
1Copyright © 2019, Elsevier Inc. All rights Reserved

Chapter 3

Instruction-Level Parallelism
and Its Exploitation

Computer Architecture
A Quantitative Approach, Sixth Edition

2Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction
n Pipelining become universal technique in 1985

n Overlaps execution of instructions

n Exploits “Instruction Level Parallelism”

n Beyond this, there are two main approaches:
n Hardware-based dynamic approaches

n Used in server and desktop processors
n Not used as extensively in PMP processors

n Compiler-based static approaches

n Not as successful outside of scientific applications

Introduction

3Copyright © 2019, Elsevier Inc. All rights Reserved

Instruction-Level Parallelism
n When exploiting instruction-level parallelism,

goal is to maximize CPI
n Pipeline CPI =

n Ideal pipeline CPI +
n Structural stalls +
n Data hazard stalls +
n Control stalls

n Parallelism with basic block is limited
n Typical size of basic block = 3-6 instructions

n Must optimize across branches

Introduction

4Copyright © 2019, Elsevier Inc. All rights Reserved

Data Dependence
n Loop-Level Parallelism

n Unroll loop statically or dynamically

n Use SIMD (vector processors and GPUs)

n Challenges:
n Data dependency

n Instruction j is data dependent on instruction i if
n Instruction i produces a result that may be used by instruction j
n Instruction j is data dependent on instruction k and instruction k

is data dependent on instruction i

n Dependent instructions cannot be executed
simultaneously

Introduction

5Copyright © 2019, Elsevier Inc. All rights Reserved

Data Dependence
n Dependencies are a property of programs
n Pipeline organization determines if dependence

is detected and if it causes a stall

n Data dependence conveys:
n Possibility of a hazard

n Order in which results must be calculated

n Upper bound on exploitable instruction level

parallelism

n Dependencies that flow through memory
locations are difficult to detect

Introduction

6Copyright © 2019, Elsevier Inc. All rights Reserved

Name Dependence
n Two instructions use the same name but no flow

of information
n Not a true data dependence, but is a problem when

reordering instructions

n Antidependence: instruction j writes a register or

memory location that instruction i reads

n Initial ordering (i before j) must be preserved

n Output dependence: instruction i and instruction j

write the same register or memory location

n Ordering must be preserved

n To resolve, use register renaming techniques

Introduction

7Copyright © 2019, Elsevier Inc. All rights Reserved

Other Factors
n Data Hazards

n Read after write (RAW)

n Write after write (WAW)

n Write after read (WAR)

n Control Dependence
n Ordering of instruction i with respect to a branch

instruction

n Instruction control dependent on a branch cannot be moved
before the branch so that its execution is no longer controlled
by the branch

n An instruction not control dependent on a branch cannot be
moved after the branch so that its execution is controlled by
the branch

Introduction

8Copyright © 2019, Elsevier Inc. All rights Reserved

Examples
n or instruction dependent on

add and sub

n Assume x4 isn’t used after
skip
n Possible to move sub before

the branch

Introduction

• Example 1:

add x1,x2,x3
beq x4,x0,L
sub x1,x1,x6

L: …
or x7,x1,x8

• Example 2:

add x1,x2,x3
beq x12,x0,skip
sub x4,x5,x6
add x5,x4,x9

skip:
or x7,x8,x9

9Copyright © 2019, Elsevier Inc. All rights Reserved

Compiler Techniques for Exposing ILP

n Pipeline scheduling
n Separate dependent instruction from the source

instruction by the pipeline latency of the source

instruction

n Example:
for (i=999; i>=0; i=i-1)

x[i] = x[i] + s;

C
om

piler Techniques

10Copyright © 2019, Elsevier Inc. All rights Reserved

Pipeline Stalls
Loop: fld f0,0(x1)

stall
fadd.d f4,f0,f2
stall
stall
fsd f4,0(x1)
addi x1,x1,-8
bne x1,x2,Loop

C
om

piler Techniques

Loop: fld f0,0(x1)
addi x1,x1,-8
fadd.d f4,f0,f2
stall
stall
fsd f4,0(x1)
bne x1,x2,Loop

