
CSC 631: High-Performance Computer
Architecture

Fall 2022
Lecture 3: Pipelining

“Iron Law” of Processor Performance

§ Instructions per program depends on source code,
compiler technology, and ISA

§ Cycles per instructions (CPI) depends on ISA and
µarchitecture

§ Time per cycle depends upon the µarchitecture and base

technology

2

Time = Instructions Cycles Time

Program Program * Instruction * Cycle

Microarchitecture CPI cycle time
Microcoded >1 short
Single-cycle unpipelined 1 long
Pipelined 1 short

MemoryEXecuteDecodeFetch

Classic 5-Stage RISC Pipeline

3

Re
gi

st
er

s

AL
U

B
A

Data
Cache

PC

Instruction
Cache

St
or

e

Im
m

In
st

. R
eg

is
te

r

Writeback

This version designed for regfiles/memories
with synchronous reads and writes.

CPI Examples

4

Time

Inst 3

7 cycles

Inst 1 Inst 2

5 cycles 10 cycles
Microcoded machine

3 instructions, 22 cycles, CPI=7.33

Unpipelined machine

3 instructions, 3 cycles, CPI=1

Inst 1 Inst 2 Inst 3

Pipelined machine

3 instructions, 3 cycles, CPI=1
Inst 1

Inst 2

Inst 3 5-stage pipeline CPI≠5!!!

Instructions interact with each other in pipeline

§ An instruction in the pipeline may need a

resource being used by another instruction in the

pipeline à structural hazard

§ An instruction may depend on something

produced by an earlier instruction

– Dependence may be for a data value

à data hazard
– Dependence may be for the next instruction’s address

à control hazard (branches, exceptions)

§ Handling hazards generally introduces bubbles into
pipeline and reduces ideal CPI > 1

5

Pipeline CPI Examples

6

Time

3 instructions finish in 3 cycles
CPI = 3/3 =1

Inst 1

Inst 2

Inst 3

3 instructions finish in 4 cycles
CPI = 4/3 = 1.33

Inst 1

Inst 2

Inst 3

Bubble

Measure from when first instruction finishes
to when last instruction in sequence finishes.

3 instructions finish in 5cycles
CPI = 5/3 = 1.67

Inst 1

Inst 2

Inst 3

Bubble 1

Bubble 2

Inst 3

Resolving Structural Hazards

§ Structural hazard occurs when two instructions

need same hardware resource at same time

– Can resolve in hardware by stalling newer instruction till older
instruction finished with resource

§ A structural hazard can always be avoided by

adding more hardware to design

– E.g., if two instructions both need a port to memory at same
time, could avoid hazard by adding second port to memory

§ Classic RISC 5-stage integer pipeline has no

structural hazards by design

– Many RISC implementations have structural hazards on multi-
cycle units such as multipliers, dividers, floating-point units, etc.,
and can have on register writeback ports

7

Types of Data Hazards

8

Consider executing a sequence of register-register

instructions of type:

rk ← ri op rj
Data-dependence

r3 ← r1 op r2 Read-after-Write

r5 ← r3 op r4 (RAW) hazard

Anti-dependence

r3 ← r1 op r2 Write-after-Read

r1 ← r4 op r5 (WAR) hazard

Output-dependence

r3 ← r1 op r2 Write-after-Write

r3 ← r6 op r7 (WAW) hazard

Three Strategies for Data Hazards

§ Interlock
– Wait for hazard to clear by holding dependent

instruction in issue stage

§Bypass
– Resolve hazard earlier by bypassing value as soon as

available

§Speculate
– Guess on value, correct if wrong

9

Interlocking Versus Bypassing

10

add x1, x3, x5
sub x2, x1, x4

F add x1, x3, x5D

F

X

D

F

sub x2, x1, x4

W

M

X bubble

F

D

W

X M W

M W

W

M

D

X bubble

M

X bubble

D

F

Instruction interlocked

in decode stage

F D X M W add x1, x3, x5

F D X M W sub x2, x1, x4

Bypass around ALU

with no bubbles

MemoryEXecuteDecodeFetch

Example Bypass Path

11

Re
gi

st
er

s

AL
U

B
A

Data
Cache

PC

Instruction
Cache

St
or

e

Im
m

In
st

. R
eg

is
te

r

Writeback

MemoryEXecuteDecodeFetch

Fully Bypassed Data Path

12

Re
gi

st
er

s

AL
U

B
A

Data
Cache

PC

Instruction
Cache

St
or

e

Im
m

In
st

. R
eg

is
te

r

Writeback

F D X M W

F D X M W

F D X M W

F D X M W
[Assumes data written to registers
in a W cycle is readable in parallel
D cycle (dotted line). Extra write
data register and bypass paths
required if this is not possible.]

