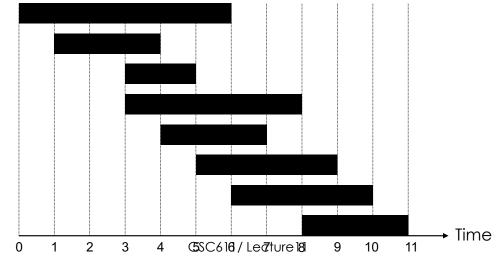
CSC 611: Analysis of Algorithms

Lecture 8

Greedy Algorithms

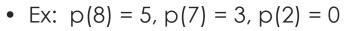
Weighted Interval Scheduling

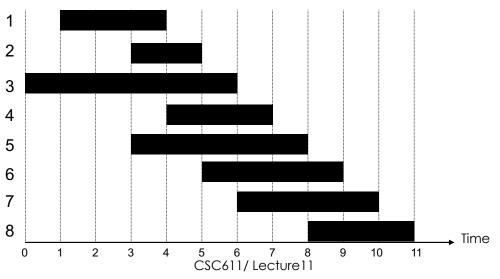
- Job j starts at $s_j,$ finishes at $f_j,$ and has weight or value v_j
- Two jobs are **compatible** if they don't overlap
- Goal: find maximum weight subset of mutually compatible jobs



Weighted Interval Scheduling

- Label jobs by finishing time: $f_1 \le f_2 \le \ldots \le f_n$
- Def. p(j) = largest index i < j such that job i is compatible with j





1. Making the Choice

- OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j
 - Case 1: OPT selects job j
 - Can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j 1 }
 - Must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)

optimal substructure

- Case 2: OPT does not select job j
 - Must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

2. A Recursive Solution

- OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j
 - Case 1: OPT selects job j
 - Can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j 1 }
 - Must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)
 - $OPT(j) = v_j + OPT(p(j))$
 - Case 2: OPT does not select job j
 - Must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1
 - OPT(i) = OPT(j-1)

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \{ v_j + OPT(p(j)), OPT(j-1) \} & \text{otherwise} \end{cases}$$

```
CSC611/Lecture11
```

Top-Down Recursive Algorithm

Input
$$(\mathbf{x}, \mathbf{s}_1, \dots, \mathbf{s}_n, f_1, \dots, f_n, \mathbf{v}_1, \dots, \mathbf{v}_n)$$

Sort jobs by finish times so that $f_1 \le f_2 \le \dots \le f_n$

```
Compute p(1), p(2), ..., p(n)
Compute-Opt(j)
```

```
{
    if (j = 0)
        return 0
    else
        return max(v<sub>j</sub> + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```

3. Compute the Optimal Value

• Compute values in increasing order of j

```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n
Sort jobs by finish times so that f_1 \le f_2 \le ... \le f_n
Compute p(1), p(2), ..., p(n)
Iterative-Compute-Opt
{
M[0] = 0
for j = 1 to n
M[j] = max(v_j + M[p(j)], M[j-1])
}
```

Memoized Version

Store results of each sub-problem; lookup as needed

```
Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n
Sort jobs by finish times so that f_1 \le f_2 \le ... \le f_n.
Compute p(1), p(2), ..., p(n)
```

```
for j = 1 to n

M[j] = empty

M[j] = 0

M-Compute-Opt(j)

{

if (M[j] is empty)

M[j] = max(v_j + M-Compute-Opt(p(j)), M-Compute-Opt(j-1)))

return M[j]

}

CSC611/Lecture11
```

4. Finding the Optimal Solution

• Two options

- Store additional information: at each time step store either j or p(j) – value that gave the optimal solution
- 2. Recursively find the solution by iterating through

```
array M Find-Solution(j)

{

if (j = 0)

output nothing

else if (v_j + M[p(j)] > M[j-1])

print j

Find-Solution(p(j))

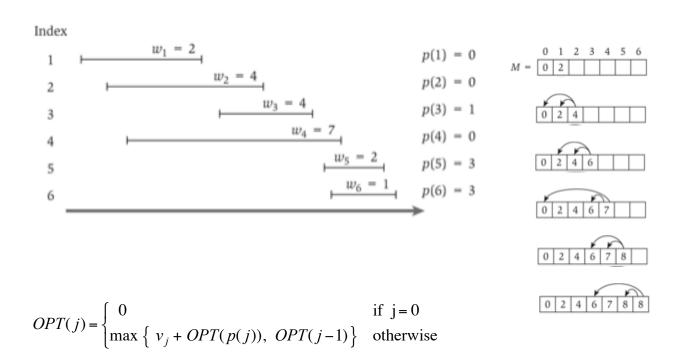
else

Find-Solution(j-1)

}

CSC611/Lecture11
```

An Example



CSC611/Lecture11

Segmented Least Squares

• Least squares

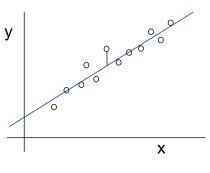
- Foundational problem in statistic and numerical analysis
- Given n points in the plane: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$
- Find a line y = ax + b that minimizes the sum of the squared error:

Error =
$$\sum_{i=1}^{n} (y_i - ax_i - b)^2$$

- Solution closed form
 - Minimum error is achieved when

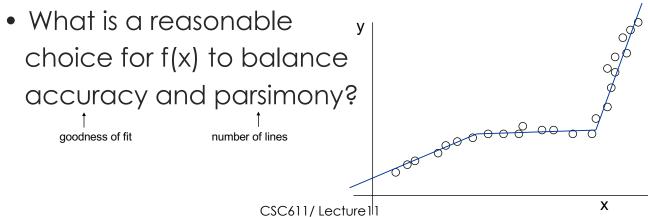
$$a = \frac{n \sum_{i} x_{i} y_{i} - (\sum_{i} x_{i}) (\sum_{i} y_{i})}{n \sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}, \quad b = \frac{\sum_{i} y_{i} - a \sum_{i} x_{i}}{n}$$

CSC611/Lecture11



Segmented Least Squares

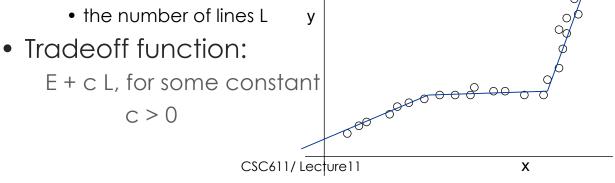
- Segmented least squares
 - Points lie roughly on a sequence of several line segments
 - Given n points in the plane (x₁, y₁), (x₂, y₂), ..., (x_n, y_n) with x₁ < x₂ < ... < x_n, find a sequence of lines that minimizes f(x)



Segmented Least Squares

• Segmented least squares

- Points lie roughly on a sequence of several line segments
- Given n points in the plane (x₁, y₁), (x₂, y₂), ..., (x_n, y_n) with x₁ < x₂ < ... < x_n, find a sequence of lines that minimizes:
 - the sum of the sums of the squared errors E in each segment



(1,2) Making the Choice and Recursive Solution

- Notation
 - OPT(j) = minimum cost for points $p_1, p_{i+1}, \ldots, p_j$
 - $-e(i, j) = minimum sum of squares for points p_i, p_{i+1}, ..., p_j$
- To compute OPT(j)
 - Last segment uses points $p_i,\,p_{i+1}\,,\,\ldots\,,\,p_j$ for some i
 - Cost = e(i, j) + c + OPT(i-1)

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \min_{1 \le i \le j} \{ e(i,j) + c + OPT(i-1) \} & \text{otherwise} \end{cases}$$

CSC611/Lecture11

3. Compute the Optimal Value

