CSC 631: High-Performance Computer
Architecture

Spring 2022
Lecture 9: Multithreading

Thread-Level Parallelism (TLP)

= Difficult to continue to extract instruction-level parallelism
(ILP) from a single sequential thread of control

= Many workloads can make use of thread-level parallelism:

— TLP from multiprogramming (run independent
sequential jobs)

— TLP from multithreaded applications (run one job
faster using parallel threads)

= Multithreading uses TLP to improve utilization of a single
processor

Multithreading

How can we guarantee no dependencies between
instructions in a pipeline?

One way is to interleave execution of instructions from
different program threads on same pipeline

Interleave 4 threads, T1-T4, on non-bypassed 5-stage pipe

Et0 Et1 EtZ Et3 t4 15 :1:6 17 Et8 : t9

Tl1:LD x1,0(x2) FID|X[M|W Prior instruction in a
T2:ADD x7,x1,x4: |F|D|X|M|W} : : : threadalways
T3:XORI x5,x4, 12‘ FIDIXIMIWE i completes write-back

) roi : i before next instruction
T4:SD 0(x7) ,x5 _ FID[X M .__i in same thread reads
T1:LD x5,12(x1) i | F|D]X|M|WE register file

Simple Multithreaded Pipeline

13 ‘I‘ GPR1
/' \ N A

W 2 Thread W 2
select

ID>_x

]
+
-_—
—
= P <
>

= Have to carry thread select down pipeline to ensure correct state bits
read/written at each pipe stage

= Appears to software (including OS) as multiple, albeit slower, CPUs

Multithreading Costs

= Each thread requires its own user state

-—

— PCv
— GPRs v~

= Also, needs its own system state)

— Virtual-memory page-table-base register

— Exception-handling registers

= Other overheads:

— Additional cache/TLB conflicts from competing threads
* or add larger cache/TLB capacity

— More OS overhead tolschedule more threadj (where do all these
threads come from?)

Thread Scheduling Policies lo —

= Fixed interleave (CDC 6600 PPUs, 1964)

— Each of N threads executes one instruction every N cycles
— If thread not ready to go in its slot, insert pipeline bubble

= Software-controlled interleave (71 ASC PPUs, 1971)

— OS allocates S pipeline slots amongst N threads

— Hardware performs fixed interleave over S slots, executing whichever
thread is in that slot

= Hardware-controlled thread scheduling (HEP, 1982)

— Hardware keeps track of which threads are ready to go
— Picks next thread to execute based on hardware priority scheme

Denelcor HEP

(Burton Smith, 1982)

First commercial machine to use hardware threading in
main CPU
— 120 threads per processor
— 10 MHz clock rate
— Up to 8 processors
— precursor to Tera MTA (Multithreaded Architecture)

Coarse-Grain Multithreading

= Tera MTA designed for supercomputing applications with
large data sets and low locality
— No data cache
— Many parallel threads needed to hide large memory latency

= 256 mem-ops/cycle * 150 cycles/mem-op = 38K
instructions-in-flight...
— Tera was not very successful, 2 machines sold.
— Changed their name back to Cray!

= Other applications are more cache friendly
— Few pipeline bubbles if cache mostly has hits
— Just add a few threads to hide occasional cache miss latencies
— Swap threads on cache misses

Oracle/Sun Niagara processors

= Target is datacenters running web servers and databases,
with many concurrent requests

® Provide multiple simple cores each with multiple
hardware threads, reduced energy/operation though
much lower single thread performance

= Niagara-1[2004], 8 cores, 4 threads/core
= Niagara-2 [2007], 8 cores, 8 threads/core
= Niagara-3 [2009], 16 cores, 8 threads/core
= T4 [2011], 8 cores, 8 threads/core

= T5[2012], 16 cores, 8 threads/core

= M5 [2012], 6 cores, 8 threads/core

= M6 [2013], 12 cores, 8 threads/core

Oracle/Sun Niagara-3, “Rainbow Falls” 2009

%Ji?iﬂ?m-&é‘%‘"ﬁs"é’i""’

'u!.wm-a&!dm o gy 25

5;‘&.