Value Speculation for RAW Data Hazards

§ Rather than wait for value, can guess value!

§ So far, only effective in certain limited cases:

– Branch prediction
– Stack pointer updates

– Memory address disambiguation

13

Control Hazards

What do we need to calculate next PC?

§For Unconditional Jumps
– Opcode, PC, and offset

§For Jump Register
– Opcode, Register value, and offset

§For Conditional Branches
– Opcode, Register (for condition), PC and offset

§For all other instructions
– Opcode and PC (and have to know it’s not one of above)

14

MemoryEXecuteDecodeFetch

Control flow information in pipeline

15

Re
gi

st
er

s B
A

Data
Cache

PC

Instruction
Cache

St
or

e

Im
m

In
st

. R
eg

is
te

r

Writeback

PC known Opcode,
offset known

Branch condition,
Jump register
value known

AL
U

EXecuteDecodeFetch

RISC-V Unconditional PC-Relative Jumps

16

Re
gi

st
er

s B
A

Instruction
Cache

Im
m

In
st

. R
eg

is
te

r

AL
U

PC
_d

ec
od

e

Ad
d

Jump?PCJumpSel

PC
_f

et
ch

Ki
ll

FKill

+4

[Kill bit turns
instruction
into a bubble]

Pipelining for Unconditional PC-Relative
Jumps

17

M W

X M W

D X M W

j targetF D

F

target: add x1, x2, x3

X

D

F

bubble

Branch Delay Slots
§ Early RISCs adopted idea from pipelined microcode

engines, and changed ISA semantics so instruction after
branch/jump is always executed before control flow

change occurs:

0x100 j target
0x104 add x1, x2, x3 // Executed before target
…
0x205 target: xori x1, x1, 7

§ Software has to fill delay slot with useful work, or fill with
explicit NOP instruction

18

M W

X M W

D X M W

j targetF D

F

target: xori x1, x1, 7

X

D

F

add x1, x2, x3

Post-1990 RISC ISAs don’t have delay slots

§ Encodes microarchitectural detail into ISA

– c.f. IBM 650 drum layout

§ Performance issues

– Increased I-cache misses from NOPs in unused delay slots
– I-cache miss on delay slot causes machine to wait, even if delay

slot is a NOP

§ Complicates more advanced microarchitectures

– Consider 30-stage pipeline with four-instruction-per-cycle issue

§ Better branch prediction reduced need

– Will see branch prediction later on

19

EXecuteDecodeFetch

RISC-V Conditional Branches

20

Re
gi

st
er

s B
A

Instruction
Cache

In
st

.

In
st

. R
eg

is
te

r

AL
U

PC
_d

ec
od

e

Ad
d

Branch?
PCSel

PC
_f

et
ch

Ki
ll

FKill

+4

Cond?

PC
_e

xe
cu

te

Ad
d

Ki
ll

DKill

Pipelining for Conditional Branches

21

M W

X M W

D X M W

beq x1, x2, targetF D

F

target: add x1, x2, x3

X

D

F

bubble

bubble

F D X M W

Pipelining for Jump Register

§ Register value obtained in execute stage

22

M W

X M W

D X M W

jr x1F D

F

target: add x5, x6, x7

X

D

F

bubble

bubble

F D X M W

Why instruction may not be dispatched
every cycle in classic 5-stage pipeline (CPI>1)

§ Full bypassing may be too expensive to implement

– typically all frequently used paths are provided
– some infrequently used bypass paths may increase cycle time

and counteract the benefit of reducing CPI

§ Loads have two-cycle latency

– Instruction after load cannot use load result
– MIPS-I ISA defined load delay slots, a software-visible pipeline

hazard (compiler schedules independent instruction or inserts
NOP to avoid hazard). Removed in MIPS-II (pipeline interlocks
added in hardware)

• MIPS:“Microprocessor without Interlocked Pipeline Stages”
§ Jumps/Conditional branches may cause bubbles

– kill following instruction(s) if no delay slots

23

Machines with software-visible delay slots may execute significant
number of NOP instructions inserted by the compiler.
NOPs reduce CPI, but increase instructions/program!

