CSC 611: Analysis of Algorithms

Lecture 8

Greedy Algorithms

Weighted Interval Scheduling

Job jstarts at s;, finishes at f, and has weight or
value v;

Two jobs are compatible if they don't overlap

Goal: find maximum weight subset of mutually
compatible jobs

I
I
=
I
_
_
__.

Time

0 1 2 3 4 ol lodiued 9

Weighted Interval Scheduling

e Labeljobs by finishing time: f; < f, <...<f,

e Def. p(j) =largest indexi<]such thatjobiis
compatible with j

* Ex: p(8)=5,p(7)=3,p(2) =0

4 I
0 1 2 3 4 5 6 7 8 9 10 11

CSC611/ Lecturell

1. Making the Choice

e OPT(j) = value of optimal solution to the
problem consisting of job requests 1, 2, ..., |

— Case 1: OPT selects job |
e Can't use incompatible jobs{p(j) + 1.p(j) + 2,]- 1}

* Must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., p(j)
N
optimal substructure

— Case 2: OPT does not select job j/

* Must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

CSCé611/ Lecturell

2. A Recursive Solution

e OPT(j) = value of optimal solution to the
problem consisting of job requests 1, 2, ..., |
— Case 1: OPT selects job |

* Can't use incompatible jobs{p(j) + 1. p(j) + 2,]- 1}

* Must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., p(j)

* OPT(j) = v; + OPT(p(j))
— Case 2: OPT does not select job j

* Must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

« OPT(i) = OPT(j-1)
oprn] O if j=0
(= max { v, + OPT(p(j)), OPT(j-1)} otherwise

CSC611/ Lecturell

Top-Down Recursive Algorithm

Sort jobs by finish times so that f; <f, < ... <f,
Compute p(1), p(2). p(n)

Compute-Opt(j)
{
if (j=0)
return O
else
return max(v; + Compute-Opt(p(j)), Compute-Opt(j-1))

}

CSCé611/ Lecturell

3. Compute the Optimal Value

e Compute values in increasing order of |
Input: n, sy,..,8q f1,...fn Vi,...V5
Sort jobs by finish times so that f; < fo < ... < f,

Compute p(1), p(2), ..., p(n)

lterative-Compute-Opt

{
M[0]=0
forj=1ton
} M[j1=max(v; + M[p(j)], M[j-1])

CSC611/ Lecturell

Memoized Version

e Store results of each sub-problem; lookup as needed
Input: n, sq,...,8n f1,...fn Vi, V0

Sort jobs by finish times so that f; < f, < ... < f,.
Compute p(1), p(2), ..., p(n)

forj=1ton
M[j] = empty
M[j1=0

«— global array

M-Compute-Opt(j)
{
if (M[j] is empty)
M[j] = max(v; + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]
} CSC611/ Lecturel]

4. Finding the Optimal Solution

e Two options

1. Store additional information: at each time step
store eitherj or p(j) — value that gave the optimal

solution
2. Recursively find the solution by iterating through
array M Find-Solution(j)
{
it (j=0)
output nothing
else if (v; + M[p(j)]> M[j-1])
print j
Find-Solution(p(}))
else
Find-Solution(j-1)
CSCé611/ Lecturell
An Example
Index
, ur-l—.-Z= p(1) = 0) t: 1'2345
2 w =4 oo =0 M= | l_«J [TTT]
; o pG) =1 pHOEEEE
. Wy = /7 ' p(4) =0 A
) ¥
. — p(s) = 3 Lof2fafel []|
we = 1
6 —y p6) = 3 . N
> RLELL 7]
o s OBOOEGD
OPT(j)= max { . . .
v;+ OPT(p())), OPT(/—I)} otherwise

CSCé611/ Lecturell

Segmented Least Squares

e Least squares
— Foundational problem in statistic and numerical analysis
— Given n points in the plane: (X, Vi), (X2 V2] + . . ., (Xn, Yn)

— Find a line y = ax + b that minimizes the sum of the
squared error:

