$
$D(3)=2$	$D(7)=1$
$D(4)=1$	$D(8)=1$
$\Delta g_{1}=2+1-0=3$	
Swap $(3,5)$	
$G_{1}=\Delta g_{1}=3$	

2.4.1 Kernighan-Lin (KL) Algorithm - Example

Cut cost: 9 Not fixed:
1,2,3,4,5,6,7,8

Cut cost: 6 Not fixed:
 1,2,4,6,7,8

$D(1)=1 \quad D(5)=1$	$D(1)=-1$	$D(6)=2$
$D(2)=1 \quad D(6)=2$	$D(2)=-1$	$D(7)=-1$
$D(3)=2 \quad D(7)=1$	$D(4)=3$	$D(8)=-1$
$D(4)=1 \quad D(8)=1$		
$\Delta g_{1}=2+1-0=3$		
Swap (3,5)		
$\mathrm{G}_{1}=\Delta g_{1}=3$		

2.4.1 Kernighan-Lin (KL) Algorithm - Example

Cut cost: 9
Not fixed:
$1,2,3,4,5,6,7,8$
Cut cost: 6
Not fixed:
1,2,4,6,7,8
$D(1)=1 \quad D(5)=1$
$D(2)=1 \quad D(6)=2$
$D(3)=2 \quad D(7)=1$
$D(4)=1 \quad D(8)=1$
$\Delta g_{1}=2+1-0=3$
Swap $(3,5)$ $G_{1}=\Delta g_{1}=3$

VLSI Physical Design: From Graph Partitioning to Timing Closure
Chapter 2: Netlist and System Partitioning

2.4.1 Kernighan-Lin (KL) Algorithm - Example

Cut cost: 9 Not fixed:
1,2,3,4,5,6,7,8

Cut cost: 1
Not fixed:
$1,2,7,8$
Cut cost: 7 Not fixed:
2,8

$D(1)=-1 \quad D(6)=2$
$D(2)=-1 \quad D(7)=-1$
$D(4)=3 \quad D(8)=-1$
$\Delta g_{2}=3+2-0=5$
Swap $(4,6)$
$G_{2}=G_{1}+\Delta g_{2}=8$

2.4.1 Kernighan-Lin (KL) Algorithm - Example

VLSI Physical Design: From Graph Partitioning to Timing Closure
Chapter 2: Netlist and System Partitioning

2.4.1 Kernighan-Lin (KL) Algorithm - Example

2.4.1 Kernighan-Lin (KL) Algorithm - Example

$D(1)=1$	$D(5)=1$	$D(1)=-1$	$D(6)=2$	$D(1)=-3$	$D(7)=-3$	$D(2)=-1 \quad D(8)=-1$
$D(2)=1$	$D(6)=2$	$D(2)=-1$	$D(7)=-1$	$D(2)=-3 \quad D(8)=-3$		
$D(3)=2$	$D(7)=1$	$D(4)=3 \quad D(8)=-1$				
$D(4)=1 \quad D(8)=1$						
$\begin{aligned} & \Delta g_{1}=2+1-0=3 \\ & \text { Swap }(3,5) \\ & G_{1}=\Delta g_{1}=3 \end{aligned}$		$\begin{aligned} & \Delta g_{2}=3+2-0=5 \\ & \operatorname{swap}^{2}(4,0) \\ & G_{2}=G_{1}+\Delta g_{2}=8 \end{aligned}$		$\begin{aligned} & \Delta g_{3}=-3-3-0=-6 \\ & \text { Swap }(1,7) \\ & G_{3}=G_{2}+\Delta g_{3}=2 \end{aligned}$		$\begin{aligned} & \Delta g_{4}=-1-1-0=-2 \\ & S_{w a p}(2,8) \\ & G_{4}=G_{3}+\Delta g_{4}=0 \end{aligned}$

Maximum positive gain $G_{m}=8$ with $m=2$.

Since $G_{m}>0$, the first $m=2$ swaps $(3,5)$ and $(4,6)$ are executed.

Since $G_{m}>0$, more passes are needed until $G_{m} \leq 0$.

