
CSC 611: Analysis of Algorithms

Lecture 8

Greedy Algorithms

Weighted Interval Scheduling
• Job j starts at sj, finishes at fj, and has weight or

value vj

• Two jobs are compatible if they don't overlap
• Goal: find maximum weight subset of mutually

compatible jobs

Time
0 1 2 3 4 5 6 7 9 10 11

f

g

h

e

a

b

c

d

8CSC611/ Lecture11

Weighted Interval Scheduling
• Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn

• Def. p(j) = largest index i < j such that job i is
compatible with j

• Ex: p(8) = 5, p(7) = 3, p(2) = 0

CSC611/ Lecture11

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

1

2

3

4

5

6

7

8

1. Making the Choice

• OPT(j) = value of optimal solution to the
problem consisting of job requests 1, 2, ..., j
– Case 1: OPT selects job j

• Can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
• Must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., p(j)

– Case 2: OPT does not select job j
• Must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., j-1

optimal substructure

CSC611/ Lecture11

2. A Recursive Solution

• OPT(j) = value of optimal solution to the
problem consisting of job requests 1, 2, ..., j
– Case 1: OPT selects job j

• Can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
• Must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., p(j)
• OPT(j) = vj + OPT(p(j))

– Case 2: OPT does not select job j
• Must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., j-1
• OPT(i) = OPT(j-1)

€

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise

$
%

CSC611/ Lecture11

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn

Compute p(1), p(2), …, p(n)

Compute-Opt(j)
{

if (j = 0)
return 0

else
return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

}

Top-Down Recursive Algorithm

CSC611/ Lecture11

WR
ON
G!

3. Compute the Optimal Value

• Compute values in increasing order of j

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt
{

M[0] = 0
for j = 1 to n

M[j] = max(vj + M[p(j)], M[j-1])
}

CSC611/ Lecture11

Input: n, s1,…,sn , f1,…,fn , v1,…,vn
Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[j] = 0

M-Compute-Opt(j)
{

if (M[j] is empty)
M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))

return M[j]
}

global array

Memoized Version

• Store results of each sub-problem; lookup as needed

CSC611/ Lecture11

4. Finding the Optimal Solution

• Two options
1. Store additional information: at each time step

store either j or p(j) – value that gave the optimal
solution

2. Recursively find the solution by iterating through
array M Find-Solution(j)

{
if (j = 0)

output nothing
else if (vj + M[p(j)] > M[j-1])

print j
Find-Solution(p(j))

else
Find-Solution(j-1)

}
CSC611/ Lecture11

An Example

CSC611/ Lecture11

€

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise

$
%

Segmented Least Squares

• Least squares
– Foundational problem in statistic and numerical analysis
– Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn)
– Find a line y = ax + b that minimizes the sum of the

squared error:

• Solution – closed form
– Minimum error is achieved when

Error = (yi − axi − b)
2

i=1

n

∑

€

a =
n xi yi − (xi)i∑ (yi)i∑i∑

n xi
2 − (xi)

2
i∑i∑

, b =
yi − a xii∑i∑

n

x

y

CSC611/ Lecture11

Segmented Least Squares
• Segmented least squares

– Points lie roughly on a sequence of several line
segments

– Given n points in the plane (x1, y1), (x2, y2) , . . . ,
(xn, yn) with x1 < x2 < ... < xn, find a sequence of
lines that minimizes f(x)

• What is a reasonable
choice for f(x) to balance
accuracy and parsimony?

CSC611/ Lecture11 x

y

goodness of fit number of lines

Segmented Least Squares
• Segmented least squares

– Points lie roughly on a sequence of several line
segments

– Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn,
yn) with x1 < x2 < ... < xn, find a sequence of lines that
minimizes:

• the sum of the sums of the squared errors E in each
segment

• the number of lines L

• Tradeoff function:
E + c L, for some constant

c > 0

x

y

CSC611/ Lecture11

(1,2) Making the Choice and
Recursive Solution

• Notation
– OPT(j) = minimum cost for points p1, pi+1 , . . . , pj

– e(i, j) = minimum sum of squares for points pi, pi+1, .. , pj

• To compute OPT(j)
– Last segment uses points pi, pi+1 , . . . , pj for some i
– Cost = e(i, j) + c + OPT(i-1)

€

OPT(j) =
0 if j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise
$
%
&

' &

CSC611/ Lecture11

3. Compute the Optimal Value

• Running time: O(n3)
– Bottleneck = computing e(i, j) for O(n2) pairs, O(n)

per pair using previous formula

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {
M[0] = 0
for j = 1 to n

for i = 1 to j
compute the least square error eij for
the segment pi,…, pj

for j = 1 to n
M[j] = min 1 ≤ i ≤ j (eij + c + M[i-1])

return M[n]
}

CSC611/ Lecture11

CSC611/ Lecture11

Greedy Algorithms
• Similar to dynamic programming, but simpler

approach
– Also used for optimization problems

• Idea: When we have a choice to make, make the
one that looks best right now
– Make a locally optimal choice in the hope of getting a

globally optimal solution

• Greedy algorithms don’t always yield an optimal
solution

• When the problem has certain general
characteristics, greedy algorithms give optimal
solutions