```
INPUT: n, p<sub>1</sub>,..., p<sub>N</sub>, c
Segmented-Least-Squares() {
    M[0] = 0
    for j = 1 to n
        for i = 1 to j
            compute the least square error e<sub>ij</sub> for
        the segment p<sub>i</sub>,..., p<sub>j</sub>
    for j = 1 to n
        M[j] = min 1 ≤ i ≤ j (e<sub>ij</sub> + c + M[i-1])
        return M[n]
    }
• Running time: O(n<sup>3</sup>)
    _ Bottleneck = computing e(i, j) for O(n<sup>2</sup>) pairs, O(n)
```

CSC611/Lecture11

Greedy Algorithms

- Similar to dynamic programming, but simpler approach
 - Also used for optimization problems

per pair using previous formula

- Idea: When we have a choice to make, make the one that looks best right now
 - Make a locally optimal choice in the hope of getting a globally optimal solution
- Greedy algorithms don't always yield an optimal solution
- When the problem has certain general characteristics, greedy algorithms give optimal solutions

Activity Selection

• Problem

Schedule the largest possible set of non-overlapping activities for a given room

	Start	End	Activity
1	8:00am	9:15am	Numerical methods class
2	8:30am	10:30am	Movie presentation (refreshments served)
3	9:20am	11:00am	Data structures class
4	10:00am	noon	Programming club mtg. (Pizza provided)
5	11:30am	1:00pm	Computer graphics class
6	1:05pm	2:15pm	Analysis of algorithms class
7	2:30pm	3:00pm	Computer security class
8	noon	4:00pm	Computer games contest (refreshments served)
9	4:00pm	5:30pm	Operating systems class

CSC611/Lecture11

Activity Selection

• Schedule **n activities** that require exclusive use of a common resource

 $S = \{a_1, \ldots, a_n\}$ – set of activities

- a_i needs resource during period [s_i, f_i)
 - s_i = start time and f_i = finish time of activity a_i

$$- 0 \le s_i < f_i < \infty$$

Activities a_i and a_j are compatible if the intervals [s_i, f_i) and [s_j, f_j) do not overlap

Activity Selection Problem

Select the largest possible set of non-overlapping (*compatible*) activities.

E.g.:

i	1	2	3	4	5	6	7	8	9	10	11
Si	1	3	0	5	3	5	6	8	8	2	12 14
f _i	4	5	6	7	8	9	10	11	12	13	14

- Activities are sorted in increasing order of finish times
- A subset of mutually compatible activities: {a₃, a₉, a₁₁}
- Maximal set of mutually compatible activities: {a₁, a₄, a₈, a₁₁} and {a₂, a₄, a₉, a₁₁}

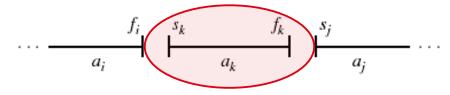
CSC611/Lecture11

Optimal Substructure

• Define the space of subproblems:

 $S_{ij} = \{ a_k \in S : f_i \leq s_k < f_k \leq s_j \}$

activities that start after a_i finishes and finish before a_j starts



Add fictitious activities

$$-a_0 = [-\infty, 0)$$

$$- \operatorname{O}_{n+1} = [\infty, "\infty + 1"]$$

- Range for S_{ij} is $0 \le i, j \le n + 1$

S = S_{0,n+1} entire space of activities

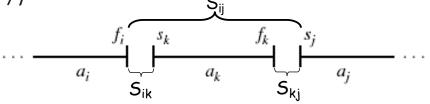
Representing the Problem

- We assume that activities are sorted in increasing order of finish times:
 f₀ ≤ f₁ ≤ f₂ ≤ ... ≤ f_n < f_{n+1}
- What happens to set S_{ij} for $i \ge j$?
 - For an activity $a_k \in S_{ij}$: $f_i \le s_k < f_k \le s_j < f_j$ contradiction with $f_i \ge f_i$!
 - \Rightarrow S_{ij} = Ø (the set S_{ij} must be empty!)
- We only need to consider sets S_{ij} with

CSC611/Lecture11

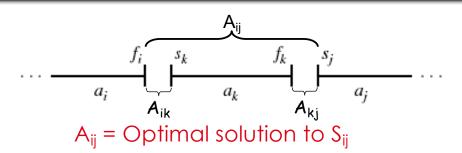
Optimal Substructure

- Subproblem:
 - Select a maximum-size subset of mutually compatible activities from set S_{ij}
- Assume that a solution to the above subproblem includes activity a_k (S_{ij} is nonempty)



Solution to $S_{ij} = (Solution to S_{ik}) \cup \{a_k\} \cup (Solution to S_{kj})$ Solution to $S_{ij} = |Solution to S_{ik}| + 1 + |Solution to S_{kj}|$

Optimal Substructure



- Claim: Sets A_{ik} and A_{kj} must be optimal solutions
- Assume $\exists A_{ik}$ ' that includes more activities than A_{ik}

 $Size[A_{ij}'] = Size[A_{ik}'] + 1 + Size[A_{kj}] > Size[A_{ij}]$

⇒ Contradiction: we assumed that A_{ij} has the maximum # of activities taken from S_{ij}

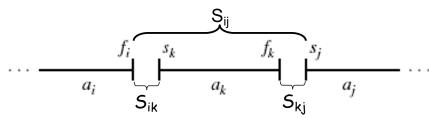
CS 477/677 - Lecture 21

Recursive Solution

