
CSC 631: High-Performance Computer
Architecture

Spring 2022
Lecture 11: GPUs

Types of Parallelism

§ Instruction-Level Parallelism (ILP)
– Execute independent instructions from one instruction stream in parallel

(pipelining, superscalar, VLIW)

§ Thread-Level Parallelism (TLP)
– Execute independent instruction streams in parallel (multithreading,

multiple cores)

§ Data-Level Parallelism (DLP)
– Execute multiple operations of the same type in parallel (vector/SIMD

execution)

§ Which is easiest to program?
§ Which is most flexible form of parallelism?

– i.e., can be used in more situations

§ Which is most efficient?
– i.e., greatest tasks/second/area, lowest energy/task

2

Resurgence of DLP

§ Convergence of application demands and technology
constraints drives architecture choice

§ New applications, such as graphics, machine vision,
speech recognition, machine learning, etc. all require large
numerical computations that are often trivially data
parallel

§ SIMD-based architectures (vector-SIMD, subword-SIMD,
SIMT/GPUs) are most efficient way to execute these
algorithms

3

Packed SIMD Extensions

§ Short vectors added to existing microprocessors ISAs, for multimedia
§ Use existing 64-bit registers split into 2x32b or 4x16b or 8x8b

– Lincoln Labs TX-2 from 1957 had 36b datapath split into 2x18b or 4x9b

– Newer designs have wider registers

• 128b for PowerPC Altivec, Intel SSE2/3/4

• 256b for Intel AVX

§ Single instruction operates on all elements within register

4

16b 16b 16b 16b

32b 32b

64b

8b 8b 8b 8b 8b 8b 8b 8b

16b 16b 16b 16b

16b 16b 16b 16b

16b 16b 16b 16b

+ + + +4x16b adds

Multimedia Extensions versus Vectors
§ Limited instruction set

– no vector length control
– no strided load/store or scatter/gather
– unit-stride loads must be naturally aligned to whole register

width (e.g., 64 or 128-bit)

§ Limited vector register length
– requires superscalar issue to keep multiply/add/load units busy
– loop unrolling to hide latencies increases register pressure

§ Trend towards fuller vector support in
microprocessors

– Better support for misaligned memory accesses
– Support of double-precision (64-bit floating-point)
– New Intel AVX spec (announced April 2008), 256b vector registers

(expandable up to 1024b) , adding scatter/gather
– New ARM SVE/MVE vector ISA closer to traditional vector designs

5

DLP important for conventional CPUs

6

§ Prediction for x86 processors,
from Hennessy & Patterson, 5th

edition
– Note: Educated guess, not Intel product

plans!

§ TLP: 2+ cores / 2 years
§ DLP: 2x width / 4 years

§ DLP will account for more
mainstream parallelism growth
than TLP in next decade.

– SIMD –single-instruction multiple-data
(DLP)

– MIMD- multiple-instruction multiple-data
(TLP)

Graphical Processing Units

§ Basic idea:
– Heterogeneous execution model

• CPU is the host, GPU is the device
– Develop a C-like programming language for GPU
– Unify all forms of GPU parallelism as CUDA thread
– Programming model is “Single Instruction Multiple Thread”

7

Graphics Processing Units (GPUs)

§ Original GPUs were dedicated fixed-function devices for
generating 3D graphics (mid-late 1990s) including high-
performance floating-point units

– Provide workstation-like graphics for PCs
– User could configure graphics pipeline, but not really program it

§ Over time, more programmability added (2001-2005)
– E.g., New language Cg for writing small programs run on each vertex or

each pixel, also Windows DirectX variants
– Massively parallel (millions of vertices or pixels per frame) but very

constrained programming model

§ Some users noticed they could do general-purpose
computation by mapping input and output data to images,
and computation to vertex and pixel shading
computations

– Incredibly difficult programming model as had to use graphics pipeline
model for general computation

8

General-Purpose GPUs (GP-GPUs)

§ In 2006, Nvidia introduced GeForce 8800 GPU, which
supported a new programming language CUDA (in 2007)

– “Compute Unified Device Architecture”
– Subsequently, broader industry pushing for OpenCL, a vendor-neutral

version of same ideas.