CSC611/ Lecture11

Activity Selection

Start End Activity

1 8:00am 9:15am Numerical methods class

2 8:30am 10:30am Movie presentation (refreshments served)

3 9:20am 11:00am Data structures class

4 10:00am noon Programming club mtg. (Pizza provided)

5 11:30am 1:00pm Computer graphics class

6 1:05pm 2:15pm Analysis of algorithms class

7 2:30pm 3:00pm Computer security class

8 noon 4:00pm Computer games contest (refreshments served)

9 4:00pm 5:30pm Operating systems class

• Problem
– Schedule the largest possible set of non-overlapping

activities for a given room

CSC611/ Lecture11

Activity Selection
• Schedule n activities that require exclusive

use of a common resource
S = {a1, . . . , an} – set of activities

• ai needs resource during period [si , fi)
– si = start time and fi = finish time of activity ai

– 0 ≤ si < fi < ∞
• Activities ai and aj are compatible if the

intervals [si , fi) and [sj, fj) do not overlap

i j j i
fj ≤ sifi ≤ sj

CSC611/ Lecture11

Activity Selection Problem
Select the largest possible set of non-overlapping
(compatible) activities.

E.g.:

• Activities are sorted in increasing order of finish times
• A subset of mutually compatible activities: {a3, a9, a11}
• Maximal set of mutually compatible activities:

{a1, a4, a8, a11} and {a2, a4, a9, a11}

i 1 2 3 4 5 6 7 8 9 10 11

si 1 3 0 5 3 5 6 8 8 2 12

fi 4 5 6 7 8 9 10 11 12 13 14

CSC611/ Lecture11

Optimal Substructure

• Define the space of subproblems:
Sij = { ak∈ S : fi ≤ sk < fk ≤ sj }

– activities that start after ai finishes and finish before aj
starts

• Add fictitious activities
– a0 = [-∞, 0)
– an+1 = [∞, “∞ + 1”)
– Range for Sij is 0 ≤ i, j ≤ n + 1

S = S0,n+1 entire space
of activities

CSC611/ Lecture11

Representing the Problem

• We assume that activities are sorted in
increasing order of finish times:

f0 ≤ f1 ≤ f2 ≤ … ≤ fn < fn+1

• What happens to set Sij for i ≥ j ?
– For an activity ak∈ Sij: fi ≤ sk < fk ≤ sj < fj

contradiction with fi ≥ fj!
⇒ Sij = ∅ (the set Sij must be empty!)

• We only need to consider sets Sij with
0 ≤ i < j ≤ n + 1

CS 477/677 - Lecture 21

Optimal Substructure
• Subproblem:

– Select a maximum-size subset of mutually
compatible activities from set Sij

• Assume that a solution to the above
subproblem includes activity ak (Sij is non-
empty)

Solution to Sij = (Solution to Sik) ⋃ {ak} ⋃ (Solution to Skj)
⎥Solution to Sij⎥=

Sik Skj

Sij

⎥Solution to Sik⎥+ 1 + ⎥Solution to Skj⎥
24

CS 477/677 - Lecture 21

Optimal Substructure

Aij = Optimal solution to Sij

• Claim: Sets Aik and Akj must be optimal solutions

• Assume ∃ Aik’ that includes more activities than Aik

Size[Aij’] = Size[Aik’] + 1 + Size[Akj] > Size[Aij]

⇒ Contradiction: we assumed that Aij has the

maximum # of activities taken from Sij

Aik Akj

Aij

25

CS 477/677 - Lecture 21

Recursive Solution

• Any optimal solution (associated with a set Sij)
contains within it optimal solutions to
subproblems Sik and Skj

• c[i, j] = size of maximum-size subset of mutually
compatible activities in Sij

• If Sij = ∅ ⇒ c[i, j] = 0

26

CS 477/677 - Lecture 21

Recursive Solution

If Sij ≠ ∅ and if we consider that ak is used in
an optimal solution (maximum-size subset of
mutually compatible activities of Sij), then:

c[i, j] =

Sik Skj

Sij

c[i,k] + c[k, j] + 1

27

CS 477/677 - Lecture 21

Recursive Solution

0 if Sij = ∅
c[i, j] = max {c[i,k] + c[k, j] + 1} if Sij ≠ ∅

• There are j – i – 1 possible values for k
– k = i+1, …, j – 1

– ak cannot be ai or aj (from the definition of Sij)