- Any optimal solution (associated with a set S_{ij}) contains within it optimal solutions to subproblems S_{ik} and S_{kj}
- c[i, j] = size of maximum-size subset of mutually compatible activities in S_{ij}
- If $S_{ij} = \emptyset \Rightarrow C[i, j] = 0$

25

Recursive Solution



If $S_{ij} \neq \emptyset$ and if we consider that a_k is used in an optimal solution (maximum-size subset of mutually compatible activities of S_{ij}), then:

C[i, j] = C[i,k] + C[k, j] + 1

CS 477/677 - Lecture 21

27

Recursive Solution

 $C[i, j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ \max_{\substack{i < k < j \\ a_k \in S_{ij}}} \{C[i,k] + C[k, j] + 1\} & \text{if } S_{ij} \neq \emptyset \end{cases}$

• There are j - i - 1 possible values for k

$$- k = i+1, \dots, j-1$$

- a_k cannot be a_i or a_j (from the definition of S_{ij}) $S_{ij} = \{ a_k \in S : f_i \le s_k < f_k \le s_j \}$
- We check all the values and take the best one
- We could now write a dynamic programming algorithm

Let $S_{ij} \neq \emptyset$ and a_m the activity in S_{ij} with the earliest finish time:

 $f_m = \min \{ f_k: \alpha_k \in S_{ij} \}$

Then:

- 1. a_m is used in some maximum-size subset of mutually compatible activities of S_{ii}
 - There exists some optimal solution that contains a_m
- 2. $S_{im} = Ø$
 - Choosing a_m leaves S_{mj} the only nonempty subproblem

CS 477/677 - Lecture 21

29

Proof

2. Assume $\exists a_k \in S_{im}$ $f_i \leq s_k < f_k \leq s_m < f_m$ $\Rightarrow f_k < f_m$ contradiction ! a_m must have the earliest finish time $\int_{a_i}^{s_{ij}} \int_{s_{im}}^{s_m} \int_{a_m}^{f_m} \int_{s_{mj}}^{s_j} \int_{a_j}^{a_j} \cdots$ \Rightarrow There is no $a_k \in S_{im} \Rightarrow S_{im} = \emptyset$

Proof: Greedy Choice Property

- a_m is used in some maximum-size subset of mutually compatible activities of S_{ii}
- A_{ij} = optimal solution for activity selection from S_{ij}
 - Order activities in A_{ij} in increasing order of finish time
 - Let a_k be the first activity in $A_{ij} = \{a_k, \ldots\}$
- If $a_k = a_m$ Done!
- Otherwise, replace a_k with a_m (resulting in a set A_{ij})
 - since $f_m \leq f_k$ the activities in $A_{ij}{}^\prime$ will continue to be compatible
 - $A_{ij}' \text{ will have the same size as } A_{ij} \Rightarrow a_m \text{ is used in some}$ maximum-size subset S_{ii}

$$\cdots \xrightarrow{f_i} \xrightarrow{s_m} \xrightarrow{f_m} \xrightarrow{f_m} \xrightarrow{s_j} \cdots$$

Why is the Theorem Useful?

	Dynamic programming	Using the theorem				
Number of subproblems in the optimal solution	2 subproblems: S _{ik} , S _{kj}	1 subproblem: S _{mj} (S _{im} = Ø)				
Number of choices to consider	j–i–1 choices	1 choice: the activity a_m with the earliest finish time in S_{ij}				
 Making the greedy choice (the activity with the earliest finish time in S_{ii}) 						

- Reduces the number of subproblems and choices
- Allows solving each subproblem in a top-down fashion
- Only one subproblem left to solve!

- To select a maximum-size subset of mutually compatible activities from set S_{ii}:
 - Choose $a_m \in S_{ij}$ with earliest finish time (greedy choice)
 - Add a_m to the set of activities used in the optimal solution
 - Solve the same problem for the set S_{mj}
- From the theorem
 - By choosing a_m we are guaranteed to have used an activity included in an optimal solution
 - \Rightarrow We do not need to solve the subproblem S_{mj} before making the choice!
 - The problem has the **GREEDY CHOICE** property CS 477/677 - Lecture 21

Characterizing the Subproblems

- The original problem: find the maximum subset of mutually compatible activities for S = S_{0, n+1}
- Activities are sorted by increasing finish time

a₀, a₁, a₂, a₃, ..., a_{n+1}

- We always choose an activity with the earliest finish time
 - Greedy choice maximizes the unscheduled time remaining
 - Finish time of activities selected is strictly increasing

33

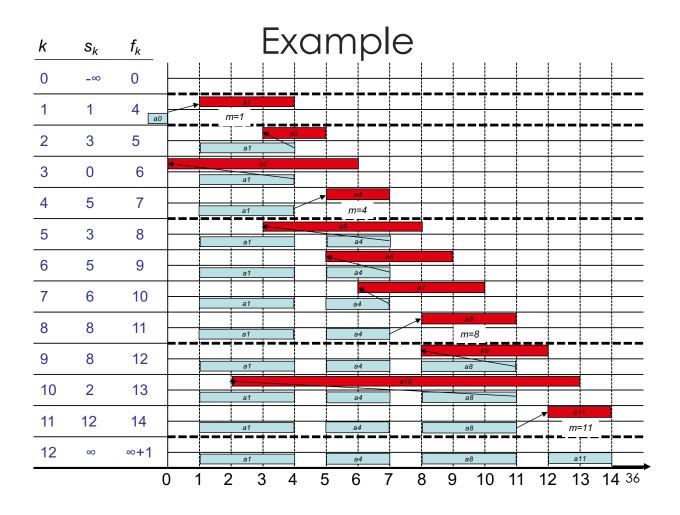
A Recursive Greedy Algorithm

Alg	$\frac{a_{m}}{a_{m}} f_{m}$
1.	$m \leftarrow i+1$ $a_m f_m$
2.	while $m \le n$ and $s_m < f_i$ Find first activity in $S_{i,n+1}$