30t Boerd G B DGE B B, 0 8RN oo oad B
: ; e

Oracle SPARC M6 Processor (2013)

. The Next Oracle Processor: SPARC M6

Memory Max.
nm | Cores |Threads| L3$ per PCle
Socket Sockets
40 8 64 4MB

0.5TB 2*G2 B

28 16 128 8MB 0.5TB 2*G3 8

n 28 6 48 48MB 1TB 2*G3 32

M6 28 12 96 48MB 1TB 2'G3 96

ORACLE

10 | Copyrgnt © 2012, Dracks anchor ks afSiates. Al rights resoved

Oracle SPARC M6 Core (2013)

. SPARC S3 Core
« Dual-issue, out-of-order
» Integrated encryption
acceleration instructions
Frivine i Ber.
» Enhanced instruction set to bl Ba— ! i | [
accelerate Oracle SW stack I TS S
« 1-8 strands, dynamically s ’_L‘ P
threaded pipeline _t_ y—L\ g
o (1?"""” §§ ¥ : ¥

(3¢}

1)

Slot 0 Sat 1

ORACLE

12 | Copyrgnt © 2012, Oracke anchor ks a'tiates. AJ rights reen~ved

Oracle SPARC M6 (2013)

. SPARC M6: Processor Overview

= 12 SPARC S3 cores, 96 threads
= 48MB shared L3 cache

« 4 DDR3 schedulers, maximum of
1TB of memory per socket

« 2 PCle 3.0 x8 lanes

« Up to 8 sockets glue-less scaling
« Up to 96 sockets glued scaling

= 4.1 Tbps total link bandwidth

= 4.27 billion transistors

]| EaDesPC "
I| Oracle ended SPARC programs after M8 in 2017 E

Simultaneous Multithreading (SMT) for
000 Superscalars

= Techniques presented so far have all been “vertical”
multithreading where each pipeline stage works on one
thread at a time

= SMT uses fine-grain control already present inside an OoO
superscalar to allow instructions from multiple threads to
enter execution on same clock cycle. Gives better
utilization of machine resources.

14

For most apps, most execution units lie

idle in an 000 superscalar
YORPRRPAPEONERARER
=1y oy Z/ F 8 I
E171: 7 I 4 For an 8-way superscalar.
90 4 kX
3 74 memory conflict
= E long Ip
” short fp
% 70 long, integer
;5‘ ﬁ short integer
§ 60 =] 10ad delays
£ Dconlrul hazards
o‘g 50 branch misprediction
: BN dcache miss
©
E
:
A

40 I]]] icache miss
B aub miss
30 [iub miss
. processor busy
20
10

From: Tullsen, Eggers, and Levy,

0 “Simultaneous Multithreading:

SR sttt
nasa? W 77 77 77 s 7 v

g _33 g égg “E%FEEE é -22 Maximizing On-chip Parallelism”,
T¥ETE EET % 5 E ISCA1995.
Applications 15

Superscalar Machine Efficiency

Issue width
Instruction

issue
.——Completely idle cycle
Hi (vertical waste)
Time
Partially filled cycle,

' i.e., IPC< 4
(horizontal waste)

E >4
Hbﬂ: »
4’4}*4)4’
b
o+
-T—

16

Vertical Multithreading

Issue width

Instruction
issue E
.—— Second thread interleaved
cycle-by-cycle
Time
Partially filled cycle,

i.e., IPC< 4
(horizontal waste)

= Cycle-by-cycle interleaving removes vertical waste, but
leaves some horizontal waste

17

Chip Multiprocessing (CMP)

Issue width

Time

= What is the effect of splitting into multiple processors?
— reduces horizontal waste,
— leaves some vertical waste, and
— puts upper limit on peak throughput of each thread.

18

Ideal Superscalar Multithreading

[Tullsen, Eggers, Levy, UW, 1995]

Issue width

:

b d

FYy

ry
.
&
4

9

Time *

" Interleave multiple threads to multiple issue slots with no
restrictions

0-0-0 Simultaneous Multithreading
[Tullsen, Eggers, Emer, Levy, Stamm, Lo, DEC/UW, 1996]

= Add multiple contexts and fetch engines and allow
instructions fetched from different threads to issue
simultaneously

= Utilize wide out-of-order superscalar processor issue
queue to find instructions to issue from multiple threads

= 00O instruction window already has most of the circuitry
required to schedule from multiple threads

