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Lecture 9: Multithreading

Thread-Level Parallelism (TLP)

= Difficult to continue to extract instruction-level parallelism
(ILP) from a single sequential thread of control

= Many workloads can make use of thread-level parallelism:

— TLP from multiprogramming (run independent
sequential jobs)

— TLP from multithreaded applications (run one job
faster using parallel threads)

= Multithreading uses TLP to improve utilization of a single
processor



Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

One way is to interleave execution of instructions from
different program threads on same pipeline

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Et0 Et1 EtZ Et3 t4 15 :1:6 17 Et8 : t9

Tl1:LD x1,0(x2) FID|X[M|W Prior instruction in a
T2:ADD x7,x1,x4: |F|D|X|M|W} : : : threadalways
T3:XORI x5,x4, 12‘ FIDIXIMIWE i completes write-back

) roi : i before next instruction
T4:SD 0(x7) ,x5 _ FID[X M .__i in same thread reads
T1:LD x5,12(x1) i | F|D]X|M|WE register file

Simple Multithreaded Pipeline
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= Have to carry thread select down pipeline to ensure correct state bits
read/written at each pipe stage

= Appears to software (including OS) as multiple, albeit slower, CPUs



Multithreading Costs

= Each thread requires its own user state
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= Also, needs its own system state)

— Virtual-memory page-table-base register

— Exception-handling registers

= Other overheads:

— Additional cache/TLB conflicts from competing threads
* or add larger cache/TLB capacity

— More OS overhead tolschedule more threadj (where do all these
threads come from?)

Thread Scheduling Policies lo —

= Fixed interleave (CDC 6600 PPUs, 1964)

— Each of N threads executes one instruction every N cycles
— If thread not ready to go in its slot, insert pipeline bubble

= Software-controlled interleave (71 ASC PPUs, 1971)

— OS allocates S pipeline slots amongst N threads

— Hardware performs fixed interleave over S slots, executing whichever
thread is in that slot

= Hardware-controlled thread scheduling (HEP, 1982)

— Hardware keeps track of which threads are ready to go
— Picks next thread to execute based on hardware priority scheme




Denelcor HEP

(Burton Smith, 1982)

First commercial machine to use hardware threading in
main CPU
— 120 threads per processor
— 10 MHz clock rate
— Up to 8 processors
— precursor to Tera MTA (Multithreaded Architecture)

Coarse-Grain Multithreading

= Tera MTA designed for supercomputing applications with
large data sets and low locality
— No data cache
— Many parallel threads needed to hide large memory latency

= 256 mem-ops/cycle * 150 cycles/mem-op = 38K
instructions-in-flight...
— Tera was not very successful, 2 machines sold.
— Changed their name back to Cray!

= Other applications are more cache friendly
— Few pipeline bubbles if cache mostly has hits
— Just add a few threads to hide occasional cache miss latencies
— Swap threads on cache misses



Oracle/Sun Niagara processors

= Target is datacenters running web servers and databases,
with many concurrent requests

® Provide multiple simple cores each with multiple
hardware threads, reduced energy/operation though
much lower single thread performance

= Niagara-1[2004], 8 cores, 4 threads/core
= Niagara-2 [2007], 8 cores, 8 threads/core
= Niagara-3 [2009], 16 cores, 8 threads/core
= T4 [2011], 8 cores, 8 threads/core

= T5[2012], 16 cores, 8 threads/core

= M5 [2012], 6 cores, 8 threads/core

= M6 [2013], 12 cores, 8 threads/core

Oracle/Sun Niagara-3, “Rainbow Falls” 2009
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Oracle SPARC M6 Processor (2013)

. The Next Oracle Processor: SPARC M6

Memory Max.
nm | Cores |Threads| L3$ per PCle
Socket Sockets
40 8 64 4MB

0.5TB 2*G2 B

28 16 128 8MB 0.5TB 2*G3 8

n 28 6 48 48MB  1TB 2*G3 32

M6 28 12 96 48MB 1TB  2'G3 96

ORACLE
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Oracle SPARC M6 Core (2013)