VLSI Physical Design: From Graph Partitioning to Timing Closure
Chapter 2: Netlist and System Partitioning

Kernighan-Lin Algorithm

Algorithm: Kernighan-Lin(G)
Input: $G=(V, E), \mid V=2 n$.
Output: Balanced bi-partition A and B with "small" cut cost.
1 begin
2 Bipartition G into A and B such that $\left|V_{A}\right|=\left|V_{B}\right|, V_{A} \cap V_{B}=\varnothing$,
and $V_{A} \cup V_{B}=V$.
3 repeat
4 Compute $D_{v}, \forall v \in V$.
5 for $i=1$ to n do
6 Find a pair of unlocked vertices $v_{a i} \in V_{A}$ and $v_{b i} \in V_{B}$ whose exchange makes the largest decrease or smallest increase in cut cost;
7 Mark $v_{\text {a }}$ and $v_{\text {bi }}$ as locked, store the gain \hat{g}_{1}, and compute the new D_{v}, for all unlocked $v \in V$;
8 Find k, such that $G_{k}=\sum_{k=i}^{k} \hat{g}_{\text {, }}$ is maximized;
9 if $G_{k}>0$ then
10 Move $v_{a 1}, \ldots, v_{a k}$ from V_{A} to V_{B} and $v_{b 1}, \ldots, v_{b k}$ from V_{B} to V_{A};
11 Unlock $v, \forall v \in V$.
12 until $G_{k} \leq 0$;
13 end

- Line 4: Initial computation of $D: O\left(n^{2}\right)$
- Line 5: The for-loop: $O(n)$
- The body of the loop: $O\left(n^{2}\right)$.
- Lines 6--7: Step i takes $(n-i+1)^{2}$ time.
- Lines 4--11: Each pass of the repeat loop: $O\left(n^{3}\right)$.
- Suppose the repeat loop terminates after r passes.
- The total running time: $O\left(r n^{3}\right)$.
- Polynomial-time algorithm?

Drawbacks of the Kernighan-Lin Heuristic

- The K-L heuristic handles only unit vertex weights.

- Vertex weights might represent block sizes, different from blocks to blocks.
- Reducing a vertex with weight $w(v)$ into a clique with $w(v)$ vertices and edges with a high cost increases the size of the graph substantially.
- The K-L heuristic handles only exact bisections.
- Need dummy vertices to handle the unbalanced problem.
- The K-L heuristic cannot handle hypergraphs.
- Need to handle multi-terminal nets directly.
- The time complexity of a pass is high, $O\left(n^{3}\right)$.

2.4.2 Extensions of the Kernighan-Lin (KL) Algorithm

- Unequal partition sizes
- Apply the KL algorithm with only min($|A|,|B|)$ pairs swapped
-May want to insert a dummy node.
- Unequal node weights
- Try to rescale weights to integers, e.g., as multiples of the greatest common divisor of all node weights
- Maintain area balance or allow a one-move deviation from balance
- k-way partitioning (generating k partitions)
- Apply the KL two-way partitioning algorithm to all possible pairs of partitions
- Recursive partitioning (convenient when k is a power of two)
- Direct k-way extensions exist

2.4.3 Fiduccia-Mattheyses (FM) Algorithm

- Modification of KL Algorithm:
- Can handle non-uniform vertex weights (areas)
- Allow unbalanced partitions
- Extended to handle hypergraphs
- Clever way to select vertices to move, run much faster.
"A Linear-time Heuristics for Improving Network Partitions," 19 ${ }^{\text {th }}$ DAC, pages 175-181, 1982.

2.4.3 Fiduccia-Mattheyses (FM) Algorithm

- Single cells are moved independently instead of swapping pairs of cells --cannot and do not need to maintain exact partition balance
- The area of each individual cell is taken into account
- Applicable to partitions of unequal size and in the presence of initially fixed cells
- Cut costs are extended to include hypergraphs
- nets with 2+ pins
- While the KL algorithm aims to minimize cut costs based on edges, the FM algorithm minimizes cut costs based on nets
- Nodes and subgraphs are referred to as cells and blocks, respectively

2.4.3 Fiduccia-Mattheyses (FM) Algorithm

Given: a hypergraph $G(V, H)$ with nodes and weighted hyperedges partition size constraints

Goal: to assign all nodes to disjoint partitions, so as to: minimize the total cost (weight) of all cut nets while satisfying partition size constraints

This problem is NP-Complete!!!

2.4.3 Fiduccia-Mattheyses (FM) Algorithm - Terminology

Gain $\Delta g(c)$ for cell c
$\Delta g(c)=F S(c)-T E(c)$,
where
the "moving force" $F S(c)$ is the number of nets connected to c but not connected to any other cells within c's partition, i.e., cut nets that connect only to c, and
the "retention force" $T E(c)$ is the number of uncut nets connected to c.

The higher the gain $\Delta g(c)$, the higher is the priority to move the cell c to the other partition.