Traps and Interrupts

Recall the following definition from OS:

§ Exception: An unusual internal event caused by

program during execution

– E.g., page fault, arithmetic underflow

§ Interrupt: An external event outside of running

program

§ Trap: Forced transfer of control to supervisor

caused by exception or interrupt

– Not all exceptions cause traps (c.f. IEEE 754 floating-point
standard)

24

Asynchronous Interrupts

§ An I/O device requests attention by asserting one

of the prioritized interrupt request lines

§When the processor decides to process the

interrupt

– It stops the current program at instruction Ii ,
completing all the instructions up to Ii-1 (precise
interrupt)

– It saves the PC of instruction Ii in a special register,

Exception Program Counter (EPC)

– It disables interrupts and transfers control to a
designated interrupt handler running in supervisor

mode

25

Interrupt Handler

§ Saves EPC before enabling interrupts to allow nested
interrupts Þ

– need an instruction to move EPC into GPRs
– need a way to mask further interrupts at least until EPC can be saved

§ Needs to read a status register that indicates the cause of

the interrupt

§ Uses a special indirect jump instruction ERET (return-from-
environment) which

– enables interrupts

– restores the processor to the user mode
– restores hardware status and control state

26

Trap:
altering the normal flow of control

27

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
trap

handler

An external or internal event that needs to be processed by another (system)
program. The event is usually unexpected or rare from program’s point of view.

Trap Handler

§ Saves EPC before enabling interrupts to allow

nested interrupts Þ
– need an instruction to move EPC into GPRs
– need a way to mask further interrupts at least until EPC can be

saved

§Needs to read a status register that indicates the

cause of the trap

§Uses a special indirect jump instruction ERET

(return-from-environment) which

– enables interrupts
– restores the processor to the user mode
– restores hardware status and control state

28

Synchronous Trap

§ A synchronous trap is caused by an exception on

a particular instruction

§ In general, the instruction cannot be completed

and needs to be restarted after the exception has

been handled

– requires undoing the effect of one or more partially

executed instructions

§ In the case of a system call trap, the instruction is

considered to have been completed

– a special jump instruction involving a change to a

privileged mode

29

Exception Handling 5-Stage Pipeline

30

§ How to handle multiple simultaneous exceptions in
different pipeline stages?

§ How and where to handle external asynchronous
interrupts?

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow
Data address
Exceptions

PC address
Exception

Asynchronous Interrupts

Exception Handling 5-Stage Pipeline

31

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

Ca
us

e
EP

C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

Commit
Point

Exception Handling 5-Stage Pipeline

§Hold exception flags in pipeline until commit

point (M stage)

§ Exceptions in earlier pipe stages override later

exceptions for a given instruction

§ Inject external interrupts at commit point

(override others)

§ If trap at commit: update Cause and EPC registers,

kill all stages, inject handler PC into fetch stage

32

Speculating on Exceptions

§ Prediction mechanism

– Exceptions are rare, so simply predicting no exceptions is very
accurate!

§ Check prediction mechanism

– Exceptions detected at end of instruction execution pipeline,
special hardware for various exception types

§ Recovery mechanism

– Only write architectural state at commit point, so can throw away
partially executed instructions after exception

– Launch exception handler after flushing pipeline

§ Bypassing allows use of uncommitted instruction

results by following instructions

33

Deeper Pipelines: MIPS R4000

34

Figure C.36 The eight-stage pipeline structure of the R4000 uses pipelined
instruction and data caches. The pipe stages are labeled. The vertical dashed
lines represent the stage boundaries as well as the location of pipeline latches.
The instruction is actually available at the end of IS, but the tag check is done in
RF, while the registers are fetched. Thus, we show the instruction memory as
operating through RF. The TC stage is needed for data memory access,
because we cannot write the data into the register until we know whether the
cache access was a hit or not.