3.	do m ← m + 1
4.	if m ≤ n
5.	then return {a _m } U REC-ACT-SEL(s, f, m, n)
6.	else return Ø

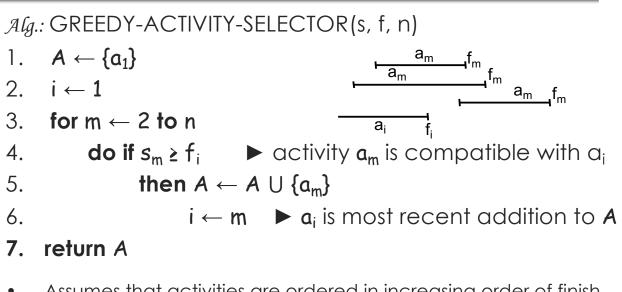
- Activities are ordered in increasing order of finish time
- Running time: $\Theta(n)$ each activity is examined only once
- Initial call: REC-ACT-SEL(s, f, 0, n)

CS 477/677 - Lecture 21

35



An Incremental Algorithm



- Assumes that activities are ordered in increasing order of finish time
- Running time: $\Theta(n)$ each activity is examined only once

CS 477/677 - Lecture 21

37

Steps Toward Our Greedy Solution

- 1. Determined the optimal substructure of the problem
- 2. Developed a recursive solution
- 3. Proved that one of the optimal choices is the greedy choice
- 4. Showed that all but one of the subproblems resulted by making the greedy choice are empty
- Developed a recursive algorithm that implements the greedy strategy
- 6. Converted the recursive algorithm to an iterative one

Designing Greedy Algorithms

- 1. Cast the optimization problem as one for which:
 - we make a (greedy) choice and are left with only one subproblem to solve
- 2. Prove the **GREEDY CHOICE** property:
 - that there is always an optimal solution to the original problem that makes the greedy choice
- 3. Prove the OPTIMAL SUBSTRUCTURE:
 - the greedy choice + an optimal solution to the resulting subproblem leads to an optimal solution
 CS 477/677 Lecture 21
 39

Correctness of Greedy Algorithms

- 1. Greedy Choice Property
 - A globally optimal solution can be arrived at by making a locally optimal (greedy) choice
- 2. Optimal Substructure Property
 - We know that we have arrived at a subproblem by making a greedy choice
 - Optimal solution to subproblem + greedy choice
 ⇒ optimal solution for the original problem

Dynamic Programming vs. Greedy Algorithms

• Dynamic programming

- We make a choice at each step
- The choice depends on solutions to subproblems
- Bottom up solution, from smaller to larger subproblems

• Greedy algorithm

- Make the greedy choice and THEN
- Solve the subproblem arising after the choice is made
- The choice we make may depend on previous choices, but not on solutions to subproblems
- Top down solution, problems decrease in size
 CS 477/677 Lecture 21

41

The Knapsack Problem

• The 0-1 knapsack problem

- A thief robbing a store finds n items: the i-th item is worth v_i dollars and weights w_i pounds (v_i, w_i integers)
- The thief can only carry W pounds in his knapsack
- Items must be taken entirely or left behind
- Which items should the thief take to maximize the value of his load?

The fractional knapsack problem

- Similar to above
- The thief can take fractions of items

Fractional Knapsack Problem

- Knapsack capacity: W
- There are n items: the i-th item has value v_i and weight w_i
- Goal:
 - Find fractions x_i so that for all $0 \le x_i \le 1$, i = 1, 2, ..., n

 $\sum w_i x_i \leq W$ and

 $\sum x_i v_i$ is maximum

CS 477/677 - Lecture 21

Fractional Knapsack Problem

• Greedy strategy 1:

- Pick the item with the maximum value

- E.g.:
 - W = 1
 - w₁ = 100, v₁ = 2
 - $w_2 = 1, v_2 = 1$
 - Taking from the item with the maximum value: Total value (choose item 1) = $v_1W/w_1 = 2/100$
 - Smaller than what the thief can take if choosing the other item

Total value (choose item 2) = $v_2W/w_2 = 1$

Fractional Knapsack Problem

• Greedy strategy 2:

- Pick the item with the maximum value per pound v_i/w_i
- If the supply of that element is exhausted and the thief can carry more: take as much as possible from the item with the next greatest value per pound
- It is good to order items based on their value per pound

$$\frac{v_1}{w_1} \ge \frac{v_2}{w_2} \ge \dots \ge \frac{v_n}{w_n}$$

CS 477/677 - Lecture 21

45

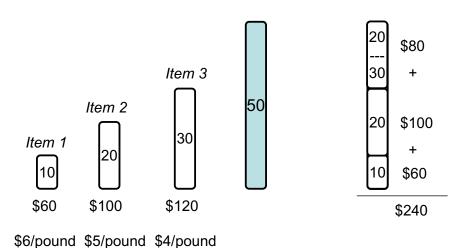
Fractional Knapsack Problem

Alg.: Fractional-Knapsack (W, v[n], w[n])1. w = W2. While w > 0 and there are items remaining3. pick item i with maximum v_i/w_i 4. $x_i \leftarrow \min(1, w/w_i)$ 5. remove item i from list6. $w \leftarrow w - x_i w_i$ • w - the amount of space remaining in the knapsack