A net is cut if its cells occupy more than one partition. Otherwise, the net is uncut

2.4.3 Fiduccia-Mattheyses (FM) Algorithm - Terminology

Gain $\Delta g(c)$ for cell c
$\Delta g(c)=F S(c)-T E(c)$,
where
the "moving force" $F S(c)$ is the number of nets connected
 to c but not connected to any other cells within c 's partition, i.e., cut nets that connect only to c, and
the "retention force" $T E(c)$ is the number of uncut nets connected to c.

$$
\begin{array}{llll}
\text { Cell 1: } & F S(1)=2 & T E(1)=1 & \Delta g(1)=1 \\
\text { Cell 2: } & F S(2)=0 & T E(2)=1 & \Delta g(2)=-1 \\
\text { Cell 3: } & F S(3)=1 & T E(3)=1 & \Delta g(3)=0 \\
\text { Cell 4: } & F S(4)=1 & T E(4)=1 & \Delta g(4)=0 \\
\text { Cell 5: } & F S(5)=1 & T E(5)=0 & \Delta g(5)=1
\end{array}
$$

VLSI Physical Design: From Graph Partitioning to Timing Closure

2.4.3 Fiduccia-Mattheyses (FM) Algorithm - Terminology

Maximum positive gain G_{m} of a pass

The maximum positive gain G_{m} is the cumulative cell gain of m moves that produce a minimum cut cost.
G_{m} is determined by the maximum sum of cell gains Δg over a prefix of m moves in a pass

$$
G_{m}=\sum_{i=1}^{m} \Delta g_{i}
$$

2.4.3 Fiduccia-Mattheyses (FM) Algorithm - Terminology

Ratio factor

The ratio factor is the relative balance between the two partitions with respect to cell area

It is used to prevent all cells from clustering into one partition.
The ratio factor r is defined as $r=\frac{\operatorname{area}(A)}{\operatorname{area}(A)+\operatorname{area}(B)}$
where $\operatorname{area}(A)$ and $\operatorname{area}(B)$ are the total respective areas of partitions A and B

2.4.3 Fiduccia-Mattheyses (FM) Algorithm - Terminology

Balance criterion - To avoid having all cells migrate to one block

The balance criterion enforces the ratio factor.

To ensure feasibility, the maximum cell area $\operatorname{area} a_{\max }(V)$ must be taken into account.

A partitioning of V into two partitions A and B is said to be balanced if

$$
\left[r \cdot \operatorname{area}(V)-\operatorname{area}_{\max }(V)\right] \leq \operatorname{area}(A) \leq\left[r \cdot \operatorname{area}(V)+\operatorname{area}_{\max }(V)\right]
$$

2.4.3 Fiduccia-Mattheyses (FM) Algorithm - Terminology

Base cell

A base cell is a cell c that has the greatest cell gain $\Delta g(c)$ among all free cells, and whose move does not violate the balance criterion.

2.4.3 Fiduccia-Mattheyses (FM) Algorithm - One pass

Step 0: Compute the balance criterion
Step 1: Compute the cell gain Δg_{1} of each cell
Step 2: $i=1$

- Choose base cell c_{1} that has maximal gain Δg_{1}, move this cell

Step 3:

- Fix the base cell c_{i}
- Update all cells' gains that are connected to critical nets via the base cell c_{i}

Step 4:

- If all cells are fixed, go to Step 5. If not:
- Choose next base cell c_{i} with maximal gain Δg_{i} and move this cell
$-\quad i=i+1$, go to Step 3
Step 5:
- Determine the best move sequence $c_{1}, c_{2}, \ldots, c_{m}(1 \leq m \leq i)$, so that $G_{m}=\sum_{i=1}^{m} \Delta g_{i}$ is maximized
$-\quad$ If $G_{m}>0$, go to Step 6. Otherwise, END
Step 6:

2.4.3 Fiduccia-Mattheyses (FM) Algorithm - Example

$$
\begin{aligned}
& \text { Given: } \\
& \text { Ratio factor } r=0,375 \\
& \text { area_(Cell_1) }=2 \\
& \text { area(Cell_2) }=4 \\
& \text { area(Cell_3) }=1 \\
& \text { area(Cell_4) }=4 \\
& \text { area(Cell_5) }=5 .
\end{aligned}
$$

Step 0: Compute the balance criterion
$\left[r \cdot \operatorname{area}(V)-\operatorname{area}_{\max }(V)\right] \leq \operatorname{area}(A) \leq\left[r \cdot \operatorname{area}(V)+\operatorname{area}_{\max }(V)\right]$
$0,375 * 16-5=1 \leq \operatorname{area}(A) \leq 11=0,375 * 16+5$.