= Any single thread can utilize whole machine

19

20

SMT adaptation to parallelism type

For regions with high thread-level For regions with low thread-level
parallelism (TLP) entire machine parallelism (TLP) entire machine width
width is shared by all threads is available for instruction-level
parallelism (ILP)

Issue width Issue width

— -

i3 (33 133 B313333330%%

—_ _MQEQHH_
2l
Time Time : :

R
Ly
o

+49

L& 2
L A 4

>S9 EX]
] k. ;
H <
.
o
gﬂ J
L2 2 2L
B
£ S

L Aa &L

Pentium-4 Hyperthreading (2002)

= First commercial SMT design (2-way SMT)

= Logical processors share nearly all resources of the physical processor
— Caches, execution units, branch predictors

= Die area overhead of hyperthreading ~ 5%

= When one logical processor is stalled, the other can make progress

— No logical processor can use all entries in queues when two threads are
active
= Processor running only one active software thread runs at
approximately same speed with or without hyperthreading

= Hyperthreading dropped on 000 P6-based followons to Pentium-4
(Pentium-M, Core Duo, Core 2 Duo), until revived with Nehalem
generation machines in 2008.

= First Intel Atom (in-order x86 core) has two-way vertical
multithreading

— Hyperthreading == (SMT for Intel 000 & Vertical for Intel InO)

21

22

IBM Power 4

Single-threaded predecessor to Power 5.
8 execution units in out-of-order engine,
each may issue an instruction each cycle.

Branch redirects

1 ;
1 Instruction fetch

1
1

1

1

1

1

1 Instruction crack and
: group formation
1

1

1

1

1

Interrupts and flushes

Branch redirects po er | Out-of-order processing

-- 1

: Instruction fetch :

i BR

' L EX WB — Xfer

Ly LD/ST

(e > : CP

| i

i 1

! |

: Instruction crack and :

! group formation |

| i

y 1

! |

: Interrupts and flushes :

b o o o o e e e e e e e e e e W W e e M W e e e M e e e e M M e e M e e e e e e e e e e e e e e e e e e e
2 commits

----- B ranchred"edsPowers """""O*lft-Of-orderprocessmg(arCthected
Branch regiStBr setS)

Insionfetch L:;Ziz?;e . 1

pipeline

s Fixed-point m

Group formation and pipeline

' instruction decode “ I

2 fetch (PC), ._.—‘—.III_

E 4 F|oating. V

2,iniial decodes ’

Power 5 data flow ...

Dynamic
instruction
selection

Branch prediction

Shared Shared

Branch ‘ Target issue exeCylion
s T;;;g stack | | cache queues ! [&5)’] 5
Alternate H [H [I [l l [HJ \ I [”H [Fxud| H‘[_LH:I Trari?at:ion Cl:ilhae
o e N ——— [T]]T]] (110 || (000 en (0000
Instruction Instrucpuon decode [—= - — — . — — W
cache Dispatch . . . FPUO . completion queue
=3 e o
/
;?i:)efla';’ Shared- Read Write trar?sellzt-l?lon
register shared- shared-
mappers register files register files

I [Shared by two threads [Thread 0 resources EEEEN Thread 1 resources ‘

Why only 2 threads? With 4, one of the shared resources
(physical registers, cache, memory bandwidth) would be

prone to bottleneck

25

Initial Performance of SMT

= Pentium-4 Extreme SMT yields 1.01 speedup for
SPECint_rate benchmark and 1.07 for SPECfp_rate

— Pentium-4 is dual-threaded SMT

— SPECRate requires that each SPEC benchmark be run against a
vendor-selected number of copies of the same benchmark

= Running on Pentium-4 each of 26 SPEC benchmarks paired
with every other (262 runs) speed-ups from 0.90 to 1.58;
average was 1.20

= Power 5, 8-processor server 1.23 faster for SPECint_rate
with SMT, 1.16 faster for SPECfp_rate

