CSC 631: High-Performance Computer
Architecture

Spring 2022
Lecture 8: VLIW

VLIW: Very Long Instruction Word

IntOp 1 Int Op 2 Mem Op 1 Mem Op 2 FPOp 1 FP Op 2

! ! ! ! ! '

Two Integer Units,
Single-Cycle Latency

Two Load/Store Units,
Three-Cycle Latency Two Floating-Point Units,
Four-Cycle Latency

= Multiple operations packed into one instruction
= Each operation slot is for a fixed function
= Constant operation latencies are specified

= Architecture requires guarantee of:
— Parallelism within an instruction => no cross-operation RAW
check
— No data use before data ready => no data interlocks

VLIW Compiler Responsibilities

= Schedule operations to maximize parallel execution

= Guarantees intra-instruction parallelism

= Schedule to avoid data hazards (no interlocks)

— Typically separates operations with explicit NOPs

Loop Execution

for (i=0; i<N; i++)
B[i] = A[i] + C;

Int1 Int2 M1 M2 FP+ FPx

loop: |add x1 fid «

v Compile N

loop: fld f1, O(x1) \

add x1, 8 fadd

fadd f2, fO, f1 Schedule £
4

fsd f2, 0(x2) va

add x2, 8 bdd x2 bne | fsd

bne x1, x3,

loop

How many FP ops/cycle?

1 fadd / 8 cycles = 0.125

Loop Unrolling
for (i=0; i<N; i++)
B[i] = A[i] + C;

Unroll inner loop to perform 4
iterations at once

for (i=C;; i<N; i+=4)

{
B[i] = A[i]+C;
Bli+1] = A[i+1] + C;
Bl[i+2] = A[i+2] + C;
B[i+3] = A[i+3] + C;

by

Need to handle values of N that are not multiples
of unrolling factor with final cleanup loop

Scheduling Loop Unrolled Code

Unroll 4 ways

loop: fid f1, 0(x1) Intl Int2 M1 M2 FP+ FPx
fld £2, 8(x1) 00D
fid £3, 16(x1) oop: fid £
fid f4, 24(x1) fld £2 [\
add x1, 32 idf3 |\
fadd f5, f0, f1 add x1 fld f4 fadd 5
fadd 16,10, 2 | Schedule /fadd 6
fadd f7, 0, f3 _ / lfadd f7
fadd f8, f0, f4 / lfadd 18
fsd 5, 0(x2) fsd 5
fsd 6, 8(x2) fsd f6
fsd f7, 16(x2) tsd 7

fsd f8, 24(x2)
add x2, 32
bne x1, x3, loop

add x2 bne | fsd f8

How many FLOPS/cycle?
4 fadds / 11 cycles = 0.36

Software Pipelining

Unroll 4 ways first Int1 Int2 M1 M2 FP+ FPx

loop: fid f1, 0(x1) 4 fid f1
fid 2, 8(x1) fid f2
fid 3, 16(x1) fid f3
fld f4, 24(x1) | add x1 fid f4
add x1, 32 prolog < fid 1 fadd f5
fadd f5, f0, f1 fid £2 fadd 6
fadd f6, f0, f2 fid 3 fadd f7
fadd 7, f0, f3 add xI1 fid f4 fadd 8
fadd 8, f0, f4 | loop:
fsd f5, 0(x2) iterate

fsd f6, 8(x2)

fsd f7, 16(x2)
add x2, 32 —
fsd f8, -8(x2)

fsd f5|fadd 5

fsd 16 fadd f6

bne x1, x3, loop epilog < a0 3 7 fadd 17
How many FLOPS/cycle? bne ;23 ‘;2 fadd f8

4 fadds / 4 cycles =1 -~

Software Pipelining vs. Loop Unrolling

Loop Unrolled

Wind-down overhead
A
performance !

//, N b/
/ Ny » S

Startup overhead

»

time

Loop Iteration
Software Pipelined
performance
e time

Loop Iteration

Software pipelining pays startup/wind-down
costs only once per loop, not once per iteration

What if there are no loops?

= Branches limit basic block size
/\ in control-flow intensive

irregular code

Basic block = Difficult to find ILP in individual

/ basic blocks

/\.

Trace Scheduling [Fisher,eis]

= Pick string of basic blocks, a trace, that
represents most frequent branch path

= Use profiling feedback or compiler
heuristics to find common branch paths

» Schedule whole “trace” at once

= Add fixup code to cope with branches
jumping out of trace

10

Problems with “Classic” VLIW

= Object-code compatibility

— have to recompile all code for every machine, even for two machines in
same generation

= Object code size

— instruction padding wastes instruction memory/cache
— loop unrolling/software pipelining replicates code

= Scheduling variable latency memory operations

— caches and/or memory bank conflicts impose statically unpredictable
variability

= Knowing branch probabilities
— Profiling requires an significant extra step in build process

= Scheduling for statically unpredictable branches

— optimal schedule varies with branch path

VLIW Instruction Encoding

——

Group 1 Group 2 Group 3

= Schemes to reduce effect of unused fields

— Compressed format in memory, expand on I-cache refill
* used in Multiflow Trace
* introduces instruction addressing challenge
— Mark parallel groups
* used in TMS320C6x DSPs, Intel IA-64
— Provide a single-op VLIW instruction
* Cydra-5 UniOp instructions

11

12

Intel Itanium, EPIC IA-64

= EPIC is the style of architecture (cf. CISC, RISC)
— Explicitly Parallel Instruction Computing (really just VLIW)

= |A-64 is Intel’s chosen ISA (cf. x86, MIPS)
— |A-64 = Intel Architecture 64-bit
— An object-code-compatible VLIW

= Merced was first Itanium implementation (cf. 8086)
— First customer shipment was expected in 1997 (actually 2001)
— McKinley, second implementation shipped in 2002
— Poulson, eight cores, 32nm, 2012

— Kittson or Itanium 9700, 2017.
* Similar to Poulson but a higher clock

» Kittson was discontinued in 2019
— Last ship date July 2021

IA-64 Instruction Format

41 bits ,
A 5 bits
(\

Instruction 2 | Instruction 1 | Instruction 0 | Template

128-bit instruction bundle

= Template bits describe grouping of these instructions with
others in adjacent bundles

= Each group contains instructions that can execute in
parallel

bundle j-1 bundle j bundle j+1bundle j+2
| \ \ 1 \ \ | \ \ | \ \ 1 \ \ I |

: Y / N Y - N

group i-1 group i group i+1 group i+2

13

14

Intel Kills Itanium

= Donald Knuth “ ... Itanium approach that was supposed to
be so terrific—until it turned out that the wished-for
compilers were basically impossible to write.”

= “Intel officially announced the end of life and product
discontinuance of the Itanium CPU family on January 30th,
2019”, Wikipedia

15