2.4.3 Fiduccia-Mattheyses (FM) Algorithm - Example

Step 1: Compute the gains of each cell

Cell 1: \quad FS(Cell_1) $=2$
Cell 2: \quad FS(Cell_2) $=0$
Cell 3: $\quad F S($ Cell_3 $)=1$
Cell 4: $\quad F S($ Cell_4 $)=1$
Cell 5: FS(Cell_5) $=1$

TE(Cell_1) $=1$
TE(Cell_2) $=1$
TE(Cell_3) $=1$
TE(Cell_4) $=1$
$T E($ Cell_5 $)=0$
$\Delta g($ Cell_1 $)=1$
$\Delta g($ Cell_2 $)=-1$
$\Delta g($ Cell_3 $)=0$
$\Delta g($ Cell_4 $)=0$
$\Delta g($ Cell_5 $)=1$

2.4.3 Fiduccia-Mattheyses (FM) Algorithm - Example

Cell1: $\quad F S($ Cell_1 $)=2 \quad T E($ Cell_1 $)=1 \quad \Delta g($ Cell_1 $)=1$
Cell 2: $\quad F S($ Cell_2 $)=0 \quad T E($ Cell_2 $)=1 \quad \Delta g($ Cell_2 $)=-1$
Cell 3: $\quad F S($ Cell_3 $)=1 \quad T E($ Cell_3 $)=1 \quad \Delta g($ Cell_3 $)=0$
Cell 4: $\quad F S($ Cell_4 $)=1 \quad T E($ Cell_4 $)=1 \quad \Delta g($ Cell_4 $)=0$
Cell 5: $\quad F S($ Cell_5 $)=1 \quad T E($ Cell_5 $)=0 \quad \Delta g($ Cell_5 $)=1$

Step 2: Select the base cell

Possible base cells are Cell 1 and Cell 5
Balance criterion after moving Cell 1: $\operatorname{area}(A)=\operatorname{area}($ Cell_2) $=4$
Balance criterion after moving Cell 5: $\operatorname{area}(A)=\operatorname{area}\left(C e l l _1\right)+\operatorname{area}\left(C e l l _2\right)+\operatorname{area}\left(C e l l _5\right)=11$
Both moves respect the balance criterion, but Cell 1 is selected, moved, and fixed as a result of the tie-breaking criterion.

2.4.3 Fiduccia-Mattheyses (FM) Algorithm - Example

Step 3: Fix base cell, update Δg values

Cell 2:	FS $($ Cell_2 $)=2$	TE $($ Cell_2 $)=0$	$\Delta g($ Cell_2 $)=2$
Cell 3:	FS $($ Cell_3 $)=0$	TE $($ Cell_3 $)=1$	$\Delta g($ Cell_3 $)=-1$
Cell 4:	FS $($ Cell_4 $)=0$	TE $($ Cell_4 $)=2$	$\Delta g($ Cell_4 $)=-2$
Cell 5:	FS $($ Cell_5 $)=0$	TE $($ Cell_5 $)=1$	$\Delta g($ Cell_5 $)=-1$

After Iteration $i=1$: Partition $A_{1}=\{2\}$, Partition $B_{1}=\{1,3,4,5\}$, with fixed cell $\{1\}$.

2.4.3 Fiduccia-Mattheyses (FM) Algorithm - Example

Iteration $i=1$
Cell 2: $\quad F S($ Cell_2 $)=2 \quad T E($ Cell_2 $)=0 \quad \Delta g($ Cell_2 $)=2$
Cell 3: $\quad F S($ Cell_3 $)=0 \quad T E($ Cell_3 $)=1 \quad \Delta g($ Cell_3 $)=-1$
Cell 4: $\quad F S($ Cell_4 $)=0 \quad T E($ Cell_4 $)=2 \quad \Delta g($ Cell_4 $)=-2$
Cell 5: $\quad F S($ Cell_5 $)=0 \quad$ TE $($ Cell_5 $)=1 \quad \Delta g($ Cell_5 $)=-1$

Iteration $i=2$

Cell 2 has maximum gain $\Delta g_{2}=2$, area $(A)=0$, balance criterion is violated.
Cell 3 has next maximum gain $\Delta g_{2}=-1$, area $(A)=5$, balance criterion is met.
Cell 5 has next maximum gain $\Delta g_{2}=-1$, area $(A)=9$, balance criterion is met.