• Running time: $\Theta(n)$ if items already ordered; else $\Theta(nlgn)$

Fractional Knapsack - Example

• E.g.:



CS 477/677 - Lecture 21

Greedy Choice

1	2	3	. j	n
x_1	X 2	X 3	×j	×n
x_1'	×2′	x ₃ ′	×j′	ׄ'
	\mathbf{x}_{1}	x ₁ x ₂	$x_1 x_2 x_3$	

• We know that: $\mathbf{x}_1' \geq \mathbf{x}_1$

- greedy choice takes as much as possible from item 1

- Modify the optimal solution to take x_1' of item 1
 - We have to decrease the quantity taken from some item j: the new x_j is decreased by: $(x_1' x_1) w_1 / w_j$
- Increase in profit: $(x_1' x_1) v_1$
- Decrease in profit: $(x_1' x_1)w_1 v_1 w_1$

$$(\mathbf{x}_{1}' - \mathbf{x}_{1}) \mathbf{v}_{1} \ge (\mathbf{x}_{1}' - \mathbf{x}_{1}) \mathbf{w}_{1} \mathbf{v}_{j} / \mathbf{w}_{j}$$

$$\mathbf{v}_{1} \ge \mathbf{w}_{1} \frac{\mathbf{v}_{j}}{\mathbf{w}_{j}} \Rightarrow \frac{\mathbf{v}_{1}}{\mathbf{w}_{1}} \ge \frac{\mathbf{v}_{j}}{\mathbf{w}_{j}}$$

$$\text{True, since } \mathbf{x}_{1} \text{ had the best value/pound ratio}$$

$$\text{CS 477/677 - Lecture 21}$$

$$\text{True, since } \mathbf{x}_{1} \text{ had the best value/pound ratio}$$

47

Huffman Codes

- Widely used technique for data compression
- Assume the data to be a sequence of characters
- Looking for an effective way of storing the data
- Binary character code
 - Uniquely represents a character by a binary string

CS 477/677 - Lecture 22

49

Fixed-Length Codes

E.g.: Data file containing 100,000 characters

	a	b	С	d	е	f
Frequency (thousands)	45	13	12	16	9	5

- 3 bits needed
- a = 000, b = 001, c = 010, d = 011, e = 100, f =
 101
- Requires: 100,000 × 3 = 300,000 bits

Huffman Codes

• Idea:

Use the frequencies of occurrence of characters
 to build a optimal way of representing each
 character

	a	b	С	d	е	f
Frequency (thousands)	45	13	12	16	9	5

CS 477/677 - Lecture 22

51

Variable-Length Codes

E.g.: Data file containing 100,000 characters

	a	b	С	d	е	f
Frequency (thousands)	45	13	12	16	9	5

• Assign short codewords to frequent characters and long codewords to infrequent characters

a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100 ($45 \times 1 + 13 \times 3 + 12 \times 3 + 16 \times 3 + 9 \times 4 + 5 \times 4$)× 1,000 = 224,000 bits

Prefix Codes

- Prefix codes:
 - Codes for which no codeword is also a prefix of some other codeword
 - Better name would be "prefix-free codes"
- We can achieve optimal data compression using prefix codes
 - We will restrict our attention to prefix codes

CS 477/677 - Lecture 22

53

Encoding with Binary Character Codes

- Encoding
 - Concatenate the codewords representing each character in the file
- E.g.:
 - a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100
 - $-abc = 0 \times 101 \times 100 = 0101100$

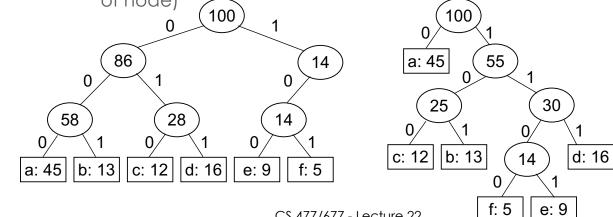
Decoding with Binary Character Codes

- Prefix codes simplify decoding
 - No codeword is a prefix of another \Rightarrow the codeword that begins an encoded file is unambiguous
- Approach
 - Identify the initial codeword
 - Translate it back to the original character
 - Repeat the process on the remainder of the file
- E.g.:
 - -a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100
 - $-001011101 = 0 \times 0 \times 101 \times 1101 = aabe$

CS 477/677 - Lecture 22

Prefix Code Representation

- Binary tree whose leaves are the given characters
- Binary codeword
 - the path from the root to the character, where 0 means "go to the left child" and 1 means "go to the right child"
- Length of the codeword
 - Length of the path from root to the character leaf (depth of node)



CS 477/677 - Lecture 22

Optimal Codes

- An optimal code is always represented by a full binary tree
 - Every non-leaf has two children
 - Fixed-length code is not optimal, variable-length is
- How many bits are required to encode a file?
 - Let $\ensuremath{\mathcal{C}}$ be the alphabet of characters
 - Let f(c) be the frequency of character c
 - Let d_T(c) be the depth of c's leaf in the tree T corresponding to a prefix code

$$B(T) = \sum_{c \in C} f(c) d_T(c) \qquad \text{tr}$$