§ Idea: Take advantage of GPU computational performance
and memory bandwidth to accelerate some kernels for
general-purpose computing

§ Attached processor model: Host CPU issues data-parallel
kernels to GP-GPU for execution

§ This lecture only considers GPU execution for
computational kernels, not graphics

– Would need whole other course to describe graphics processing

9

Threads and Blocks

§ A thread is associated with each data element
§ Threads are organized into blocks
§ Blocks are organized into a grid

§ GPU hardware handles thread management, not
applications or OS

10

NVIDIA GPU Architecture

§ Similarities to vector machines:
– Works well with data-level parallel problems
– Scatter-gather transfers
– Mask registers
– Large register files

§ Differences:
– No scalar processor
– Uses multithreading to hide memory latency
– Has many functional units, as opposed to a few deeply pipelined units

like a vector processor

11

Example

§ Code that works over all elements is the grid
§ Thread blocks break this down into manageable sizes

– 512 threads per block

§ SIMD instruction executes 32 elements at a time

§ Thus grid size = 16 blocks
§ Block is analogous to a strip-mined vector loop with vector

length of 32
§ Block is assigned to a multithreaded SIMD processor by

the thread block scheduler
§ Current-generation GPUs have 7-15 multithreaded SIMD

processors

12

Terminology

§ Each thread is limited to 64 registers
§ Groups of 32 threads combined into a SIMD thread or

“warp”
– Mapped to 16 physical lanes

§ Up to 32 warps are scheduled on a single SIMD processor
– Each warp has its own PC
– Thread scheduler uses scoreboard to dispatch warps
– By definition, no data dependencies between warps
– Dispatch warps into pipeline, hide memory latency

§ Thread block scheduler schedules blocks to SIMD
processors

§ Within each SIMD processor:
– 32 SIMD lanes
– Wide and shallow compared to vector processors

13

Example

G
raphical Processing U

nits

Copyright © 2019, Elsevier Inc. All rights Reserved

GPU Organization
G

raphical Processing U
nits

Copyright © 2019, Elsevier Inc. All rights Reserved

NVIDIA GPU Memory Structures

§ Each SIMD Lane has private section of off-chip DRAM
– “Private memory”
– Contains stack frame, spilling registers, and private variables

§ Each multithreaded SIMD processor also has local memory
– Shared by SIMD lanes / threads within a block

§ Memory shared by SIMD processors is GPU Memory
– Host can read and write GPU memory

G
raphical Processing U

nits

Simplified CUDA Programming Model

§ Computation performed by a very large number of
independent small scalar threads (CUDA threads or
microthreads) grouped into thread blocks.

17

// C version of DAXPY loop.
void daxpy(int n, double a, double*x, double*y)
{
for (int i=0; i<n; i++)

y[i] = a*x[i] + y[i];
}

// CUDA version.
__host__ // Piece run on host processor.
int nblocks = (n+255)/256; //256 CUDA threads/block

daxpy<<<nblocks,256>>>(n,2.0,x,y);
__device__ // Piece run on GP-GPU.
void daxpy(int n, double a, double*x, double*y)
{
int i = blockIdx.x*blockDim.x + threadId.x;
if (i<n)
y[i]=a*x[i]+y[i];

}

Programmer’s View of Execution

18

blockIdx 0

threadId 0
threadId 1

threadId 255

blockIdx 1

threadId 0
threadId 1

threadId 255

blockIdx

(n+255/256)

threadId 0
threadId 1

threadId 255

Create enough
blocks to cover

input vector

(NVIDIA calls this
ensemble of

blocks a Grid, can
be 2-dimensional)

Conditional (i<n)
turns off unused

threads in last block

blockDim = 256
(programmer can

choose)

GPU

Hardware Execution Model

19

§ GPU is built from multiple parallel cores, each core contains a
multithreaded SIMD processor with multiple lanes but with no
scalar processor

– some adding “scalar coprocessors” now

§ CPU sends whole “grid” over to GPU, which distributes thread
blocks among cores (each thread block executes on one core)

– Programmer unaware of number of cores

Core 0

Lane 0
Lane 1

Lane 15
Core 1

Lane 0
Lane 1

Lane 15
Core 15

Lane 0
Lane 1

Lane 15

GPU Memory

CPU

CPU Memory

Historical Retrospective, Cray-2 (1985)
§ 243MHz ECL logic
§ 2GB DRAM main memory (128 banks of 16MB each)

– Bank busy time 57 clocks!

§ Local memory of 128KB/core
§ 1 foreground + 4 background vector processors

20

Foreground
CPU

Shared Memory

Core 0

Lane

Local
Memory

Core 0

Lane

Local
Memory

Core 0

Lane

Local
Memory

Core 0

Lane

Local
Memory

“Single Instruction, Multiple Thread” (SIMT)

§ GPUs use a SIMT model, where individual scalar
instruction streams for each CUDA thread are grouped
together for SIMD execution on hardware (NVIDIA groups
32 CUDA threads into a warp)

21

µT0 µT1 µT2 µT3 µT4 µT5 µT6 µT7
ld x, (z)
mul a
ld y, (w)
add
st y, (w)

Scalar
instruction

stream

SIMD execution across warp

Implications of SIMT Model

§ All “vector” loads and stores are scatter-gather, as
individual µthreads perform scalar loads and stores

– GPU adds hardware to dynamically coalesce individual µthread loads and
stores to mimic vector loads and stores

§ Every µthread has to perform stripmining calculations
redundantly (“am I active?”) as there is no scalar
processor equivalent

22

Conditionals in SIMT model

§ Simple if-then-else are compiled into predicated
execution, equivalent to vector masking

§ More complex control flow compiled into branches
§ How to execute a vector of branches? Vector function

calls?