Sij = { ak∈ S : fi ≤ sk < fk ≤ sj }

– We check all the values and take the best one

We could now write a dynamic programming
algorithm

i < k < j
ak ∈ Sij

28

CS 477/677 - Lecture 21

Theorem
Let Sij ≠ ∅ and am the activity in Sij with the
earliest finish time:

fm = min { fk: ak ∈ Sij }
Then:
1. am is used in some maximum-size subset of

mutually compatible activities of Sij

– There exists some optimal solution that contains am

2. Sim = ∅
– Choosing am leaves Smj the only nonempty

subproblem

29

CS 477/677 - Lecture 21

Proof
2. Assume ∃ ak ∈ Sim

fi ≤ sk < fk ≤ sm < fm

⇒ fk < fm contradiction !
am must have the earliest finish time

⇒ There is no ak ∈ Sim ⇒ Sim = ∅
Sim Smj

sm fm

am

Sij

ak

30

CS 477/677 - Lecture 21

Proof
1. am is used in some maximum-size subset of

mutually compatible activities of Sij

• Aij = optimal solution for activity selection from Sij
– Order activities in Aij in increasing order of finish time
– Let ak be the first activity in Aij = {ak, …}

• If ak = am Done!
• Otherwise, replace ak with am (resulting in a set Aij’)

– since fm ≤ fk the activities in Aij’ will continue to be
compatible

– Aij’ will have the same size as Aij⇒ am is used in some
maximum-size subset Sij

sm fm

am fk

: Greedy Choice Property

31

CS 477/677 - Lecture 21

Why is the Theorem Useful?

• Making the greedy choice (the activity with the
earliest finish time in Sij)
– Reduces the number of subproblems and choices
– Allows solving each subproblem in a top-down fashion

• Only one subproblem left to solve!

Dynamic
programming

Using the
theorem

Number of
subproblems in the
optimal solution

Number of choices to
consider

2 subproblems:
Sik, Skj

j – i – 1 choices
1 choice: the activity
am with the earliest
finish time in Sij

1 subproblem: Smj
(Sim = ∅)

32

CS 477/677 - Lecture 21

Greedy Approach
• To select a maximum-size subset of mutually

compatible activities from set Sij:
– Choose am ∈ Sij with earliest finish time (greedy

choice)
– Add am to the set of activities used in the optimal

solution
– Solve the same problem for the set Smj

• From the theorem
– By choosing am we are guaranteed to have used an

activity included in an optimal solution
⇒ We do not need to solve the subproblem Smj before making

the choice!
– The problem has the GREEDY CHOICE property

33

CS 477/677 - Lecture 21

Characterizing the Subproblems
• The original problem: find the maximum subset

of mutually compatible activities for S = S0, n+1

• Activities are sorted by increasing finish time
a0, a1, a2, a3, …, an+1

• We always choose an activity with the earliest
finish time
– Greedy choice maximizes the unscheduled time

remaining
– Finish time of activities selected is strictly increasing

34

A Recursive Greedy Algorithm
Alg.: REC-ACT-SEL (s, f, i, n)
1. m ← i + 1
2. while m ≤ n and sm < fi ►Find first activity in Si,n+1

3. do m ← m + 1
4. if m ≤ n
5. then return {am} ⋃ REC-ACT-SEL(s, f, m, n)
6. else return ∅
• Activities are ordered in increasing order of finish time
• Running time: Θ(n) – each activity is examined only once
• Initial call: REC-ACT-SEL(s, f, 0, n)

fiai

am fmam fm
am fm

CS 477/677 - Lecture 21 35

CS 477/677 - Lecture 21CS 477/677 - Lecture 18 36

0 -∞ 0

1 1 4

2 3 5

3 0 6

4 5 7

5 3 8

6 5 9

7 6 10

8 8 11

9 8 12

10 2 13

11 12 14

12 ∞ ∞+1

k sk fk

a1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

a0 m=1

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1

a2

a3

a4

a4

a4

a4

a4

a4

a4

a4

a4

a5

a6

a7

a8

m=4

m=8

a8

a8

a8

a8

a9

a10

a11

m=11

a11

Example

36

CS 477/677 - Lecture 21

An Incremental Algorithm
Alg.: GREEDY-ACTIVITY-SELECTOR(s, f, n)
1. A ← {a1}
2. i ← 1
3. for m ← 2 to n
4. do if sm ≥ fi ► activity am is compatible with ai