11Copyright © 2019, Elsevier Inc. All rights Reserved

Loop Unrolling
n Loop unrolling

n Unroll by a factor of 4 (assume # elements is divisible by 4)
n Eliminate unnecessary instructions

Loop: fld f0,0(x1)
fadd.d f4,f0,f2
fsd f4,0(x1) //drop addi & bne
fld f6,-8(x1)
fadd.d f8,f6,f2
fsd f8,-8(x1) //drop addi & bne
fld f0,-16(x1)
fadd.d f12,f0,f2
fsd f12,-16(x1) //drop addi & bne
fld f14,-24(x1)
fadd.d f16,f14,f2
fsd f16,-24(x1)
addi x1,x1,-32
bne x1,x2,Loop

C
om

piler Techniques

n note: number

of live registers

vs. original loop

12Copyright © 2019, Elsevier Inc. All rights Reserved

Loop Unrolling/Pipeline Scheduling

n Pipeline schedule the unrolled loop:

Loop: fld f0,0(x1)
fld f6,-8(x1)
fld f8,-16(x1)
fld f14,-24(x1)
fadd.d f4,f0,f2
fadd.d f8,f6,f2
fadd.d f12,f0,f2
fadd.d f16,f14,f2
fsd f4,0(x1)
fsd f8,-8(x1)
fsd f12,-16(x1)
fsd f16,-24(x1)
addi x1,x1,-32
bne x1,x2,Loop

C
om

piler Techniques

n 14 cycles

n 3.5 cycles per element

13Copyright © 2019, Elsevier Inc. All rights Reserved

Strip Mining
n Unknown number of loop iterations?

n Number of iterations = n
n Goal: make k copies of the loop body

n Generate pair of loops:

n First executes n mod k times
n Second executes n / k times
n “Strip mining”

C
om

piler Techniques

14Copyright © 2019, Elsevier Inc. All rights Reserved

Branch Prediction
n Basic 2-bit predictor:

n For each branch:
n Predict taken or not taken
n If the prediction is wrong two consecutive times, change prediction

n Correlating predictor:

n Multiple 2-bit predictors for each branch
n One for each possible combination of outcomes of preceding n

branches
n (m,n) predictor: behavior from last m branches to choose from 2m n-bit

predictors

n Tournament predictor:

n Combine correlating predictor with local predictor

B
ranch P

rediction

15Copyright © 2019, Elsevier Inc. All rights Reserved

Branch Prediction
B

ranch P
rediction

gshare tournament

16Copyright © 2019, Elsevier Inc. All rights Reserved

Branch Prediction Performance

B
ranch P

rediction

17Copyright © 2019, Elsevier Inc. All rights Reserved

Branch Prediction Performance
B

ranch P
rediction

18Copyright © 2019, Elsevier Inc. All rights Reserved

Tagged Hybrid Predictors

n Need to have predictor for each branch
and history
n Problem: this implies huge tables
n Solution:

n Use hash tables, whose hash value is based on

branch address and branch history

n Longer histories may lead to increased chance of

hash collision, so use multiple tables with

increasingly shorter histories

B
ranch P

rediction

19Copyright © 2019, Elsevier Inc. All rights Reserved

Tagged Hybrid Predictors
B

ranch P
rediction

20Copyright © 2019, Elsevier Inc. All rights Reserved

Tagged Hybrid Predictors

B
ranch P

rediction

21Copyright © 2019, Elsevier Inc. All rights Reserved

Dynamic Scheduling
n Rearrange order of instructions to reduce stalls

while maintaining data flow

n Advantages:
n Compiler doesn’t need to have knowledge of

microarchitecture

n Handles cases where dependencies are unknown at

compile time

n Disadvantage:
n Substantial increase in hardware complexity

n Complicates exceptions

D
ynam

ic S
cheduling

22Copyright © 2019, Elsevier Inc. All rights Reserved

Dynamic Scheduling
n Dynamic scheduling implies:

n Out-of-order execution

n Out-of-order completion

n Example 1:
fdiv.d f0,f2,f4

fadd.d f10,f0,f8

fsub.d f12,f8,f14

n fsub.d is not dependent, issue before fadd.d

D
ynam

ic S
cheduling

23Copyright © 2019, Elsevier Inc. All rights Reserved

Dynamic Scheduling

n Example 2:
fdiv.d f0,f2,f4

fmul.d f6,f0,f8

fadd.d f0,f10,f14

n fadd.d is not dependent, but the antidependence

makes it impossible to issue earlier without register

renaming

D
ynam

ic S
cheduling

24Copyright © 2019, Elsevier Inc. All rights Reserved

Register Renaming
n Example 3:

fdiv.d f0,f2,f4

fadd.d f6,f0,f8

fsd f6,0(x1)

fsub.d f8,f10,f14

fmul.d f6,f10,f8

n name dependence with f6

antidependence

antidependence

D
ynam

ic S
cheduling

25Copyright © 2019, Elsevier Inc. All rights Reserved

Register Renaming
n Example 3:

fdiv.d f0,f2,f4

fadd.d S,f0,f8

fsd S,0(x1)

fsub.d T,f10,f14

fmul.d f6,f10,T

n Now only RAW hazards remain, which can be strictly

ordered

D
ynam

ic S
cheduling

26Copyright © 2019, Elsevier Inc. All rights Reserved

Register Renaming
n Tomasulo’s Approach

n Tracks when operands are available

n Introduces register renaming in hardware

n Minimizes WAW and WAR hazards

n Register renaming is provided by reservation
stations (RS)
n Contains:

n The instruction
n Buffered operand values (when available)
n Reservation station number of instruction providing the

operand values

D
ynam

ic S
cheduling

27Copyright © 2019, Elsevier Inc. All rights Reserved

Register Renaming
n RS fetches and buffers an operand as soon as it

becomes available (not necessarily involving register file)

n Pending instructions designate the RS to which they will

send their output

n Result values broadcast on a result bus, called the common data
bus (CDB)

n Only the last output updates the register file

n As instructions are issued, the register specifiers are

renamed with the reservation station

n May be more reservation stations than registers

n Load and store buffers

n Contain data and addresses, act like reservation stations

D
ynam

ic S
cheduling

28Copyright © 2019, Elsevier Inc. All rights Reserved

Tomasulo’s Algorithm

D
ynam

ic S
cheduling

29Copyright © 2019, Elsevier Inc. All rights Reserved

Tomasulo’s Algorithm
n Three Steps:

n Issue
n Get next instruction from FIFO queue
n If available RS, issue the instruction to the RS with operand values if

available
n If operand values not available, stall the instruction

n Execute
n When operand becomes available, store it in any reservation

stations waiting for it
n When all operands are ready, issue the instruction
n Loads and store maintained in program order through effective

address
n No instruction allowed to initiate execution until all branches that

proceed it in program order have completed
n Write result

n Write result on CDB into reservation stations and store buffers
n (Stores must wait until address and value are received)

D
ynam

ic S
cheduling

30Copyright © 2019, Elsevier Inc. All rights Reserved

Example

D
ynam

ic S
cheduling

31Copyright © 2019, Elsevier Inc. All rights Reserved

Tomasulo’s Algorithm

n Example loop:

Loop: fld f0,0(x1)
fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x16 != x2

D
ynam

ic S
cheduling

32Copyright © 2019, Elsevier Inc. All rights Reserved

Tomasulo’s Algorithm

D
ynam

ic S
cheduling

33Copyright © 2019, Elsevier Inc. All rights Reserved

Hardware-Based Speculation
n Execute instructions along predicted execution

paths but only commit the results if prediction
was correct

n Instruction commit: allowing an instruction to
update the register file when instruction is no
longer speculative

n Need an additional piece of hardware to prevent
any irrevocable action until an instruction
commits
n I.e. updating state or taking an execution

H
ardw

are-B
ased S

peculation

34Copyright © 2019, Elsevier Inc. All rights Reserved

Reorder Buffer
n Reorder buffer – holds the result of instruction

between completion and commit

n Four fields:
n Instruction type: branch/store/register

n Destination field: register number

n Value field: output value

n Ready field: completed execution?