the cost of tree T

CS 477/677 - Lecture 22

57

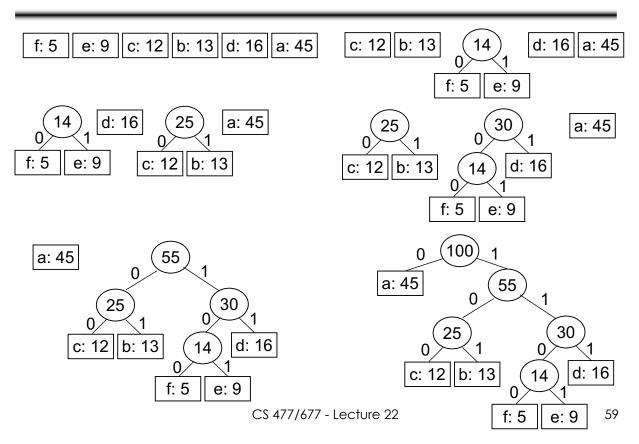
Constructing a Huffman Code

- Let's build a greedy algorithm that constructs an optimal prefix code (called a **Huffman code**)
- Assume that:
 - C is a set of n characters
 - Each character has a frequency f(c)
- Idea:

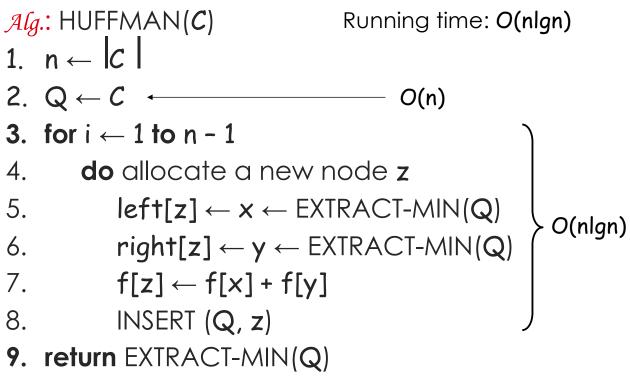
f: 5 e: 9 c: 12 b: 13 d: 16 a: 45

- The tree T is built in a bottom up manner
- Start with a set of |C| = n leaves
- At each step, merge the two least frequent objects: the frequency of the new node = sum of two frequencies
- Use a min-priority queue Q, keyed on f to identify the two least frequent objects

Example



Building a Huffman Code



Greedy Choice Property

Let *C* be an alphabet in which each character $c \in C$ has frequency f[c]. Let x and y be two characters in *C* having the lowest frequencies.

Then, there exists an optimal prefix code for C in which the codewords for **x** and **y** have the same (maximum) length and differ only in the last bit.

CS 477/677 - Lecture 22

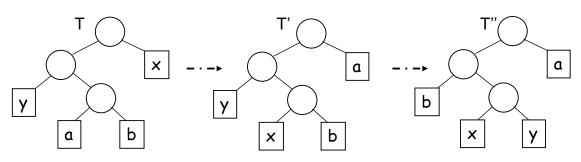
61

Proof of the Greedy Choice

- Idea:
 - Consider a tree T representing an arbitrary optimal prefix code
 - Modify T to make a tree representing another optimal prefix code in which x and y will appear as sibling leaves of maximum depth

 \Rightarrow The codes of x and y will have the same length and differ only in the last bit

Proof of the Greedy Choice (cont.)

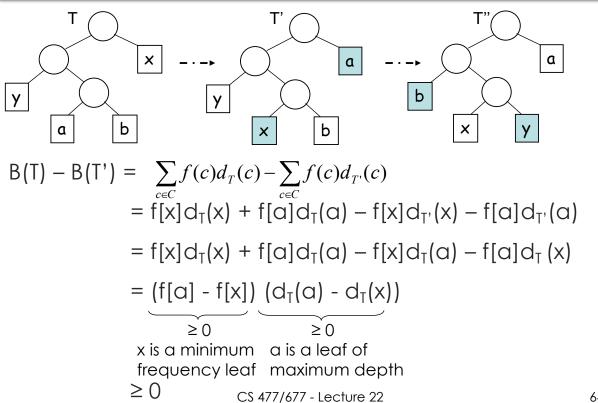


- **a**, **b** two characters, sibling leaves of max. depth in T
- Assume: $f[a] \le f[b]$ and $f[x] \le f[y]$
- f[x] and f[y] are the two lowest leaf frequencies, in order
 ⇒ f[x] ≤ f[a] and f[y] ≤ f[b]
- Exchange the positions of **a** and **x** (T') and of **b** and **y** (T'')

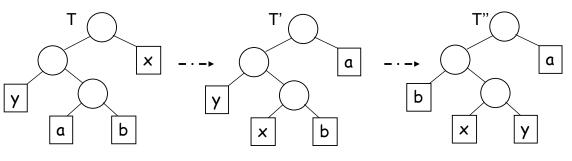
CS 477/677 - Lecture 22

63

Proof of the Greedy Choice (cont.)



Proof of the Greedy Choice (cont.)



$\mathsf{B}(\mathsf{T})-\mathsf{B}(\mathsf{T}')\geq \mathsf{O}$

Similarly, exchanging y and b does not increase the cost:

 $B(T') - B(T'') \ge 0$

 \Rightarrow B(T'') \leq B(T). Also, since T is optimal, B(T) \leq B(T'')

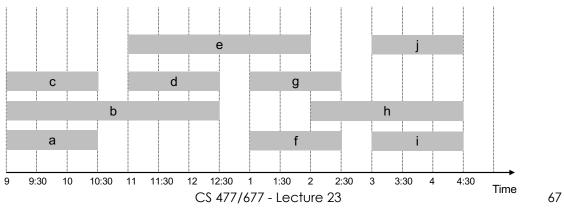
Therefore, $B(T) = B(T'') \Rightarrow T''$ is an optimal tree, in which x and y are sibling leaves of maximum depth CS 477/677 - Lecture 22 65

Discussion

- Greedy choice property:
 - Building an optimal tree by mergers can begin with the greedy choice: merging the two characters with the lowest frequencies
 - The cost of each merger is the sum of frequencies of the two items being merged
 - Of all possible mergers, HUFFMAN chooses the one that incurs the least cost

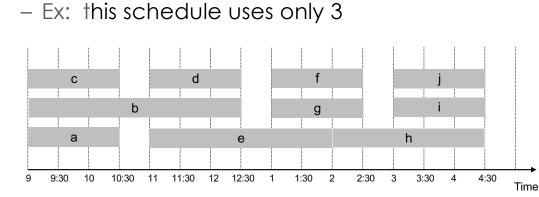
Interval Partitioning

- Lecture j starts at s_j and finishes at f_j
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room
 - Ex: this schedule uses 4 classrooms to schedule 10 lectures



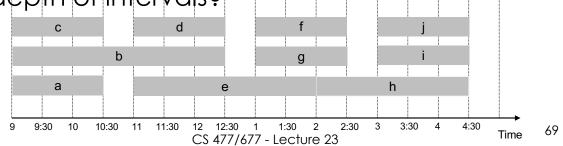
Interval Partitioning

- Lecture j starts at s_j and finishes at f_j
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room



Interval Partitioning: Lower Bound on Optimal Solution

- The **depth** of a set of open intervals is the maximum number that contain any given time
- Key observation:
 The number of classrooms needed ≥ depth
- Ex: Depth of schedule below = 3 ⇒ schedule below is optimal
- Does there always exist a schedule equal to depth of intervals?



Greedy Strategy

- Consider lectures in increasing order of start time: assign lecture to any compatible classroom
 - Labels set {1, 2, 3, ..., d}, where d is the depth of the set of intervals
 - Overlapping intervals are given different labels
 - Assign a label that has not been assigned to any previous interval that overlaps it

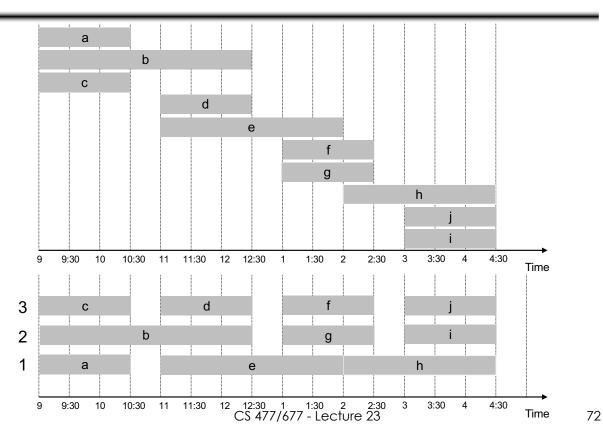
Greedy Algorithm

- Sort intervals by start times, such that s₁ ≤ s₂ ≤ ... ≤ s_n (let I₁, I₂, .., I_n denote the intervals in this order)
- 2. **for** j = 1 to n
- Exclude from set {1, 2, ..., d} the labels of preceding and overlapping intervals I_i from consideration for I_j