5. then A ← A ⋃ {am}
6. i ← m ► ai is most recent addition to A
7. return A

• Assumes that activities are ordered in increasing order of finish
time

• Running time: Θ(n) – each activity is examined only once

fiai

am
am

am

fm
fm

fm

37

CS 477/677 - Lecture 21

Steps Toward Our Greedy Solution

1. Determined the optimal substructure of the problem

2. Developed a recursive solution

3. Proved that one of the optimal choices is the greedy
choice

4. Showed that all but one of the subproblems resulted
by making the greedy choice are empty

5. Developed a recursive algorithm that implements
the greedy strategy

6. Converted the recursive algorithm to an iterative
one

38

CS 477/677 - Lecture 21

Designing Greedy Algorithms

1. Cast the optimization problem as one for
which:
• we make a (greedy) choice and are left with only

one subproblem to solve

2. Prove the GREEDY CHOICE property:
• that there is always an optimal solution to the

original problem that makes the greedy choice

3. Prove the OPTIMAL SUBSTRUCTURE:
• the greedy choice + an optimal solution to the

resulting subproblem leads to an optimal solution
39

CS 477/677 - Lecture 21

Correctness of Greedy Algorithms

1. Greedy Choice Property

– A globally optimal solution can be arrived at by

making a locally optimal (greedy) choice

2. Optimal Substructure Property

– We know that we have arrived at a subproblem

by making a greedy choice

– Optimal solution to subproblem + greedy choice

⇒ optimal solution for the original problem

40

CS 477/677 - Lecture 21

Dynamic Programming vs.
Greedy Algorithms

• Dynamic programming
– We make a choice at each step
– The choice depends on solutions to subproblems
– Bottom up solution, from smaller to larger

subproblems
• Greedy algorithm

– Make the greedy choice and THEN
– Solve the subproblem arising after the choice is

made
– The choice we make may depend on previous

choices, but not on solutions to subproblems
– Top down solution, problems decrease in size

41

CS 477/677 - Lecture 21

The Knapsack Problem

• The 0-1 knapsack problem
– A thief robbing a store finds n items: the i-th item

is worth vi dollars and weights wi pounds (vi, wi
integers)

– The thief can only carry W pounds in his
knapsack

– Items must be taken entirely or left behind
– Which items should the thief take to maximize the

value of his load?
• The fractional knapsack problem

– Similar to above
– The thief can take fractions of items

42

CS 477/677 - Lecture 21

Fractional Knapsack Problem

• Knapsack capacity: W

• There are n items: the i-th item has value vi

and weight wi

• Goal:

– Find fractions xi so that for all 0 ≤ xi ≤ 1, i = 1, 2, .., n

∑ wixi ≤ W and

∑ xivi is maximum

43

CS 477/677 - Lecture 21

Fractional Knapsack Problem

• Greedy strategy 1:
– Pick the item with the maximum value

• E.g.:
– W = 1
– w1 = 100, v1 = 2
– w2 = 1, v2 = 1
– Taking from the item with the maximum value:

Total value (choose item 1) = v1W/w1 = 2/100
– Smaller than what the thief can take if choosing the

other item
Total value (choose item 2) = v2W/w2 = 1

44

CS 477/677 - Lecture 21

Fractional Knapsack Problem

• Greedy strategy 2:

– Pick the item with the maximum value per pound vi/wi

– If the supply of that element is exhausted and the

thief can carry more: take as much as possible from

the item with the next greatest value per pound

– It is good to order items based on their value per

pound

n

n

w
v

w
v

w
v

³³³ ...
2

2

1

1

45

Fractional Knapsack Problem
Alg.: Fractional-Knapsack (W, v[n], w[n])
1. w = W
2. While w > 0 and there are items remaining

3. pick item i with maximum vi/wi

4. xi ← min (1, w/wi)
5. remove item i from list

6. w ← w – xiwi

• w – the amount of space remaining in the knapsack

• Running time: Θ(n) if items already ordered; else Θ(nlgn)

CS 477/677 - Lecture 21 46

CS 477/677 - Lecture 21

50

Fractional Knapsack - Example
• E.g.:

10
20

30

50

Item 1

Item 2

Item 3

$60 $100 $120

10

20

$60

$100

+

$240

$6/pound $5/pound $4/pound

20

30

$80

+

47

CS 477/677 - Lecture 21

Greedy Choice
Items: 1 2 3 … j … n
Optimal solution: x1 x2 x3 xj xn
Greedy solution: x1’ x2’ x3’ xj’ xn’
• We know that: x1’ ≥ x1

– greedy choice takes as much as possible from item 1
• Modify the optimal solution to take x1’ of item 1

– We have to decrease the quantity taken from some item
j: the new xj is decreased by:

• Increase in profit:
• Decrease in profit:

jj111111 /w v)wx - ’(x v)x - ’(x ³

j

j
11 w

v
 w v ³

j

j

1

1

w
v

w
v

³⇒ True, since x1 had the
best value/pound ratio

 v)x - ’(x 111

jj111 /w v)wx - ’(x

(x1’ - x1) w1 /wj

48

CS 477/677 - Lecture 22

Huffman Codes

• Widely used technique for data compression

• Assume the data to be a sequence of

characters

• Looking for an effective way of storing the

data

• Binary character code

– Uniquely represents a character by a binary string

49

CS 477/677 - Lecture 22

Fixed-Length Codes

E.g.: Data file containing 100,000 characters

• 3 bits needed

• a = 000, b = 001, c = 010, d = 011, e = 100, f =

101

• Requires: 100,000 × 3 = 300,000 bits

a b c d e f
Frequency (thousands) 45 13 12 16 9 5

50

CS 477/677 - Lecture 22

Huffman Codes

• Idea:

– Use the frequencies of occurrence of characters

to build a optimal way of representing each

character

a b c d e f
Frequency (thousands) 45 13 12 16 9 5

51

CS 477/677 - Lecture 22

Variable-Length Codes
E.g.: Data file containing 100,000 characters

• Assign short codewords to frequent characters
and long codewords to infrequent characters

a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100
(45 × 1 + 13 × 3 + 12 × 3 + 16 × 3 + 9 × 4 + 5 × 4)× 1,000

= 224,000 bits

a b c d e f
Frequency (thousands) 45 13 12 16 9 5

52

CS 477/677 - Lecture 22

Prefix Codes

• Prefix codes:

– Codes for which no codeword is also a prefix of

some other codeword

– Better name would be “prefix-free codes”

• We can achieve optimal data compression

using prefix codes

– We will restrict our attention to prefix codes

53

CS 477/677 - Lecture 22

Encoding with Binary Character Codes

• Encoding

– Concatenate the codewords representing each

character in the file

• E.g.:

– a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100

– abc = 0 × 101 × 100 = 0101100

54

CS 477/677 - Lecture 22

Decoding with Binary Character Codes

• Prefix codes simplify decoding
– No codeword is a prefix of another ⇒ the

codeword that begins an encoded file is
unambiguous

• Approach
– Identify the initial codeword
– Translate it back to the original character
– Repeat the process on the remainder of the file

• E.g.:
– a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100
– 001011101 = 0 × 0 × 101× 1101 = aabe

55

CS 477/677 - Lecture 22

Prefix Code Representation
• Binary tree whose leaves are the given characters
• Binary codeword

– the path from the root to the character, where 0 means
“go to the left child” and 1 means “go to the right child”

• Length of the codeword
– Length of the path from root to the character leaf (depth

of node)
100

86 14

58 28 14

a: 45 b: 13 c: 12 d: 16 e: 9 f: 5

0

0

0

1

1 1

1

1

0

0 0

100

a: 45

0

55

1

25 30

0 1

c: 12 b: 13

10

14

f: 5 e: 9

10
d: 16

10

56

CS 477/677 - Lecture 22

Optimal Codes

• An optimal code is always represented by a
full binary tree
– Every non-leaf has two children
– Fixed-length code is not optimal, variable-length is

• How many bits are required to encode a file?
– Let C be the alphabet of characters
– Let f(c) be the frequency of character c
– Let dT(c) be the depth of c’s leaf in the tree T

corresponding to a prefix code

å
Î

=
Cc

T cdcfTB)()()(the cost of tree T

57

CS 477/677 - Lecture 22

Constructing a Huffman Code
• Let’s build a greedy algorithm that constructs an

optimal prefix code (called a Huffman code)
• Assume that:

– C is a set of n characters

– Each character has a frequency f(c)

• Idea:
– The tree T is built in a bottom up manner
– Start with a set of |C| = n leaves

– At each step, merge the two least frequent objects: the
frequency of the new node = sum of two frequencies

– Use a min-priority queue Q, keyed on f to identify the two
least frequent objects

a: 45c: 12 b: 13f: 5 e: 9 d: 16

58

CS 477/677 - Lecture 22

Example
a: 45c: 12 b: 13f: 5 e: 9 d: 16 a: 45c: 12 b: 13 d: 1614

f: 5 e: 9
0 1

d: 16

c: 12 b: 13

25 a: 45

f: 5 e: 9

14
0 01 1

f: 5 e: 9

14c: 12 b: 13

25

d: 16

30 a: 45
0 0

0

1 1

1

a: 45

f: 5 e: 9

14c: 12 b: 13

25

d: 16

30

55
0

0 0

0

1

11

1

f: 5 e: 9

14c: 12 b: 13

25

d: 16

30

55a: 45

1000

0

0 0

0

1

1

11

1
59

CS 477/677 - Lecture 22

Building a Huffman Code
Alg.: HUFFMAN(C)
1. n ← ⎥C ⎥
2. Q ← C
3. for i ← 1 to n – 1
4. do allocate a new node z
5. left[z] ← x ← EXTRACT-MIN(Q)
6. right[z] ← y ← EXTRACT-MIN(Q)
7. f[z] ← f[x] + f[y]
8. INSERT (Q, z)
9. return EXTRACT-MIN(Q)

O(n)

O(nlgn)

Running time: O(nlgn)

60

CS 477/677 - Lecture 22

Greedy Choice Property

Let C be an alphabet in which each character

c ∈ C has frequency f[c]. Let x and y be two

characters in C having the lowest frequencies.