n Modify reservation stations:
n Operand source is now reorder buffer instead of

functional unit

H
ardw

are-B
ased S

peculation

35Copyright © 2019, Elsevier Inc. All rights Reserved

Reorder Buffer
n Issue:

n Allocate RS and ROB, read available operands

n Execute:
n Begin execution when operand values are available

n Write result:
n Write result and ROB tag on CDB

n Commit:
n When ROB reaches head of ROB, update register

n When a mispredicted branch reaches head of ROB,

discard all entries

H
ardw

are-B
ased S

peculation

36Copyright © 2019, Elsevier Inc. All rights Reserved

Reorder Buffer
n Register values and memory values are not

written until an instruction commits

n On misprediction:
n Speculated entries in ROB are cleared

n Exceptions:
n Not recognized until it is ready to commit

H
ardw

are-B
ased S

peculation

37Copyright © 2019, Elsevier Inc. All rights Reserved

Reorder Buffer
H

ardw
are-B

ased S
peculation

38Copyright © 2019, Elsevier Inc. All rights Reserved

Reorder Buffer

H
ardw

are-B
ased S

peculation

39Copyright © 2019, Elsevier Inc. All rights Reserved

Multiple Issue and Static Scheduling
n To achieve CPI < 1, need to complete multiple

instructions per clock

n Solutions:
n Statically scheduled superscalar processors

n VLIW (very long instruction word) processors

n Dynamically scheduled superscalar processors

M
ultiple Issue and S

tatic S
cheduling

40Copyright © 2019, Elsevier Inc. All rights Reserved

Multiple Issue

M
ultiple Issue and S

tatic S
cheduling

41Copyright © 2019, Elsevier Inc. All rights Reserved

VLIW Processors
n Package multiple operations into one instruction

n Example VLIW processor:
n One integer instruction (or branch)

n Two independent floating-point operations

n Two independent memory references

n Must be enough parallelism in code to fill the
available slots

M
ultiple Issue and S

tatic S
cheduling

42Copyright © 2019, Elsevier Inc. All rights Reserved

VLIW Processors

n Disadvantages:
n Statically finding parallelism

n Code size

n No hazard detection hardware

n Binary code compatibility

M
ultiple Issue and S

tatic S
cheduling

43Copyright © 2019, Elsevier Inc. All rights Reserved

Dynamic Scheduling, Multiple Issue, and Speculation

n Modern microarchitectures:
n Dynamic scheduling + multiple issue + speculation

n Two approaches:
n Assign reservation stations and update pipeline

control table in half clock cycles

n Only supports 2 instructions/clock

n Design logic to handle any possible dependencies

between the instructions

n Issue logic is the bottleneck in dynamically
scheduled superscalars

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

44Copyright © 2019, Elsevier Inc. All rights Reserved

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Overview of Design

45Copyright © 2019, Elsevier Inc. All rights Reserved

n Examine all the dependencies amoung the
instructions in the bundle

n If dependencies exist in bundle, encode them in
reservation stations

n Also need multiple completion/commit

n To simplify RS allocation:
n Limit the number of instructions of a given class that

can be issued in a “bundle”, i.e. on FP, one integer,

one load, one store

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Multiple Issue

46Copyright © 2019, Elsevier Inc. All rights Reserved

Loop: ld x2,0(x1) //x2=array element

addi x2,x2,1 //increment x2

sd x2,0(x1) //store result

addi x1,x1,8 //increment pointer

bne x2,x3,Loop //branch if not last

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Example

47Copyright © 2019, Elsevier Inc. All rights Reserved

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Example (No Speculation)

48Copyright © 2019, Elsevier Inc. All rights Reserved

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Example (Mutiple Issue with Speculation)

49Copyright © 2019, Elsevier Inc. All rights Reserved

n Need high instruction bandwidth
n Branch-Target buffers

n Next PC prediction buffer, indexed by current PC

A
dv. Techniques for Instruction D

elivery and S
peculation

Branch-Target Buffer

50Copyright © 2019, Elsevier Inc. All rights Reserved

n Optimization:
n Larger branch-target buffer

n Add target instruction into buffer to deal with longer

decoding time required by larger buffer

n “Branch folding”