- if there is any label from {1, 2, ..., d} that was not excluded assign that label to I_j

5. **else**

6. leave I_j unlabeled

CS 477/677 - Lecture 23



Example

Claim

- Every interval will be assigned a label
 - For interval \mathbf{I}_{j} , assume there are t intervals earlier in the sorted order that overlap it
 - We have t + 1 intervals that pass over a common point on the timeline
 - t + 1 ≤ d, thus t ≤ d 1
 - At least one of the d labels is not excluded by this set of t intervals, which we can assign to I_j

CS 477/677 - Lecture 23

73

Claim

- No two overlapping intervals are assigned the same label
 - Consider I and I' that overlap, and I precedes I' in the sorted order
 - When I' is considered, the label for I is excluded from consideration
 - Thus, the algorithm will assign a different label to I

Greedy Choice Property

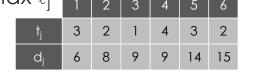
- The greedy algorithm schedules every interval on a resource, using a number of resources equal to the depth of the set of intervals. This is the optimal number of resources needed.
- Proof:
 - Follows from previous claims
- Structural proof
 - Discover a simple "structural" bound asserting that every possible solution must have a certain value
 - Then show that your algorithm always achieves this bound

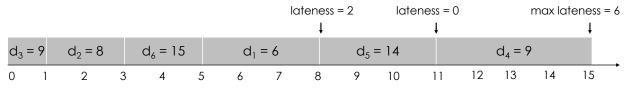
CS 477/677 - Lecture 23

75

Scheduling to Minimizing Lateness

- Single resource processes one job at a time
- Job j requires t_j units of processing time, is due at time d_j
- If j starts at time s_j , it finishes at time $f_j = s_j + t_j$
- Lateness: $\ell_i = \max \{ 0, f_i d_i \}$
- Goal: schedule all jobs to minimize **maximum** lateness L = max ℓ_1 1 2 3 4 5 6
- Example:





Greedy strategy: consider jobs in some order

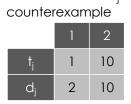
 [Shortest processing time first] Consider jobs in ascending order of processing time t_j

counterexample

	1	2
t _j	1	10
dj	100	10

Choosing t_1 first: $l_2 = 1$ Choosing t_2 first: $l_2 = l_1 = 0$

 - [Smallest slack] Consider jobs in ascending order of slack d_i - t_i



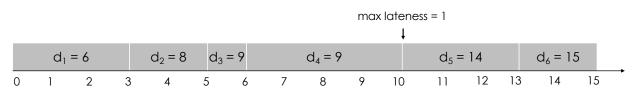
Choosing t_2 first: $I_1 = 9$ Choosing t_1 first: $I_1 = 0$ and $I_2 = 1$

CS 477/677 - Lecture 23

Greedy Algorithm

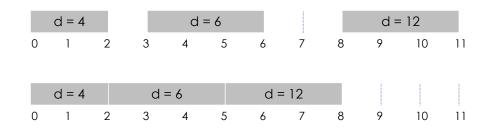
• Greedy choice: earliest deadline first

Sort n jobs by deadline so that $d_1 < d_2 < ... < d_n$ t = 0 for j = 1 to n Assign job j to interval [t, t + t_j] $s_j = t$, $f_j = t + t_j$ t = t + t_j output intervals [s_j , f_j]



Minimizing Lateness: No Idle Time

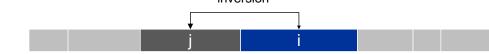
- Observation: The greedy schedule has no idle time
- Observation: There exists an optimal schedule with no idle time



CS 477/677 - Lecture 23

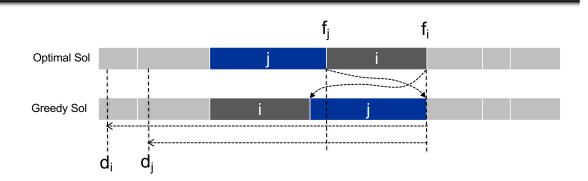
Minimizing Lateness: Inversions

 An inversion in schedule S is a pair of jobs i and j such that: d_i < d_j but j scheduled before i



Observation: greedy schedule has no inversions

Greedy Choice Property



- Optimal solution: $d_i < d_j$ but j scheduled before i
- Greedy solution: i scheduled before j
 - Job i finishes sooner, no increase in latency Lateness(Job j)_{GREEDY} = $f_i d_j$

≤ → No increase in latency Lateness(Job i)_{OPT} = $f_i - d_i$ CS 477/677 - Lecture 23

81

Greedy Analysis Strategies

Exchange argument

- Gradually transform any solution to the one found by the greedy algorithm without hurting its quality
- Structural
 - Discover a simple "structural" bound asserting that every possible solution must have a certain value, then show that your algorithm always achieves this bound
- Greedy algorithm stays ahead
 - Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's CS 477/677 - Lecture 23

Coin Changing

- Given currency denominations: 1, 5, 10, 25, 100, devise a method to pay amount to customer using fewest number of coins
- Ex: 34¢
- Ex: \$2.89

CS 477/677 - Lecture 23

83

Greedy Algorithm

 Greedy strategy: at each iteration, add coin of the largest value that does not take us past the amount to be paid