. SPARC S3 Core
« Dual-issue, out-of-order
» Integrated encryption
acceleration instructions
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Oracle SPARC M6 (2013)

. SPARC M6: Processor Overview

= 12 SPARC S3 cores, 96 threads
= 48MB shared L3 cache

« 4 DDR3 schedulers, maximum of
1TB of memory per socket

« 2 PCle 3.0 x8 lanes

« Up to 8 sockets glue-less scaling
« Up to 96 sockets glued scaling

= 4.1 Tbps total link bandwidth

= 4.27 billion transistors

]| EaDesPC "
I| Oracle ended SPARC programs after M8 in 2017 E

Simultaneous Multithreading (SMT) for
000 Superscalars

= Techniques presented so far have all been “vertical”
multithreading where each pipeline stage works on one
thread at a time

= SMT uses fine-grain control already present inside an OoO
superscalar to allow instructions from multiple threads to
enter execution on same clock cycle. Gives better
utilization of machine resources.
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For most apps, most execution units lie

idle in an 000 superscalar
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Superscalar Machine Efficiency
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Vertical Multithreading

Issue width

Instruction
issue E
.—— Second thread interleaved
cycle-by-cycle
Time
Partially filled cycle,

i.e., IPC< 4
(horizontal waste)

= Cycle-by-cycle interleaving removes vertical waste, but
leaves some horizontal waste
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Chip Multiprocessing (CMP)

Issue width

Time

= What is the effect of splitting into multiple processors?
— reduces horizontal waste,
— leaves some vertical waste, and
— puts upper limit on peak throughput of each thread.
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Ideal Superscalar Multithreading

[Tullsen, Eggers, Levy, UW, 1995]
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" Interleave multiple threads to multiple issue slots with no
restrictions

0-0-0 Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

= Add multiple contexts and fetch engines and allow
instructions fetched from different threads to issue
simultaneously

= Utilize wide out-of-order superscalar processor issue
queue to find instructions to issue from multiple threads

= 00O instruction window already has most of the circuitry
required to schedule from multiple threads

= Any single thread can utilize whole machine

19
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SMT adaptation to parallelism type

For regions with high thread-level For regions with low thread-level
parallelism (TLP) entire machine parallelism (TLP) entire machine width
width is shared by all threads is available for instruction-level
parallelism (ILP)
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Pentium-4 Hyperthreading (2002)

= First commercial SMT design (2-way SMT)

= Logical processors share nearly all resources of the physical processor
— Caches, execution units, branch predictors

= Die area overhead of hyperthreading ~ 5%

= When one logical processor is stalled, the other can make progress

— No logical processor can use all entries in queues when two threads are
active
= Processor running only one active software thread runs at
approximately same speed with or without hyperthreading

= Hyperthreading dropped on 000 P6-based followons to Pentium-4
(Pentium-M, Core Duo, Core 2 Duo), until revived with Nehalem
generation machines in 2008.

= First Intel Atom (in-order x86 core) has two-way vertical
multithreading

— Hyperthreading == (SMT for Intel 000 & Vertical for Intel InO)
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IBM Power 4

Single-threaded predecessor to Power 5.
8 execution units in out-of-order engine,
each may issue an instruction each cycle.
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Power 5 data flow ...

Dynamic
instruction
selection

Branch prediction

Shared Shared

Branch ‘ Target issue exeCylion
s T;;;g stack | | cache queues ! [&5)’] 5
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o e N ——— [T]]T]] (110 || (000 en (0000
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cache Dispatch . . . FPUO . completion queue
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/
;?i:)efla';’ Shared- Read Write trar?sellzt-l?lon
register shared- shared-
mappers register files register files

I [ Shared by two threads [ Thread 0 resources EEEEN Thread 1 resources ‘

Why only 2 threads? With 4, one of the shared resources
(physical registers, cache, memory bandwidth) would be

prone to bottleneck
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Initial Performance of SMT

