
CSC 631: High-Performance Computer
Architecture

Fall 2022
Lecture 7: Memory

One-Transistor Dynamic RAM

2

TiN top electrode (VREF)
Ta2O5 dielectric

W bottom
electrode

poly
word
line access

transistor

1-T DRAM Cell

word

bit

access transistor

Storage Capacitor
(FET gate, trench, stack)

VREF

Modern DRAM Structure

3
[Samsung, sub-70nm DRAM, 2004]

DRAM Architecture

4

Ro
w

 A
dd

re
ss

De

co
de

r

Col.
1

Col.
2M

Row 1

Row 2N

Column Decoder &
Sense Amplifiers

M

N

N+M

bit lines
word lines

Memory cell
(one bit)

DData

§ Bits stored in 2-dimensional arrays on chip
§ Modern chips have around 4-8 logical banks on each chip

§ each logical bank physically implemented as many smaller arrays

DRAM Packaging
(Laptops/Desktops/Servers)

5

§ DIMM (Dual Inline Memory Module) contains
multiple chips with clock/control/address signals
connected in parallel (sometimes need buffers to
drive signals to all chips)

§ Data pins work together to return wide word (e.g.,
64-bit data bus using 16x4-bit parts)

Address lines multiplexed
row/column address

Clock and control signals

Data bus
(4b,8b,16b,32b)

DRAM
chip

~12

~7

DRAM Packaging, Apple M1

6

Two DRAM chips
on same package
as system SoC

•128b databus,
running at 4.2Gb/s

•68GB/s bandwidth

DRAM Packaging, Apple M2

7

Two DRAM chips
on same package
as system SoC

DRAM Bank Organization

§ Each core array has about
O(1M) bits

§ Each bit is stored in a tiny
capacitor, made of one
transistor

Memory Cell

Core Array

Row

Decoder

Sense Amps

Column Latches

Mux

Row

Addr

Column

Addr
Off-chip Data

Wide

Narrow
Pin Interface

8

DRAM Operation

9

§ Three steps in read/write access to a given bank
§ Row access (RAS)

– decode row address, enable addressed row (often multiple Kb in row)
– bitlines share charge with storage cell
– small change in voltage detected by sense amplifiers which latch whole row of bits
– sense amplifiers drive bitlines full rail to recharge storage cells

§ Column access (CAS)
– decode column address to select small number of sense amplifier latches (4, 8, 16,

or 32 bits depending on DRAM package)
– on read, send latched bits out to chip pins
– on write, change sense amplifier latches which then charge storage cells to

required value
– can perform multiple column accesses on same row without another row access

(burst mode)

§ Precharge
– charges bit lines to known value, required before next row access

§ Each step has a latency of around 15-20ns in modern DRAMs
§ Various DRAM standards (DDR, RDRAM) have different ways of

encoding the signals for transmission to the DRAM, but all share
same core architecture

Double-Data Rate (DDR2) DRAM

10

Row Column Precharge Row’

Data

200MHz
Clock

400Mb/s
Data Rate[Micron, 256Mb DDR2 SDRAM datasheet]

Global Memory (DRAM) Bandwidth

Ideal Reality

11

CPU-Memory Bottleneck

Performance of high-speed computers is usually limited by
memory bandwidth & latency
§ Latency (time for a single access)

– Memory access time >> Processor cycle time

§ Bandwidth (number of accesses per unit time)
if fraction m of instructions access memory

⇒ 1+m memory references / instruction

⇒ CPI = 1 requires 1+m memory refs / cycle (assuming RISC-V ISA)

§ Also, Occupancy (time a memory bank is busy with one
request)

12

MemoryCPU

Processor-DRAM Gap (latency)

13

Time

µProc 60%/year

DRAM
7%/year

1

10

100

1000
1

9
8

0

1
9

8
1

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

DRAM

CPU

1
9

8
2

Processor-Memory
Performance Gap:
(growing 50%/yr)

P
e

rf
o

rm
a

n
ce

Four-issue 3GHz superscalar accessing 100ns DRAM could execute 1,200
instructions during time for one memory access!