A
dv. Techniques for Instruction D

elivery and S
peculation

Branch Folding

51Copyright © 2019, Elsevier Inc. All rights Reserved

n Most unconditional branches come from
function returns

n The same procedure can be called from
multiple sites
n Causes the buffer to potentially forget about the

return address from previous calls

n Create return address buffer organized as a
stack

A
dv. Techniques for Instruction D

elivery and S
peculation

Return Address Predictor

52Copyright © 2019, Elsevier Inc. All rights Reserved

A
dv. Techniques for Instruction D

elivery and S
peculation

Return Address Predictor

53Copyright © 2019, Elsevier Inc. All rights Reserved

n Design monolithic unit that performs:
n Branch prediction

n Instruction prefetch

n Fetch ahead

n Instruction memory access and buffering

n Deal with crossing cache lines

A
dv. Techniques for Instruction D

elivery and S
peculation

Integrated Instruction Fetch Unit

54Copyright © 2019, Elsevier Inc. All rights Reserved

n Register renaming vs. reorder buffers
n Instead of virtual registers from reservation stations and reorder

buffer, create a single register pool
n Contains visible registers and virtual registers

n Use hardware-based map to rename registers during issue
n WAW and WAR hazards are avoided
n Speculation recovery occurs by copying during commit
n Still need a ROB-like queue to update table in order
n Simplifies commit:

n Record that mapping between architectural register and physical register is no longer
speculative

n Free up physical register used to hold older value
n In other words: SWAP physical registers on commit

n Physical register de-allocation is more difficult
n Simple approach: deallocate virtual register when next instruction writes to its

mapped architecturally-visibly register

A
dv. Techniques for Instruction D

elivery and S
peculation

Register Renaming

55Copyright © 2019, Elsevier Inc. All rights Reserved

n Combining instruction issue with register renaming:

n Issue logic pre-reserves enough physical registers for the
bundle

n Issue logic finds dependencies within bundle, maps registers
as necessary

n Issue logic finds dependencies between current bundle and
already in-flight bundles, maps registers as necessary

A
dv. Techniques for Instruction D

elivery and S
peculation

Integrated Issue and Renaming

56Copyright © 2019, Elsevier Inc. All rights Reserved

n How much to speculate
n Mis-speculation degrades performance and power

relative to no speculation

n May cause additional misses (cache, TLB)

n Prevent speculative code from causing higher

costing misses (e.g. L2)

n Speculating through multiple branches
n Complicates speculation recovery

n Speculation and energy efficiency
n Note: speculation is only energy efficient when it

significantly improves performance

A
dv. Techniques for Instruction D

elivery and S
peculation

How Much?

57Copyright © 2019, Elsevier Inc. All rights Reserved

A
dv. Techniques for Instruction D

elivery and S
peculation

How Much?
integer

58Copyright © 2019, Elsevier Inc. All rights Reserved

n Value prediction
n Uses:

n Loads that load from a constant pool
n Instruction that produces a value from a small set of values

n Not incorporated into modern processors

n Similar idea--address aliasing prediction--is used on

some processors to determine if two stores or a

load and a store reference the same address to

allow for reordering

A
dv. Techniques for Instruction D

elivery and S
peculation

Energy Efficiency

59

Fallacies and Pitfalls

n It is easy to predict the performance/energy
efficiency of two different versions of the same
ISA if we hold the technology constant

Copyright © 2019, Elsevier Inc. All rights Reserved

Fallacies and P
itfalls

60

Fallacies and Pitfalls

n Processors with lower CPIs / faster clock rates
will also be faster

n Pentium 4 had higher clock, lower CPI

n Itanium had same CPI, lower clock

Copyright © 2019, Elsevier Inc. All rights Reserved

Fallacies and P
itfalls

61

Fallacies and Pitfalls

n Sometimes bigger and dumber is better
n Pentium 4 and Itanium were advanced designs, but

could not achieve their peak instruction throughput

because of relatively small caches as compared to i7

n And sometimes smarter is better than bigger and
dumber
n TAGE branch predictor outperforms gshare with less

stored predictions

Copyright © 2019, Elsevier Inc. All rights Reserved

Fallacies and P
itfalls

62

Fallacies and Pitfalls

n Believing that there
are large amounts
of ILP available, if
only we had the
right techniques

Copyright © 2019, Elsevier Inc. All rights Reserved

Fallacies and P
itfalls