```
Sort coins denominations by value: c_1 < c_2 < ... < c_n.

/ coins selected

S = {}

while (x > 0) {

let k be largest integer such that c_k <= x

if (k = 0)

return "no solution found"

x = x - c_k

S = S U {k}

}

return S
```

Greedy Choice Property

• Algorithm is optimal for U.S. coinage: 1, 5, 10, 25, 100

Change = D * 100 + Q * 25 + D * 10 + N * 5 + P

- Consider optimal way to change c_k <= x < c_{k+1}: greedy takes coin k
- We claim that any optimal solution must also take coin k
- If not, it needs enough coins of type $c_1, ..., c_{k-1}$ to add up to x
- Problem reduces to coin-changing x c_k cents, which, by induction, is optimally solved by greedy algorithm

CS 477/677 - Lecture 23

85

Greedy Choice Property

• Algorithm is optimal for U.S. coinage: 1, 5, 10, 25, 100

Change = DI * 100 + Q * 25 + D * 10 + N * 5 + P

- Optimal solution: DI Q D N P
- Greedy solution: DI' Q' D' N' P'
- 1. Value < 5
 - Both optimal and greedy use the same # of coins
- 2. 10 (D) > Value > 5 (N)
 - Greedy uses one N and then pennies after that
 - If OPT does not use N, then it should use pennies for the entire amount => could replace 5 P for 1 N

Greedy Choice Property

Change = DI * 100 + Q * 25 + D * 10 + N * 5 + P

- Optimal solution: DI Q D N P
- Greedy solution: DI' Q' D' N' P'
- 3. 25 (Q) > Value > 10 (D)
 - Greedy uses dimes (D's)
 - If OPT does not use D's, it needs to use either 2 coins (2 N), or 6 coins (1 N and 5 P) or 10 coins (10 P) to cover 10 cents
 - Could replace those with 1 D for a better solution

CS 477/677 - Lecture 23

87

Greedy Choice Property

Change = DI * 100 + Q * 25 + D * 10 + N * 5 + P

- Optimal solution: DI Q D N P
- Greedy solution: DI' Q' D' N' P'
- 4. 100 (DI) > Value > 25 (Q)
 - Greedy picks at least one quarter (Q), OPT does not
 - If OPT has no Ds: take all the Ns and Ps and replace
 25 cents into one quarter (Q)
 - If OPT has 2 or fewer dimes: it uses at least 3 coins to cover one quarter, so we can replace 25 cents with 1 Q
 - If OPT has 3 or more dimes (e.g., 40 cents: with 4 Ds):
 take the first 3 Ds and replace them with 1 Q and 1 N

Coin-Changing US Postal Denominations

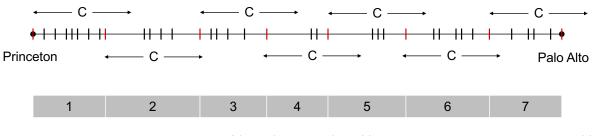
- Observation: greedy algorithm is suboptimal for US postal denominations:
 - \$.01, .02, .03, .04, .05, .10, .20, .32, .40, .44, .50, .64, .65, .75, .79, .80, .85, .98
 - \$1, \$1.05, \$2, \$4.95, \$5, \$5.15, \$18.30, \$18.95
- Counterexample: 160¢
 - Greedy: 105, 50, 5
 - Optimal: 80, 80

CS 477/677 - Lecture 23

89

Selecting Breakpoints

- Road trip from Princeton to Palo Alto along fixed route
- Refueling stations at certain points along the way (red marks)
- Fuel capacity = C
- Goal:
 - makes as few refueling stops as possible
- Greedy strategy:
 - go as far as you can before refueling



Greedy Algorithm

Sort breakpoints so that: $0 = b_0 < b_1 < b_2 < ... < b_n = L$ $S = \{0\}$ \leftarrow breakpoints selected x = 0 \leftarrow current location while $(x < b_n)$ let p be largest integer such that $b_p <= x + C$ if $(b_p = x)$ return "no solution" $x = b_p$ $S = S \cup \{p\}$ return S

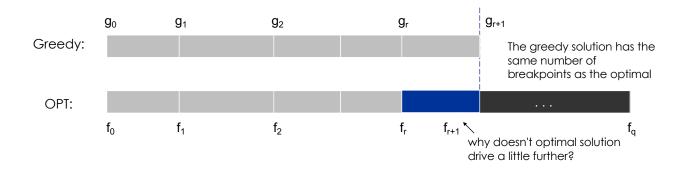
Implementation: O(n log n)
Use binary search to select each breakpoint p

CS 477/677 - Lecture 23

91

Greedy Choice Property

- Let 0 = g₀ < g₁ < ... < g_p = L denote set of breakpoints chosen by the greedy
- Let $0 = f_0 < f_1 < \ldots < f_q = L$ denote set of breakpoints in an optimal solution with $f_0 = g_0$, $f_1 = g_1$, ..., $f_r = g_r$
- Note: $g_{r+1} > f_{r+1}$ by greedy choice of algorithm



Problem – Buying Licenses

- Your company needs to buy licenses for **n** pieces of software
- Licenses can be bought only one per month
- Each license currently sells for \$100, but becomes more expensive each month
 - The price increases by a factor $r_j > 1$ each month
 - License j will cost $100*r_i^{\dagger}$ if bought t months from now
 - $-r_i < r_j$ for license i < j
- In which order should the company buy the licenses, to minimize the amount of money spent?

CS 477/677 - Lecture 23

93

Solution

- Greedy choice:
 - Buy licenses in decreasing order of rate r_i
 - $-r_1 > r_2 > r_3 \dots$
- Proof of greedy choice property
 - Optimal solution: $r_i r_j$ $r_i < r_j$
 - Greedy solution: r_j r_i.....
 - Cost by optimal solution: $100* r_i^{\dagger} + 100* r_i^{\dagger+1}$
 - Cost by greedy solution: $100* r_i^{\dagger} + 100* r_i^{\dagger+1}$

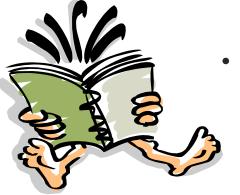
 $CG - CO = 100 * (r_j^{\dagger} + r_i^{\dagger+1} - r_i^{\dagger} - r_j^{\dagger+1}) < 0$

 $r_i^{t+1} - r_i^t < r_j^{t+1} - r_j^t$

 $r_i^{\dagger}(r_i - 1) < r_j^{\dagger}(r_j - 1)$ OK! (because $r_i < r_j$)

CS 477/677 - Lecture 23

Readings



• Chapters 14, 15

CSC611/Lecture11