Physical Size Affects Latency

14

Small
Memory

CPU

Big Memory

CPU

§ Signals have further to travel

§ Fan out to more locations

A very small (8x2 bit) DRAM Bank

de
co

de

0 1 1

Sense amps

Mux 15

DRAM core arrays are slow.

§ Reading from a cell in the core array is a very slow process
– DDR: Core speed = ½ interface speed

– DDR2/GDDR3: Core speed = ¼ interface speed

– DDR3/GDDR4: Core speed = ⅛ interface speed

– … likely to be worse in the future

de
co

de

To sense amps

A very small capacitance
that stores a data bit

About 1000 cells connected to
each vertical line

16

DRAM Bursting (burst size = 4 bits)

de
co

de

0 1 0

Sense amps

Mux 17

DRAM Bursting (cont.)
second part of the burst

de
co

de

0 1 1

Sense amps and buffer

Mux 18

DRAM Bursting for the 8x2 Bank

time

Address bits
to decoder

Core Array access delay
2 bits

to pin

2 bits

to pin

Non-burst timing

Burst timing

Modern DRAM systems are designed to
be always accessed in burst mode. Burst
bytes are transferred but discarded when
accesses are not to sequential locations.

19

20

Multiple DRAM Banks

de
co

de

Sense amps

Mux

de
co

de

Sense amps

Mux

0 1 10

Bank 0 Bank 1

20

DRAM Bursting for the 8x2 Bank

time

Address bits
to decoder

Core Array access delay
2 bits

to pin

2 bits

to pin

Single-Bank burst timing, dead time on interface

Multi-Bank burst timing, reduced dead time

21

Memory Hierarchy

22

Small,
Fast Memory

(RF, SRAM)

• capacity: Register << SRAM << DRAM
• latency: Register << SRAM << DRAM
• bandwidth: on-chip >> off-chip

On a data access:
if data Î fast memory Þ low latency access (SRAM)
if data Ï fast memory Þ high latency access (DRAM)

CPU Big, Slow Memory
(DRAM)

A B

holds frequently used data

Management of Memory Hierarchy

§Small/fast storage, e.g., registers
– Address usually specified in instruction
– Generally implemented directly as a register file

• but hardware might do things behind software’s
back, e.g., stack management, register renaming

§Larger/slower storage, e.g., main memory
– Address usually computed from values in register
– Generally implemented as a hardware-managed cache

hierarchy (hardware decides what is kept in fast
memory)
• but software may provide “hints”, e.g., don’t cache

or prefetch

23

Two predictable properties of memory references:

§ Temporal Locality: If a location is referenced it is likely to
be referenced again in the near future.

§ Spatial Locality: If a location is referenced it is likely that
locations near it will be referenced in the near future.

24

Caches exploit both types of predictability:

§ Exploit temporal locality by remembering the contents of
recently accessed locations.

§ Exploit spatial locality by fetching blocks of data around
recently accessed locations.

25

Inside a Cache

CACHEProcessor Main
Memory

Address Address

DataData

Address
Tag

Data Block

Data
Byte

Data
Byte

Data
Byte

Line100

304

6848

copy of main
memory
location 100

copy of main
memory
location 101

416

26

A Couple of Notes First…

§ Data is stored in a cache based on a mapping process
– Could be i mod 2k where i is the memory address and 2k is the number of

blocks

– Could be least significant bits

§ How do we find the data
– Use the address in the cache plus a tag

– Concatenate the block tag with the block index

§ Use a valid bit for each block to indicate whether
the data in the block is valid

27

Cache Algorithm (Read)

Look at Processor Address, search cache tags to
find match. Then either

Found in cache
a.k.a. HIT

Return copy
of data from
cache

Not in cache
a.k.a. MISS

Read block of data from
Main Memory

Wait …

Return data to processor
and update cache

Q: Which line do we replace? 28

Cache Hit

29

Placement Policy

30

0 1 2 3 4 5 6 70 1 2 3Set Number

Cache

Fully (2-way) Set Direct
Associative Associative Mapped
anywhere anywhere in only into

set 0 block 4
(12 mod 4) (12 mod 8)