Then, there exists an optimal prefix code for C

in which the codewords for x and y have the

same (maximum) length and differ only in the

last bit.
61

CS 477/677 - Lecture 22

Proof of the Greedy Choice

• Idea:
– Consider a tree T representing an arbitrary

optimal prefix code

– Modify T to make a tree representing another
optimal prefix code in which x and y will appear
as sibling leaves of maximum depth

⇒ The codes of x and y will have the same length
and differ only in the last bit

62

CS 477/677 - Lecture 22

Proof of the Greedy Choice (cont.)

• a, b – two characters, sibling leaves of max. depth in T

• Assume: f[a] ≤ f[b] and f[x] ≤ f[y]

• f[x] and f[y] are the two lowest leaf frequencies, in order

⇒ f[x] ≤ f[a] and f[y] ≤ f[b]

• Exchange the positions of a and x (T’) and of b and y (T’’)

x

y

ba

a

y

bx

a

b

yx

T T’ T’’

63

CS 477/677 - Lecture 22

Proof of the Greedy Choice (cont.)

B(T) – B(T’) =

= f[x]dT(x) + f[a]dT(a) – f[x]dT’(x) – f[a]dT’(a)

= f[x]dT(x) + f[a]dT(a) – f[x]dT(a) – f[a]dT (x)

= (f[a] - f[x]) (dT(a) - dT(x))

≥ 0

x

y

ba

a

y

bx

a

b

yx

T T’ T’’

å å
Î Î

-
Cc Cc

TT cdcfcdcf)()()()('

≥ 0
a is a leaf of
maximum depth

≥ 0
x is a minimum
frequency leaf

64

CS 477/677 - Lecture 22

Proof of the Greedy Choice (cont.)

B(T) – B(T’) ≥ 0

Similarly, exchanging y and b does not increase the cost:

B(T’) – B(T’’) ≥ 0

⇒ B(T’’) ≤ B(T). Also, since T is optimal, B(T) ≤ B(T’’)

Therefore, B(T) = B(T’’) ⇒ T’’ is an optimal tree, in which x
and y are sibling leaves of maximum depth

x

y

ba

a

y

bx

a

b

yx

T T’ T’’

65

CS 477/677 - Lecture 22

Discussion

• Greedy choice property:

– Building an optimal tree by mergers can begin

with the greedy choice: merging the two

characters with the lowest frequencies

– The cost of each merger is the sum of

frequencies of the two items being merged

– Of all possible mergers, HUFFMAN chooses the

one that incurs the least cost

66

Interval Partitioning

• Lecture j starts at sj and finishes at fj

• Goal: find minimum number of classrooms
to schedule all lectures so that no two occur
at the same time in the same room
– Ex: this schedule uses 4 classrooms to schedule

10 lectures

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

CS 477/677 - Lecture 23 67

Interval Partitioning

• Lecture j starts at sj and finishes at fj

• Goal: find minimum number of classrooms
to schedule all lectures so that no two occur
at the same time in the same room
– Ex: this schedule uses only 3

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

CS 477/677 - Lecture 23 68

Interval Partitioning: Lower Bound on
Optimal Solution

• The depth of a set of open intervals is the
maximum number that contain any given time

• Key observation:
– The number of classrooms needed ≥ depth

• Ex: Depth of schedule below = 3 ⇒ schedule
below is optimal

• Does there always exist a schedule equal to
depth of intervals?

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

a, b, c all contain 9:30

CS 477/677 - Lecture 23
69

Greedy Strategy

• Consider lectures in increasing order of start

time: assign lecture to any compatible

classroom

– Labels set {1, 2, 3, …, d}, where d is the depth of

the set of intervals

– Overlapping intervals are given different labels

– Assign a label that has not been assigned to any

previous interval that overlaps it

CS 477/677 - Lecture 23 70

Greedy Algorithm

1. Sort intervals by start times, such that s1 ≤ s2 ≤ ... ≤ sn

(let I1, I2, .., In denote the intervals in this order)

2. for j = 1 to n

3. Exclude from set {1, 2, …, d} the labels of preceding and

overlapping intervals Ii from consideration for Ij

4. if there is any label from {1, 2, …, d} that was not excluded

assign that label to Ij

5. else

6. leave Ij unlabeled

CS 477/677 - Lecture 23 71

Example

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

a

c

e

f

g

i

j

3 3:30 4 4:30

d

b

1

2

3

CS 477/677 - Lecture 23 72

Claim

• Every interval will be assigned a label

– For interval Ij, assume there are t intervals earlier

in the sorted order that overlap it

– We have t + 1 intervals that pass over a common

point on the timeline

– t + 1 ≤ d, thus t ≤ d – 1

– At least one of the d labels is not excluded by this

set of t intervals, which we can assign to Ij

CS 477/677 - Lecture 23 73

Claim

• No two overlapping intervals are assigned

the same label

– Consider I and I’ that overlap, and I precedes I’

in the sorted order

– When I’ is considered, the label for I is excluded

from consideration

– Thus, the algorithm will assign a different label to I

CS 477/677 - Lecture 23 74

Greedy Choice Property

• The greedy algorithm schedules every interval
on a resource, using a number of resources
equal to the depth of the set of intervals. This
is the optimal number of resources needed.