= Pentium-4 Extreme SMT yields 1.01 speedup for
SPECint_rate benchmark and 1.07 for SPECfp_rate

— Pentium-4 is dual-threaded SMT

— SPECRate requires that each SPEC benchmark be run against a
vendor-selected number of copies of the same benchmark

= Running on Pentium-4 each of 26 SPEC benchmarks paired
with every other (262 runs) speed-ups from 0.90 to 1.58;
average was 1.20

= Power 5, 8-processor server 1.23 faster for SPECint_rate
with SMT, 1.16 faster for SPECfp_rate

= Power 5 running 2 copies of each app speedup between
0.89and 1.41

— Most gained some
— FI.Pt. apps had most cache conflicts and least gains
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SMT Performance: Appl

Your favorite

ICa

tion Interaction

™~ o x
5 £ x 2 2a?
benchmark o, ouEB 2 f¥sEER2Y _SEE,
N & O S o oo ® 6N ST 992t gEXa
>SS 5ES 883552 232ERESSaR A
from Lab2 ILee85 B 8888 NRRREBBEE
164.gzip B Speedup > 30%
175.vpr B Speedup 25 to 30%
176.gcc B speedup 20 to 25%
18tmef  HH NN HEEEEEEEENEEETTEEENE B speedup 15t020%
186.crafty [ | Speedup 10 to 15%
197. M speedup 5 to 109
parser Not affected by other peedup 5 to 10%
252.eon Approx same
253.perlbmk prog rams Slowdown 5 to 10%
254.gap Slowdown 10 to 15%
255.vortex Slowdown 15 to 20%
256.bzip2 Slowdown > 20%
300.twolf
168.wupwise
171.swim
172.mgrid
173.applu So long as they
177.mesa ’ .
g aren’t banging on
183.equake
185.omms the L2 too.
200.sixtrack
301.apsi
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Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading”

ication Interaction

SMT Performance: Appl

Your favorite
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164.gzip [ | Speedup > 30%
175.vpr B Speedup 25 to 30%
176.gcc [ | Speedup 20 to 25%
18tmef  HHH N A HAEEEEEERENEENETHENRENE (B speedup 15t0 20%
186.crafty ) [ | Speedup 10 to 15%
197.parser O Speedup 5 to 10%
252.eon [ | Approx same
253.perlbmk Slowdown 5 to 10%
254.gap Slowdown 10 to 15%
255.vortex Slowdown 15 to 20%
256.bzip2 Slowdown > 20%
300.twolf
168.wupwise
171.swim —  Doesn’t
172.mgrid ]
173.2pplu play nice
177.mesa [ |
179.art [ |
183.equake
188.ammp [ |
200.sixtrack [ |
301.apsi H_

Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading”



SMT Performance: Application Interaction
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164.gzip | Speedup > 30%
175.vpr B Speedup 25 to 30%
176.gcc M speedup 20 to 25%
18tmef  HHH B HEEEEEEEENERENET"HENENE N speedup 15t020%
186.crafty M Speedup 10to 15%
197 parser B speedup 5 to 10%
252.eon Approx same
253.perlbmk Slowdown 5 to 10%
254.gap Slowdown 10 to 15%
255.vortex Slowdown 15 to 20%
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Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading”
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Icount Choosing Policy

Fetch from thread with the least instructions in flight.

Why does this enhance throughput?
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SMT & Security

= Most hardware attacks rely on shared hardware resources
to establish a side-channel

— Eg. Shared outer caches, DRAM row buffers

= SMT gives attackers high-BW access to previously private
hardware resources that are shared by co-resident

= TLBs: TLBleed (June, ‘18)

threads:

= L1 caches: CacheBleed (2016)
= Functional unit ports: PortSmash (Nov, ’18)

OpenBSD 6.4 - Disabled HT in BIOS, AMD SMT to follow

<—Time (processor cycle)

Summary: Multithreaded Categories
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