= Power 5 running 2 copies of each app speedup between
0.89and 1.41

— Most gained some
— FI.Pt. apps had most cache conflicts and least gains

26

SMT Performance: Appl

Your favorite

ICa

tion Interaction

™~ o x
5 £ x 2 2a?
benchmark o, ouEB 2 f¥sEER2Y _SEE,
N & O S o oo ® 6N ST 992t gEXa
>SS 5ES 883552 232ERESSaR A
from Lab2 ILee85 B 8888 NRRREBBEE
164.gzip B Speedup > 30%
175.vpr B Speedup 25 to 30%
176.gcc B speedup 20 to 25%
18tmef HH NN HEEEEEEEENEEETTEEENE B speedup 15t020%
186.crafty [| Speedup 10 to 15%
197. M speedup 5 to 109
parser Not affected by other peedup 5 to 10%
252.eon Approx same
253.perlbmk prog rams Slowdown 5 to 10%
254.gap Slowdown 10 to 15%
255.vortex Slowdown 15 to 20%
256.bzip2 Slowdown > 20%
300.twolf
168.wupwise
171.swim
172.mgrid
173.applu So long as they
177.mesa ’ .
g aren’t banging on
183.equake
185.omms the L2 too.
200.sixtrack
301.apsi

27

Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading”

ication Interaction

SMT Performance: Appl

Your favorite

. 2 e ¥
benchmark o ouZl.f.8%s3EB2Y _SEE,
5855888898233 E8Q8EK86% 8§
from Lab2 TEEESREREE38EEEERRES]
164.gzip [| Speedup > 30%
175.vpr B Speedup 25 to 30%
176.gcc [| Speedup 20 to 25%
18tmef HHH N A HAEEEEEERENEENETHENRENE (B speedup 15t0 20%
186.crafty) [| Speedup 10 to 15%
197.parser O Speedup 5 to 10%
252.eon [| Approx same
253.perlbmk Slowdown 5 to 10%
254.gap Slowdown 10 to 15%
255.vortex Slowdown 15 to 20%
256.bzip2 Slowdown > 20%
300.twolf
168.wupwise
171.swim — Doesn’t
172.mgrid]
173.2pplu play nice
177.mesa [|
179.art [|
183.equake
188.ammp [|
200.sixtrack [|
301.apsi H_

Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading”

SMT Performance: Application Interaction

wupwise
sixtrack

IR BIBESETNRRRIEEES
FFFFFF N ANANANN®M- v+ v N O
164.gzip | Speedup > 30%
175.vpr B Speedup 25 to 30%
176.gcc M speedup 20 to 25%
18tmef HHH B HEEEEEEEENERENET"HENENE N speedup 15t020%
186.crafty M Speedup 10to 15%
197 parser B speedup 5 to 10%
252.eon Approx same
253.perlbmk Slowdown 5 to 10%
254.gap Slowdown 10 to 15%
255.vortex Slowdown 15 to 20%
256.bzip2 Slowdown > 20%
300.twoli
168.wupwise
171.swim
172.mgrid M (11 1] H B n |
173.applu \ ’
177.mesa Y
179.art
1eequake \fery sensitive to second program
.ammp
200.sixtrack
301.apsi

Bulpin et al, “Multiprogramming Performance of Pentium 4 with Hyper-Threading”

29

Icount Choosing Policy

Fetch from thread with the least instructions in flight.

Why does this enhance throughput?

30

SMT & Security

= Most hardware attacks rely on shared hardware resources
to establish a side-channel

— Eg. Shared outer caches, DRAM row buffers

= SMT gives attackers high-BW access to previously private
hardware resources that are shared by co-resident

= TLBs: TLBleed (June, ‘18)

threads:

= L1 caches: CacheBleed (2016)
= Functional unit ports: PortSmash (Nov, ’18)

OpenBSD 6.4 - Disabled HT in BIOS, AMD SMT to follow

<—Time (processor cycle)

Summary: Multithreaded Categories

Superscalar

Fine-Grained

EEL]L]
NN
OO0
EE LD
i
EEEE
NN

] Thread 1
Thread 2

Coarse-Grained Multiprocessing

Simultaneous
Multithreading

|

EECO EESN EEND
EOO0 EOSN EOBEE
EED0 EEND NOOE
EEE0 EEND EEND
SNOO BEO000 NEEE
SSNO JONN EEEE
NNNO OONO OOB0
0000 EESS ENDE
0000 mEOSO EEND
0000 EEJ0 ENND
BEOOD EONO EEBED
BOO0 OONN NEED

[] Thread3 Bl Threads

Thread 4 [] Idle slot

31

32