0 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

block 12
can be placed

Direct-Mapped Cache

Tag Data BlockV

=

Block
Offset

Tag Index

t k b

t

HIT Data Word or Byte

2k

lines

31

Direct Map Address Selection
higher-order vs. lower-order address bits

Tag Data BlockV

=

Block
Offset

Index

tk
b

t

HIT Data Word or Byte

2k

lines

Tag

32

2-Way Set-Associative Cache

Tag Data BlockV

=

Block
Offset

Tag Index

t k

b

HIT

Tag Data BlockV

Data
Word
or Byte

=

t

33

Fully Associative Cache
Tag Data BlockV

=

B
lo

ck

O
ff

se
t

Ta
g

t

b

HIT

Data
Word
or Byte

=

=

t

34

Replacement Policy

35

In an associative cache, which block from a set should

be evicted when the set becomes full?

• Random
• Least-Recently Used (LRU)

• LRU cache state must be updated on every access
• true implementation only feasible for small sets (2-way)
• pseudo-LRU binary tree often used for 4-8 way

• First-In, First-Out (FIFO) a.k.a. Round-Robin
• used in highly associative caches

• Not-Most-Recently Used (NMRU)
• FIFO with exception for most-recently used block or blocks

This is a second-order effect. Why?

Replacement only happens on misses

Block Size and Spatial Locality

36

Word3Word0 Word1 Word2

Larger block size has distinct hardware advantages
• less tag overhead
• exploit fast burst transfers from DRAM
• exploit fast burst transfers over wide busses

What are the disadvantages of increasing block size?

block address offsetb

2b = block size a.k.a line size (in bytes)

Split CPU
address

b bits32-b bits

Tag

Block is unit of transfer between the cache and memory

4 word block, b=2

Fewer blocks => more conflicts. Can waste bandwidth.

Pseudo-LRU Binary Tree

§ For 2-way cache, on a hit, single LRU bit is set to point to
other way

§ For 4-way cache, need 3 bits of state. On cache hit, on
path down tree, set all bits to point to other half. On miss,
bits say which way to replace

37

Way 0Way 1Way 2Way 3

1 0

1 10 0

CPU-Cache Interaction
(5-stage pipeline)

38

PC addr inst

Primary
Instruction
Cache

0x4
Add

IR

D

bubble

hit?
PCen

Decode,
Register

Fetch
wdata

R

addr

wdata

rdata
Primary
Data
Cache

weA

B

YYALU

MD1 MD2

Cache Refill Data from Lower Levels of

Memory Hierarchy

hit?

Stall entire
CPU on data
cache miss

To Memory Control

M
E

Improving Cache Performance

39

Average memory access time (AMAT) =

Hit time + Miss rate x Miss penalty

To improve performance:

• reduce the hit time

• reduce the miss rate

• reduce the miss penalty

What is best cache design for 5-stage pipeline?

Biggest cache that doesn’t increase hit time past 1 cycle
(approx 8-32KB in modern technology)

[design issues more complex with deeper pipelines and/or out-of-
order superscalar processors]

Cache Misses

§ The first request to a cache block is called a compulsory
miss, because the block must be read from memory
regardless of the cache design

§ Capacity misses occur when the cache is too small to hold
all concurrently used data.

§ Conflict misses are caused when several addresses map to
the same set and evict blocks that are still needed.

