
CSC 631: High-Performance Computer
Architecture

Spring 2022
Lecture 8: VLIW

VLIW: Very Long Instruction Word

§Multiple operations packed into one instruction
§ Each operation slot is for a fixed function
§ Constant operation latencies are specified
§ Architecture requires guarantee of:

– Parallelism within an instruction => no cross-operation RAW
check

– No data use before data ready => no data interlocks
2

Two Integer Units,
Single-Cycle Latency

Two Load/Store Units,
Three-Cycle Latency Two Floating-Point Units,

Four-Cycle Latency

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2Int Op 1

VLIW Compiler Responsibilities

§ Schedule operations to maximize parallel execution

§ Guarantees intra-instruction parallelism

§ Schedule to avoid data hazards (no interlocks)
– Typically separates operations with explicit NOPs

3

Loop Execution

4

How many FP ops/cycle?

for (i=0; i<N; i++)

B[i] = A[i] + C;
Int1 Int 2 M1 M2 FP+ FPx

loop: fldadd x1

fadd

fsdadd x2 bne

1 fadd / 8 cycles = 0.125

loop: fld f1, 0(x1)

add x1, 8

fadd f2, f0, f1

fsd f2, 0(x2)

add x2, 8

bne x1, x3,
loop

Compile

Schedule

Loop Unrolling

5

for (i=0; i<N; i++)

B[i] = A[i] + C;

for (i=0; i<N; i+=4)

{

B[i] = A[i] + C;

B[i+1] = A[i+1] + C;

B[i+2] = A[i+2] + C;

B[i+3] = A[i+3] + C;

}

Unroll inner loop to perform 4
iterations at once

Need to handle values of N that are not multiples
of unrolling factor with final cleanup loop

Scheduling Loop Unrolled Code

6

loop: fld f1, 0(x1)
fld f2, 8(x1)
fld f3, 16(x1)
fld f4, 24(x1)
add x1, 32
fadd f5, f0, f1
fadd f6, f0, f2
fadd f7, f0, f3
fadd f8, f0, f4
fsd f5, 0(x2)
fsd f6, 8(x2)
fsd f7, 16(x2)
fsd f8, 24(x2)
add x2, 32
bne x1, x3, loop

Schedule

Int1 Int 2 M1 M2 FP+ FPx

loop:

Unroll 4 ways

fld f1
fld f2
fld f3
fld f4add x1 fadd f5

fadd f6
fadd f7
fadd f8

fsd f5
fsd f6
fsd f7
fsd f8add x2 bne

How many FLOPS/cycle?
4 fadds / 11 cycles = 0.36

Software Pipelining

7

How many FLOPS/cycle?

loop: fld f1, 0(x1)
fld f2, 8(x1)
fld f3, 16(x1)
fld f4, 24(x1)
add x1, 32
fadd f5, f0, f1
fadd f6, f0, f2
fadd f7, f0, f3
fadd f8, f0, f4
fsd f5, 0(x2)
fsd f6, 8(x2)
fsd f7, 16(x2)
add x2, 32
fsd f8, -8(x2)
bne x1, x3, loop

Int1 Int 2 M1 M2 FP+ FPxUnroll 4 ways first
fld f1
fld f2
fld f3
fld f4

fadd f5
fadd f6
fadd f7
fadd f8

fsd f5
fsd f6
fsd f7
fsd f8

add x1

add x2
bne

fld f1
fld f2
fld f3
fld f4

fadd f5
fadd f6
fadd f7
fadd f8

fsd f5
fsd f6
fsd f7
fsd f8

add x1

add x2
bne

fld f1
fld f2
fld f3
fld f4

fadd f5
fadd f6
fadd f7
fadd f8

fsd f5

add x1

loop:iterate

prolog

epilog

4 fadds / 4 cycles = 1

Software Pipelining vs. Loop Unrolling

8

time

performance

time

performance

Loop Unrolled

Software Pipelined

Startup overhead

Wind-down overhead

Loop Iteration

Loop Iteration

Software pipelining pays startup/wind-down
costs only once per loop, not once per iteration

What if there are no loops?

9

§ Branches limit basic block size
in control-flow intensive
irregular code

§ Difficult to find ILP in individual
basic blocks

Basic block

Trace Scheduling [Fisher,Ellis]

10

§ Pick string of basic blocks, a trace, that
represents most frequent branch path

§ Use profiling feedback or compiler
heuristics to find common branch paths

§ Schedule whole “trace” at once
§ Add fixup code to cope with branches

jumping out of trace

Problems with “Classic” VLIW

§ Object-code compatibility
– have to recompile all code for every machine, even for two machines in

same generation

§ Object code size
– instruction padding wastes instruction memory/cache

– loop unrolling/software pipelining replicates code

§ Scheduling variable latency memory operations
– caches and/or memory bank conflicts impose statically unpredictable

variability

§ Knowing branch probabilities
– Profiling requires an significant extra step in build process

§ Scheduling for statically unpredictable branches
– optimal schedule varies with branch path

11

VLIW Instruction Encoding

§ Schemes to reduce effect of unused fields
– Compressed format in memory, expand on I-cache refill

• used in Multiflow Trace
• introduces instruction addressing challenge

– Mark parallel groups
• used in TMS320C6x DSPs, Intel IA-64

– Provide a single-op VLIW instruction
• Cydra-5 UniOp instructions

12

Group 1 Group 2 Group 3

Intel Itanium, EPIC IA-64

§ EPIC is the style of architecture (cf. CISC, RISC)
– Explicitly Parallel Instruction Computing (really just VLIW)

§ IA-64 is Intel’s chosen ISA (cf. x86, MIPS)
– IA-64 = Intel Architecture 64-bit

– An object-code-compatible VLIW

§ Merced was first Itanium implementation (cf. 8086)
– First customer shipment was expected in 1997 (actually 2001)

– McKinley, second implementation shipped in 2002

– Poulson, eight cores, 32nm, 2012

– Kittson or Itanium 9700, 2017.

• Similar to Poulson but a higher clock

§ Kittson was discontinued in 2019
– Last ship date July 2021

13

IA-64 Instruction Format

§ Template bits describe grouping of these instructions with
others in adjacent bundles

§ Each group contains instructions that can execute in
parallel

14

Instruction 2 Instruction 1 Instruction 0 Template

128-bit instruction bundle

group i group i+1 group i+2group i-1

bundle j bundle j+1bundle j+2bundle j-1

41 bits
5 bits

Intel Kills Itanium

§ Donald Knuth “ … Itanium approach that was supposed to
be so terrific—until it turned out that the wished-for
compilers were basically impossible to write.”

§ “Intel officially announced the end of life and product
discontinuance of the Itanium CPU family on January 30th,
2019”, Wikipedia

15