© 2018 Elsevier Inc. All rights reserved.

Commit Point

Direct-mapped I$ allows use of
instruction before tag check complete

R4000 Load-Use Delay

35

Figure C.37 The structure of the R4000 integer pipeline leads to a x1 load
delay. A x1 delay is possible because the data value is available at the end of
DS and can be bypassed. If the tag check in TC indicates a miss, the pipeline is
backed up a cycle, when the correct data are available.

© 2018 Elsevier Inc. All rights reserved.

Direct-mapped D$ allows use of
data before tag check complete

R4000 Branches

36

Figure C.39 The basic branch delay is three cycles, because the
condition evaluation is performed during EX.

© 2018 Elsevier Inc. All rights reserved.

Supercomputers
Definitions of a supercomputer:

§ Fastest machine in world at given task

§ A device to turn a compute-bound problem into an I/O
bound problem

§ Any machine costing $30M+

§ Any machine designed by Seymour Cray

§ CDC6600 (Cray, 1964) regarded as first supercomputer

37

CDC 6600 Seymour Cray, 1964

§ A fast pipelined machine with 60-bit words
– 128 Kword main memory capacity, 32 banks

§ Ten functional units (parallel, unpipelined)
– Floating Point: adder, 2 multipliers, divider

– Integer: adder, 2 incrementers, ...
§ Hardwired control (no microcoding)
§ Scoreboard for dynamic scheduling of instructions
§ Ten Peripheral Processors for Input/Output

– a fast multi-threaded 12-bit integer ALU
§ Very fast clock, 10 MHz (FP add in 4 clocks)
§ >400,000 transistors, 750 sq. ft., 5 tons, 150 kW,

novel freon-based technology for cooling
§ Fastest machine in world for 5 years (until 7600)

– over 100 sold ($7-10M each)

38
3/10/2009

CDC 6600:
A Load/Store Architecture

39

• Separate instructions to manipulate three types of reg.
• 8x60-bit data registers (X)
• 8x18-bit address registers (A)
• 8x18-bit index registers (B)

• All arithmetic and logic instructions are register-to-register

•Only Load and Store instructions refer to memory!

Touching address registers 1 to 5 initiates a load
6 to 7 initiates a store

- very useful for vector operations

opcode i j k Ri¬ Rj op Rk

opcode i j disp Ri ¬ M[Rj + disp]

6 3 3 3

6 3 3 18

CDC 6600: Datapath

40

Address Regs Index Regs
8 x 18-bit 8 x 18-bit

Operand Regs
8 x 60-bit

Inst. Stack
8 x 60-bit

IR

10 Functional
Units

Central

Memory

128K words,

32 banks,

1µs cycle

result
addr

result

operand

operand
addr

CDC6600: Vector Addition

41

B0 ← - n
loop: JZE B0, exit

A0 ← B0 + a0 load X0
A1 ← B0 + b0 load X1
X6 ← X0 + X1

A6 ← B0 + c0 store X6
B0 ← B0 + 1

jump loop

Ai = address register

Bi = index register

Xi = data register

Computer Architecture Terminology

Latency (in seconds or cycles): Time taken for a single
operation from start to finish (initiation to useable result)

Bandwidth (in operations/second or operations/cycle): Rate
of which operations can be performed

Occupancy (in seconds or cycles): Time during which the

unit is blocked on an operation (structural hazard)

Note, for a single functional unit:

§ Occupancy can be much less than latency (how?)

§ Occupancy can be greater than latency (how?)

§ Bandwidth can be greater than 1/latency (how?)

§ Bandwidth can be less than 1/latency (how?)

42

Issues in Complex Pipeline Control

43

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

• Structural conflicts at the execution stage if some FPU or memory unit is not
pipelined and takes more than one cycle
• Structural conflicts at the write-back stage due to variable latencies of different
functional units
• Out-of-order write hazards due to variable latencies of different functional
units
• How to handle exceptions?

Top500.org

44

High-Performance Conjugate Gradient

45

Acknowledgements

§ These slides contain material developed and copyright by:

– Arvind (MIT)
– Joel Emer (Intel/MIT)
– James Hoe (CMU)

– John Kubiatowicz (UCB)
– David Patterson (UCB)

– Krste Asanovic

46