40

Cache misses can be reduced by changing capacity, block
size, and/or associativity

Causes of Cache Misses: The 3 C’s

Compulsory: first reference to a line (a.k.a. cold
start misses)

– misses that would occur even with infinite cache

Capacity: cache is too small to hold all data needed
by the program

– misses that would occur even under perfect
replacement policy

Conflict: misses that occur because of collisions
due to line-placement strategy

– misses that would not occur with ideal full associativity

41

Total miss rate for each size cache: actual data
cache miss rates

42

Total miss rate for each size cache:
percentage per category

43

Effect of Cache Parameters on Performance

§ Larger cache size
+ reduces capacity and conflict misses
- hit time will increase

§Higher associativity
+ reduces conflict misses
- may increase hit time

§ Larger line size
+ reduces compulsory and capacity (reload) misses
- increases conflict misses and miss penalty

44

Effect of Cache Parameters on
Performance

§ Fully associative placement avoids all conflict misses but
expensive in hardware and may slow the processor clock
rate leading to lower overall performance

§ The three C’s also ignore replacement policy

45

Definition: thrashing is when a program spends a significant
percentage of the time in moving data between two levels in the
hierarchy

Cache Optimization

§ Larger Block Size to Reduce Miss Rate
– Reduce Miss Rate by taking advantage of spatial locality

– Reduce compulsory misses

– Reduce the number of blocks in the cache and thus increasing the miss
penalty

§ Larger Caches to Reduce Miss Rate
– Longer hit time and higher cost and power

§ Higher Associativity to Reduce Miss Rate
– 8-way set associative is for practical purposes as effective in reducing

misses as fully associative

– 2:1 cache rule of thumb: a direct-mapped cache of size N has about the
same miss rate as a two-way set associative cache of size N/2

46

Figure B.10 Miss rate versus block size for five different-sized caches.
Note that miss rate actually goes up if the block size is too large relative to the
cache size. Each line represents a cache of different size. Figure B.11 shows
the data used to plot these lines. Unfortunately, SPEC2000 traces would take
too long if block size were included, so these data are based on SPEC92 on a
DECstation 5000 (Gee et al. 1993).

Cache Optimization

§ Multilevel Caches to Reduce Miss Penalty
– First-level cache is small enough to match the clock cycle time of the

processor

– The second-level is large enough to capture many accesses that would
go to main memory, thereby lessening the effective miss penalty

– Impacts AMAT and cost of miss penalty

– Two new parameters:

• Local miss rate

• Global miss rate

48

Cache Optimization

49

Cache Optimization

§ Give priority to Read Misses over Writes to reduce Miss
Penalty

– Serves reads before writes have been completed

– Use a Write Buffer

• Complicates memory accesses because they might hold the
updated value of a location needed on a read miss

§ Avoid address translation during indexing of the cache to
reduce Hit Time

– Problem with page protection, process switching, and and user programs
using two different virtual addresses for the same physical address

50

Write Policy Choices

§ Cache hit:

– write-through: write both cache & memory
• Generally higher traffic but simpler pipeline & cache design

– write-back: write cache only, memory is written only when the
entry is evicted
• A dirty bit per line further reduces write-back traffic
• Must handle 0, 1, or 2 accesses to memory for each load/store

§ Cache miss:

– no-write-allocate: only write to main memory
– write-allocate (aka fetch-on-write): fetch into cache

§ Common combinations:

– write-through and no-write-allocate
– write-back with write-allocate

51

Write Performance

52

Tag DataV

=

OffsetTag Index

t k
b

t

HIT Data Word or Byte

2k

lines

WE

Reducing Write Hit Time

§ Problem
– Writes take two cycles in memory stage, one cycle for tag check plus one

cycle for data write if hit

§ Solutions:
– Design data RAM that can perform read and write in one cycle, restore

old value after tag miss

– Pipelined writes: Hold write data for store in single buffer ahead of
cache, write cache data during next store’s tag check

– Fully-associative (CAM Tag) caches: Word line only enabled if hit

53

Pipelining Cache Writes

54

Tags Data

Tag Index Store Data

Address and Store Data From CPU

Delayed Write DataDelayed Write Addr.

=?

=?

Load Data to CPU

Load/Store

L

S

1 0

Hit?