• Proof:
– Follows from previous claims

• Structural proof
– Discover a simple “structural” bound asserting that

every possible solution must have a certain value
– Then show that your algorithm always achieves this

bound

CS 477/677 - Lecture 23 75

Scheduling to Minimizing Lateness
• Single resource processes one job at a time
• Job j requires tj units of processing time, is due at

time dj

• If j starts at time sj, it finishes at time fj = sj + tj

• Lateness: !j = max { 0, fj - dj }
• Goal: schedule all jobs to minimize maximum

lateness L = max !j
• Example:

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2 max lateness = 6

CS 477/677 - Lecture 23 76

• Greedy strategy: consider jobs in some order
– [Shortest processing time first] Consider jobs in

ascending order of processing time tj

– [Smallest slack] Consider jobs in ascending order
of slack dj - tj

counterexample

dj

tj

100

1

1

10

10

2

counterexample

dj

tj

2

1

1

10

10

2

Greedy Algorithms

CS 477/677 - Lecture 23

Choosing t1 first: l2 = 1
Choosing t2 first: l2 = l1 = 0

Choosing t2 first: l1 = 9
Choosing t1 first: l1 = 0 and l2 = 1

77

Greedy Algorithm

• Greedy choice: earliest deadline first

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1 < d2 <… < dn

t = 0
for j = 1 to n

Assign job j to interval [t, t + tj]
sj = t, fj = t + tj
t = t + tj

output intervals [sj, fj]

CS 477/677 - Lecture 23 78

Minimizing Lateness: No Idle
Time

• Observation: The greedy schedule has no
idle time

• Observation: There exists an optimal
schedule with no idle time

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

CS 477/677 - Lecture 23 79

Minimizing Lateness: Inversions

• An inversion in schedule S is a pair of jobs i
and j such that: di < dj but j scheduled
before i

• Observation: greedy schedule has no
inversions

ij

inversion

CS 477/677 - Lecture 23 80

Greedy Choice Property

• Optimal solution: di < dj but j scheduled before i
• Greedy solution: i scheduled before j

– Job i finishes sooner, no increase in latency
Lateness(Job j)GREEDY = fi – dj

Lateness(Job i)OPT = fi – di
CS 477/677 - Lecture 23

ji

j iOptimal Sol

Greedy Sol

fj fi

≤

djdi

è No increase in latency

81

Greedy Analysis Strategies

• Exchange argument
– Gradually transform any solution to the one

found by the greedy algorithm without hurting its
quality

• Structural
– Discover a simple “structural” bound asserting

that every possible solution must have a certain
value, then show that your algorithm always
achieves this bound

• Greedy algorithm stays ahead
– Show that after each step of the greedy

algorithm, its solution is at least as good as any
other algorithm’sCS 477/677 - Lecture 23 82

Coin Changing

• Given currency denominations: 1, 5, 10, 25,
100, devise a method to pay amount to
customer using fewest number of coins

• Ex: 34¢

• Ex: $2.89

CS 477/677 - Lecture 23 83

Greedy Algorithm

• Greedy strategy: at each iteration, add coin
of the largest value that does not take us
past the amount to be paid

CS 477/677 - Lecture 23

Sort coins denominations by value: c1 < c2 < … < cn.

S = {}
while (x > 0) {

let k be largest integer such that ck <= x
if (k = 0)

return "no solution found"
x = x - ck
S = S U {k}

}
return S

coins selected

84

Greedy Choice Property

• Algorithm is optimal for U.S. coinage: 1, 5, 10, 25, 100

Change = D * 100 + Q * 25 + D * 10 + N * 5 + P

– Consider optimal way to change ck <= x < ck+1: greedy takes

coin k

– We claim that any optimal solution must also take coin k

– If not, it needs enough coins of type c1, …, ck-1 to add up to x

– Problem reduces to coin-changing x - ck cents, which, by

induction, is optimally solved by greedy algorithm

CS 477/677 - Lecture 23 85

Greedy Choice Property

• Algorithm is optimal for U.S. coinage: 1, 5, 10,
25, 100

Change = Dl * 100 + Q * 25 + D * 10 + N * 5 + P
• Optimal solution: Dl Q D N P
• Greedy solution: Dl’ Q’ D’ N’ P’
1. Value < 5