23

µT0 µT1 µT2 µT3 µT4 µT5 µT6 µT7
tid=threadid
If (tid >= n) skip

Call func1
add
st y

Scalar
instruction

stream

SIMD execution across warp

skip:

Branch Divergence

§ Hardware tracks which µthreads take or don’t take branch
§ If all go the same way, then keep going in SIMD fashion
§ If not, create mask vector indicating taken/not-taken
§ Keep executing not-taken path under mask, push taken

branch PC+mask onto a hardware stack and execute later
§ When can execution of µthreads in warp reconverge?

24

NVIDIA Instruction Set Arch.

§ ISA is an abstraction of the hardware instruction set
– “Parallel Thread Execution (PTX)”

• opcode.type d,a,b,c;
– Uses virtual registers
– Translation to machine code is performed in software
– Example:

shl.s32 R8, blockIdx, 9 ; Thread Block ID * Block size (512 or 29)

add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID

ld.global.f64 RD0, [X+R8] ; RD0 = X[i]

ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

mul.f64 R0D, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)

add.f64 R0D, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])

st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])

25

Conditional Branching

§ Like vector architectures, GPU branch hardware uses
internal masks

§ Also uses
– Branch synchronization stack

• Entries consist of masks for each SIMD lane
• I.e. which threads commit their results (all threads execute)

– Instruction markers to manage when a branch diverges into multiple
execution paths

• Push on divergent branch
– …and when paths converge

• Act as barriers
• Pops stack

§ Per-thread-lane 1-bit predicate register, specified by
programmer

26

Example

if (X[i] != 0)
X[i] = X[i] – Y[i];

else X[i] = Z[i];

ld.global.f64 RD0, [X+R8] ; RD0 = X[i]
setp.neq.s32 P1, RD0, #0 ; P1 is predicate register 1
@!P1, bra ELSE1, *Push ; Push old mask, set new
mask bits

; if P1 false, go to ELSE1
ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]
sub.f64 RD0, RD0, RD2 ; Difference in RD0
st.global.f64 [X+R8], RD0 ; X[i] = RD0
@P1, bra ENDIF1, *Comp ; complement mask bits

; if P1 true, go to ENDIF1
ELSE1: ld.global.f64 RD0, [Z+R8] ; RD0 = Z[i]

st.global.f64 [X+R8], RD0 ; X[i] = RD0
ENDIF1: <next instruction>, *Pop ; pop to restore old mask

27

Warps are multithreaded on core

§ One warp of 32 µthreads is a
single thread in the hardware

§ Multiple warp threads are
interleaved in execution on a
single core to hide latencies
(memory and functional unit)

§ A single thread block can
contain multiple warps (up to
512 µT max in CUDA), all
mapped to single core

§ Can have multiple blocks
executing on one core

28[Nvidia, 2010]

GPU Memory Hierarchy

29
[Nvidia, 2010]

SIMT

§ Illusion of many independent threads
§But for efficiency, programmer must try

and keep µthreads aligned in a SIMD
fashion

– Try and do unit-stride loads and store so memory
coalescing kicks in

– Avoid branch divergence so most instruction slots
execute useful work and are not masked off

30

Nvidia Fermi GF100 GPU

31

[Nvidia,
2010]

Fermi “Streaming
Multiprocessor” Core

32

Copyright © 2019, Elsevier Inc. All rights Reserved

Pascal Architecture Innovations

§ Each SIMD processor has
– Two or four SIMD thread schedulers, two instruction dispatch

units
– 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store

units, 4 special function units
– Two threads of SIMD instructions are scheduled every two clock

cycles

§ Fast single-, double-, and half-precision
§ High Bandwith Memory 2 (HBM2) at 732 GB/s
§ NVLink between multiple GPUs (20 GB/s in each direction)
§ Unified virtual memory and paging support

G
raphical Processing U

nits

NVIDIA Pascal Multithreaded GPU Core

34

Fermi Dual-Issue Warp Scheduler

35

Important of Machine Learning for GPUs

36

NVIDIA stock price 40x in 9 years (since deep
learning became important)

Apple A12 Processor (2018)

37

• 83.27mm2

• 7nm technology

[Source: Tech Insights, AnandTech]