Data from a store hit is written into data portion of cache
during tag access of subsequent store

Write Buffer to Reduce Read Miss Penalty

§ Processor is not stalled on writes, and read misses can go ahead of write
to main memory

§ Problem
– Write buffer may hold updated value of location needed by a read miss

§ Simple solution:
– on a read miss, wait for the write buffer to go empty

§ Faster solution:
– Check write buffer addresses against read miss addresses, if no match, allow read miss to go

ahead of writes, else, return value in write buffer

55

Data Cache
Unified

L2 Cache
RF

CPU

Write

buffer

Evicted dirty lines for write-back cache
OR

All writes in write-through cache

Reducing Tag Overhead with Sub-Blocks

§ Problem: Tags are too large, i.e., too much overhead
– Simple solution: Larger lines, but miss penalty could be large.

§ Solution: Sub-block placement (aka sector cache)
– A valid bit added to units smaller than full line, called sub-blocks
– Only read a sub-block on a miss
– If a tag matches, is the word in the cache?

56

100
300
204

1 1 1 1
1 1 0 0
0 1 0 1

Multilevel Caches

Problem: A memory cannot be large and fast
Solution: Increasing sizes of cache at each level

57

CPU L1$ L2$ DRAM

Local miss rate = misses in cache / accesses to cache

Global miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions

Figure B.14 Miss rates versus cache size for multilevel caches. Second-level caches smaller than
the sum of the two 64 KiB first-level caches make little sense, as reflected in the high miss rates.
After 256 KiB the single cache is within 10% of the global miss rates. The miss rate of a single-level
cache versus size is plotted against the local miss rate and global miss rate of a second-level cache
using a 32 KiB first-level cache. The L2 caches (unified) were two-way set associative with
replacement. Each had split L1 instruction and data caches that were 64 KiB two-way set associative
with LRU replacement. The block size for both L1 and L2 caches was 64 bytes. Data were collected as
in Figure B.4.

Presence of L2 influences L1 design

§Use smaller L1 if there is also L2

– Trade increased L1 miss rate for reduced L1 hit time
– Backup L2 reduces L1 miss penalty
– Reduces average access energy

§Use simpler write-through L1 with on-chip L2

– Write-back L2 cache absorbs write traffic, doesn’t go off-chip
– At most one L1 miss request per L1 access (no dirty victim write

back) simplifies pipeline control
– Simplifies coherence issues
– Simplifies error recovery in L1 (can use just parity bits in L1 and

reload from L2 when parity error detected on L1 read)

59

Figure B.15 Relative execution time by second-level cache size. The two bars are for different clock
cycles for an L2 cache hit. The reference execution time of 1.00 is for an 8192 KiB second-level cache
with a 1-clock-cycle latency on a second-level hit. These data were collected the same way as in
Figure B.14, using a simulator to imitate the Alpha 21264.

Inclusion Policy

§ Inclusive multilevel cache:
– Inner cache can only hold lines also present in outer

cache
– External coherence snoop access need only check

outer cache

§ Exclusive multilevel caches:
– Inner cache may hold lines not in outer cache
– Swap lines between inner/outer caches on miss
– Used in AMD Athlon with 64KB primary and 256KB

secondary cache

61

Itanium-2 On-Chip Caches
(Intel/HP, 2002)

62

Level 1: 16KB, 4-way s.a., 64B
line, quad-port (2 load+2
store), single cycle latency

Level 2: 256KB, 4-way s.a, 128B
line, quad-port (4 load or 4
store), five cycle latency

Level 3: 3MB, 12-way s.a., 128B
line, single 32B port, twelve
cycle latency

Power 7 On-Chip Caches [IBM 2009]

63

32KB L1 I$/core

32KB L1 D$/core

3-cycle latency

256KB Unified L2$/core

8-cycle latency

32MB Unified Shared L3$

Embedded DRAM (eDRAM)

25-cycle latency to local
slice

IBM z196 Mainframe Caches 2010

64

§96 cores (4 cores/chip, 24 chips/system)
– Out-of-order, 3-way superscalar @ 5.2GHz