– Both optimal and greedy use the same # of coins
2. 10 (D) > Value > 5 (N)

– Greedy uses one N and then pennies after that
– If OPT does not use N, then it should use pennies for

the entire amount => could replace 5 P for 1 N
CS 477/677 - Lecture 23 86

Greedy Choice Property

Change = Dl * 100 + Q * 25 + D * 10 + N * 5 + P
• Optimal solution: Dl Q D N P
• Greedy solution: Dl’ Q’ D’ N’ P’
3. 25 (Q) > Value > 10 (D)

– Greedy uses dimes (D’s)
– If OPT does not use D’s, it needs to use either 2

coins (2 N), or 6 coins (1 N and 5 P) or 10 coins
(10 P) to cover 10 cents

– Could replace those with 1 D for a better
solution

CS 477/677 - Lecture 23 87

Greedy Choice Property
Change = Dl * 100 + Q * 25 + D * 10 + N * 5 + P
• Optimal solution: Dl Q D N P
• Greedy solution: Dl’ Q’ D’ N’ P’
4. 100 (Dl) > Value > 25 (Q)

– Greedy picks at least one quarter (Q), OPT does not
– If OPT has no Ds: take all the Ns and Ps and replace

25 cents into one quarter (Q)
– If OPT has 2 or fewer dimes: it uses at least 3 coins to

cover one quarter, so we can replace 25 cents with
1 Q

– If OPT has 3 or more dimes (e.g., 40 cents: with 4 Ds):
take the first 3 Ds and replace them with 1 Q and 1 N

CS 477/677 - Lecture 23 88

Coin-Changing US Postal Denominations

• Observation: greedy algorithm is sub-
optimal for US postal denominations:
– $.01, .02, .03, .04, .05, .10, .20, .32, .40, .44, .50, .64,

.65, .75, .79, .80, .85, .98
– $1, $1.05, $2, $4.95, $5, $5.15, $18.30, $18.95

• Counterexample: 160¢
– Greedy: 105, 50, 5
– Optimal: 80, 80

CS 477/677 - Lecture 23 89

Selecting Breakpoints
• Road trip from Princeton to Palo Alto along fixed route
• Refueling stations at certain points along the way (red

marks)
• Fuel capacity = C
• Goal:

– makes as few refueling stops as possible
• Greedy strategy:

– go as far as you can before refueling

Princeton Palo Alto

1

C

C

2

C

3

C

4

C

5

C

6

C

7

CS 477/677 - Lecture 23 90

• Implementation: O(n log n)
– Use binary search to select each breakpoint p

Greedy Algorithm

Sort breakpoints so that: 0 = b0 < b1 < b2 < ... < bn = L

S = {0}
x = 0

while (x < bn)
let p be largest integer such that bp <= x + C
if (bp = x)

return "no solution"
x = bp
S = S U {p}

return S

breakpoints selected
current location

CS 477/677 - Lecture 23 91

Greedy Choice Property
• Let 0 = g0 < g1 < . . . < gp = L denote set of

breakpoints chosen by the greedy
• Let 0 = f0 < f1 < . . . < fq = L denote set of breakpoints

in an optimal solution with f0 = g0, f1= g1 , . . . , fr = gr

• Note: gr+1 > fr+1 by greedy choice of algorithm

CS 477/677 - Lecture 23

why doesn't optimal solution
drive a little further?

Greedy:

g0 g1 g2 gr gr+1

. . .OPT:

f0 f1 f2 fqfr fr+1

The greedy solution has the
same number of
breakpoints as the optimal

92

Problem – Buying Licenses
• Your company needs to buy licenses for n

pieces of software
• Licenses can be bought only one per month
• Each license currently sells for $100, but

becomes more expensive each month
– The price increases by a factor rj > 1 each month
– License j will cost 100*rj

t if bought t months from now
– ri < rj for license i < j

• In which order should the company buy the
licenses, to minimize the amount of money
spent?

CS 477/677 - Lecture 23 93

Solution

• Greedy choice:
– Buy licenses in decreasing order of rate rj

– r1>r2>r3…
• Proof of greedy choice property

– Optimal solution: …. ri rj….. ri < rj

– Greedy solution: …. rj ri…..
– Cost by optimal solution:
– Cost by greedy solution:
CG – CO = 100 * (rj

t + ri
t+1 - ri

t - rj
t+1) < 0

ri
t+1 – ri

t < rj
t+1 - rj

t

ri
t(ri -1) < rj

t(rj-1)

100* rit + 100* rjt+1

100* rjt + 100* rit+1

OK! (because ri < rj)
CS 477/677 - Lecture 23 94

CSC611/ Lecture11

Readings

• Chapters 14, 15