Move cell 3, updated partitions: $A_{2}=\{2,3\}, B_{2}=\{1,4,5\}$, with fixed cells $\{1,3\}$

2.4.3 Fiduccia-Mattheyses (FM) Algorithm - Example

Iteration $i=3$

Cell 2 has maximum gain $\Delta g_{3}=1$, area $(A)=1$, balance criterion is met.

Move cell 2, updated partitions: $A_{3}=\{3\}, B_{3}=\{1,2,4,5\}$, with fixed cells $\{1,2,3\}$

2.4.3 Fiduccia-Mattheyses (FM) Algorithm - Example

Iteration $i=4$

Cell 4 has maximum gain $\Delta g_{4}=0$, area $(A)=5$, balance criterion is met.

Move cell 4 , updated partitions: $A_{4}=\{3,4\}, B_{3}=\{1,2,5\}$, with fixed cells $\{1,2,3,4\}$

2.4.3 Fiduccia-Mattheyses (FM) Algorithm - Example

Cell 5: $\quad \Delta g($ Cell_5 $)=-1$

Iteration $i=5$

Cell 5 has maximum gain $\Delta g_{5}=-1$, area $(A)=10$, balance criterion is met.

Move cell 5 , updated partitions: $A_{4}=\{3,4,5\}, B_{3}=\{1,2\}$, all cells $\{1,2,3,4,5\}$ fixed.

2.4.3 Fiduccia-Mattheyses (FM) Algorithm - Example

Step 5: Find best move sequence $\mathrm{c}_{1} \ldots \mathrm{c}_{m}$
$G_{1}=\Delta g_{1}=1$
$G_{2}=\Delta g_{1}+\Delta g_{2}=0$
$G_{3}=\Delta g_{1}+\Delta g_{2}+\Delta g_{3}=1$
$G_{4}=\Delta g_{1}+\Delta g_{2}+\Delta g_{3}+\Delta g_{4}=1$
$G_{5}=\Delta g_{1}+\Delta g_{2}+\Delta g_{3}+\Delta g_{4}+\Delta g_{5}=0$.

Maximum positive cumulative gain $G_{m}=\sum_{i=1}^{m} \Delta g_{i}=1$
found in iterations 1,3 and 4 .
The move prefix $m=4$ is selected due to the better balance ratio $(\operatorname{area}(A)=5)$; the four cells $1,2,3$ and 4 are then moved.

Result of Pass 1: Current partitions: $A=\{3,4\}, B=\{1,2,5\}$, cut cost reduced from 3 to 2 .

Runtime difference between KL \& FM

- Runtime of partitioning algorithms
- KL is sensitive to the number of nodes and edges
- FM is sensitive to the number of nodes and nets (hyperedges)
- Asymptotic complexity of partitioning algorithms
- KL has cubic time complexity per pass
- FM has linear time complexity per pass

Chapter 2 - Netlist and System Partitioning

2.1 Introduction

2.2 Terminology

2.3 Optimization Goals
2.4 Partitioning Algorithms
2.4.1 Kernighan-Lin (KL) Algorithm
2.4.2 Extensions of the Kernighan-Lin Algorithm
2.4.3 Fiduccia-Mattheyses (FM) Algorithm
2.5 Framework for Multilevel Partitioning
2.5.1 Clustering
2.5.2 Multilevel Partitioning
2.6 System Partitioning onto Multiple FPGAs

VLSI Physical Design: From Graph Partitioning to Timing Closure
Chapter 2: Netlist and System Partitioning 59

2.5.1 Clustering

- To simplify the problem, groups of tightly-connected nodes can be clustered, absorbing connections between these nodes
- Size of each cluster is often limited so as to prevent degenerate clustering, i.e. a single large cluster dominates other clusters
- Refinement should satisfy balance criteria

2.5.1 Clustering

Possible clustering hierarchies of the graph

2.5.2 Multilevel Partitioning

Reconfigurable system with multiple FPGA and FPIC devices

Mapping of a typical system architecture onto multiple FPGAs

Summary of Lecture 2

- Circuit netlists can be represented by graphs
- Partitioning a graph means assigning nodes to disjoint partitions
- Total size of each partition (number/area of nodes) is limited
- Objective: minimize the number connections between partitions
- Basic partitioning algorithms
- Move-based, move are organized into passes
- KL swaps pairs of nodes from different partitions
- FM re-assigns one node at a time
- FM is faster, usually more successful
- Multilevel partitioning
- Clustering
- FM partitioning
- Refinement (also uses FM partitioning)
- Application: system partitioning into FPGAs
- Each FPGA is represented by a partition