§L1: 64KB I-$/core + 128KB D-$/core
§L2: 1.5MB private/core (144MB total)
§L3: 24MB shared/chip (eDRAM) (576MB total)
§L4: 768MB shared/system (eDRAM)

Exponential X704 PowerPC Processor
(1997)

65

2KB L1 Direct-Mapped
Instruction Cache

2KB L1 Direct-Mapped
Write-Through Data
Cache

32KB L2 8-way
Set-Associative
Write-Back
Unified Cache

0.5µm BiCMOS

Ran at 410-533MHz
when other PC
processors were
much lower clock
rate

Project delayed –
missed market
window for Apple

Victim Caches (HP 7200)

L1 Data
Cache

Unified L2
Cache

RF

CPU

Victim

FA Cache

4 blocks

Evicted data

from L1

Evicted data
from VC

to where?
Hit data from VC
(miss in L1)

Victim cache is a small associative backup cache, added to a direct-mapped
cache, which holds recently evicted lines
• First look up in direct-mapped cache
• If miss, look in victim cache
• If hit in victim cache, swap hit line with line now evicted from L1
• If miss in victim cache, L1 victim -> VC, VC victim->?
Fast hit time of direct mapped but with reduced conflict misses 66

MIPS R10000 Off-Chip L2 Cache
(Yeager, IEEE Micro 1996)

67

Way-Predicting Caches
(MIPS R10000 L2 cache)

68

• Use processor address to index into way-prediction table
• Look in predicted way at given index, then:

HIT MISS

Return copy
of data from
cache

Look in other way

Read block of data
from
next level of cache

MISSSLOW HIT
(change entry in
prediction table)

R10000 L2 Cache Timing Diagram

69

Way-Predicting Instruction Cache
(Alpha 21264-like)

70

PC addr inst

Primary
Instruction
Cache

0x4
Add

Sequential Way

Branch Target Way

way

Jump target

Jump
control

Store last-used way for sequential
path and predicted branch taken
path. Can be fetching multiple
instructions per cycle.

Reduce Miss Penalty of Long Blocks:
Early Restart and Critical Word First

71

§ Don’t wait for full block before restarting CPU
§ Early restart—As soon as the requested word of the block

arrives, send it to the CPU and let the CPU continue execution
§ Critical Word First—Request the missed word first from memory

and send it to the CPU as soon as it arrives; let the CPU continue
execution while filling the rest of the words in the block

– Long blocks more popular today Þ Critical Word 1st Widely used

Word 0

Word 1

Word 2

Word 3

To CPU

Word 2

Word 3

Word 0

Word 1

To CPU

Rest of line filled in
with wrap-around on
cache line

72

Increasing Cache Bandwidth with
Non-Blocking Caches

§ Non-blocking cache or lockup-free cache allow data cache to
continue to supply cache hits during a miss

– requires Full/Empty bits on registers or out-of-order execution

§ “hit under miss” reduces the effective miss penalty by working
during miss vs. ignoring CPU requests

§ “hit under multiple miss” or “miss under miss” may further
lower the effective miss penalty by overlapping multiple misses

– Significantly increases the complexity of the cache controller as there can be
multiple outstanding memory accesses, and can get miss to line with
outstanding miss (secondary miss)

– Requires pipelined or banked memory system (otherwise cannot support
multiple misses)

– Pentium Pro allows 4 outstanding memory misses

– Cray X1E vector supercomputer allows 2,048 outstanding memory misses

73

Value of Hit Under Miss for SPEC
(old data)

§ FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
§ Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
§ 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss, SPEC 92

Integer

Floating Point

“Hit under n Misses”

0->1
1->2
2->64
Base

Prefetching

§ Speculate on future instruction and data accesses
and fetch them into cache(s)

– Instruction accesses easier to predict than data accesses

§ Varieties of prefetching

– Hardware prefetching
– Software prefetching
– Mixed schemes

§What types of misses does prefetching affect?

74

Issues in Prefetching

§ Usefulness – should produce hits
§ Timeliness – not late and not too early
§ Cache and bandwidth pollution

75

L1 Data

L1 Instruction

Unified L2
Cache

RF

CPU

Prefetched data

Hardware Instruction Prefetching

Instruction prefetch in Alpha AXP 21064
– Fetch two lines on a miss; the requested line (i) and the next

consecutive line (i+1)
– Requested line placed in cache, and next line in instruction stream

buffer
– If miss in cache but hit in stream buffer, move stream buffer line

into cache and prefetch next line (i+2)

76

L1
Instruction

Unified L2
Cache

RF

CPU

Stream

Buffer

Prefetched

instruction lineReq

line

Req

line

Hardware Data Prefetching

§ Prefetch-on-miss:
– Prefetch b + 1 upon miss on b

§ One-Block Lookahead (OBL) scheme
– Initiate prefetch for block b + 1 when block b is accessed

– Why is this different from doubling block size?

– Can extend to N-block lookahead

§ Strided prefetch
– If observe sequence of accesses to line b, b+N, b+2N, then prefetch b+3N

etc.

§ Example: IBM Power 5 [2003] supports eight independent
streams of strided prefetch per processor, prefetching 12
lines ahead of current access

77

Software Prefetching

78

for(i=0; i < N; i++) {
prefetch(&a[i + 1]);
prefetch(&b[i + 1]);
SUM = SUM + a[i] * b[i];

}

Software Prefetching Issues

79

§ Timing is the biggest issue, not predictability
– If you prefetch very close to when the data is required, you might

be too late
– Prefetch too early, cause pollution
– Estimate how long it will take for the data to come into L1, so we

can set P appropriately
– Why is this hard to do?

for(i=0; i < N; i++) {
prefetch(&a[i + P]);
prefetch(&b[i + P]);
SUM = SUM + a[i] * b[i];

}
Must consider cost of prefetch instructions

Software Prefetching Example

80

[“Data prefetching on the HP PA8000”, Santhanam et al., 1997]

Compiler Optimizations

§ Restructuring code affects the data access sequence
– Group data accesses together to improve spatial locality

– Re-order data accesses to improve temporal locality

§ Prevent data from entering the cache
– Useful for variables that will only be accessed once before being

replaced

– Needs mechanism for software to tell hardware not to cache data (“no-
allocate” instruction hints or page table bits)

§ Kill data that will never be used again
– Streaming data exploits spatial locality but not temporal locality

– Replace into dead cache locations

81

Loop Interchange

82

for(j=0; j < N; j++) {
for(i=0; i < M; i++) {

x[i][j] = 2 * x[i][j];
}

}

for(i=0; i < M; i++) {
for(j=0; j < N; j++) {

x[i][j] = 2 * x[i][j];
}

}

What type of locality does this improve?

Loop Interchange

§ Previous code improves spatial locality by providing stride
1 accesses to array x (bottom) instead of stride M accesses
(top)

§ Changes in the stride accesses are dependent on the
programming language

83

Loop Fusion

84

for(i=0; i < N; i++)
a[i] = b[i] * c[i];

for(i=0; i < N; i++)
d[i] = a[i] * c[i];

for(i=0; i < N; i++)
{

a[i] = b[i] * c[i];
d[i] = a[i] * c[i];

}

What type of locality does this improve?

Matrix Multiply, Naïve Code

85

for(i=0; i < N; i++)
for(j=0; j < N; j++) {

r = 0;
for(k=0; k < N; k++)

r = r + y[i][k] * z[k][j];
x[i][j] = r;

}

Not touched Old access New access

x j

i

y k

i

z j

k

Matrix Multiply with Cache Tiling

86

for(jj=0; jj < N; jj=jj+B)
for(kk=0; kk < N; kk=kk+B)

for(i=0; i < N; i++)
for(j=jj; j < min(jj+B,N); j++) {

r = 0;
for(k=kk; k < min(kk+B,N); k++)

r = r + y[i][k] * z[k][j];
x[i][j] = x[i][j] + r;

}

What type of locality does this improve?

y k

i

z j

k

x j

i