Error = E (y, —ax, - b)’
i=1

e Solufion — closed form
— Minimum error is achieved when

a=n2ixiyi - QX)) (i) b=M
ny, xiz - (2)? , n

CSC611/ Lecturell

Segmented Least Squares

e Segmented least squares
— Points lie roughly on a sequence of several line
segments
— Given n points in the plane (X;, Y1), (X2, Vo),
(X4, V) With X; <X, < ... <X, find a sequence of
lines that minimizes f(x)

e What is a reasonable y g
choice for f(x) to balance 0
accuracy and parsimony<

/%
CSC611/ Lecturelll X

Segmented Least Squares

e Segmented least squares
— Points lie roughly on a sequence of several line

segments
— Given n points in the plane (X, v1), (X2, Ya) .+ (X,
Vo) With X, < x,< ... < X, find a sequence of lines that
minimizes:
* the sum of the sums of the squared errors E in each
segment X
e the number of lines L y o
e Tradeoff funcftion:
E+c L, forsome constant 0O 00 o
—
CSCé11/ Lecjurell X

(1,2) Making the Choice and
Recursive Solution

e Notation
— OPT(j) = minimum cost for points p;, P,, o,
— €e(i,j) = minimum sum of squares for points pPi, Pi1. ..

e To compute OPT(j)
— Last segment uses points pi, P, - . ., o, for some i
— Cost=¢(i, j) + ¢ + OPT(i-1)

0 it j=0
OPT(j)= min { e(i,j) +c+ OPT(i-1)} otherwise

l=i<j

CSC611/ Lecturell

3. Compute the Optimal Value

INPUT: n, P;,..,Py, C

Segmented-Least-Squares () {
M[0] = O
for 3 =1 ton
for i =1 to j
compute the least square error e;; for
the segment p;,.., Pj

for j =1 ton
M[j] = min,; <; <5 (e;5 + ¢ + M[i-1])

return M[n]

}
e Running time: O(n3)
— Bottleneck = computing e(i, j) for O(n2) pairs, O(n)
per pair using previous formula
CSC611/ Lecturell

Greedy Algorithms

e Similar to dynamic programming, but simpler
approach
— Also used for optimization problems

 ldea: When we have a choice to make, make the
one that looks best right now

— Make a locally optimal choice in the hope of getting a
globally optimal solution

e Greedy algorithms don't always yield an optimal
solution

e When the problem has certain general
characteristics, greedy algorithms give optimal
solutions

CSCé611/ Lecturell

AcTtivity Selection

e Problem

— Schedule the largest possible set of non-overlapping
activities for a given room

Start End Activity
1 8:00am 9:15am Numerical methods class
2 8:30am 10:30am | Movie presentation (refreshments served)
3 9:20am 11:00am | Data structures class
4 10:00am noon Programming club mtg. (Pizza provided)

5 11:30am 1:00pm Computer graphics class

6 1:05pm 2:15pm Analysis of algorithms class

7 2:30pm 3:00pm Computer security class

8 noon 4:00pm Computer games contest (refreshments served)

9 4:00pm 5:30pm Operating systems class

CSC611/ Lecturell

AcTtivity Selection

e Schedule n activities that require exclusive

use of a common resource
S={qay,...,a,}—set of activities

- a, needs resource during period [s; , f;)
- s; = start time and f; = finish time of actfivity q;
- 0<¢sj<fi<coo

* Activities a; and a; are compatible if the
intervals [s; , f;) and [s;, f;) do not overlap

.fiSSJ . . fJSSi'
| . J . J |

CSCé611/ Lecturell

AcTtivity Selection Problem

Select the largest possible set of non-overlapping
(compatible) activities.

i 1 2 3 4 5 6 7 8 9 10 M
ss|1 3 0 5 3 5 6 8 8 2 12
14 5 6 7 8 9 10 11 12 13 14

e Activities are sorted in increasing order of finish times
e A subset of mutually compatible activities: {as, Qy, Ay}
 Maximal set of mutually compatible activities:

{ay, a4, ag, Ay} and {ay, A4, Ay, Oy}

CSC611/ Lecturell

Optimal Substructure

e Define the space of subproblems:
Si={ k€S fiss <f <5}

— actfivities that start after g;finishes and finish before a;
starfs

— Jp = [-=, 0) S = Sg 1 €nNfire space
— Qpsy = [, "o+ 17) of activities
— Range for §is 0 <i,jsn+ 1

CSCé611/ Lecturell

Representing the Problem

e We assume that activities are sorted in
increasing order of finish times:

fogf]SfQS...an<fn+1

* What happens to set §; forizj 2
— For an activity gy € §;: fi <5 < fi <5<
confradiction with f; 2 fj!
= §; = @ (the set §; must be emptyl)
* We only need to consider sets §; with
0<i<jsn+1

CSC611/ Lecturell

Optimal Substructure
e Subproblem:

— Select a maximum-size subset of mutually
compatible activities from set §;

e Assume that a solution to the above
subproblem includes activity gy (S;is non-
empty)

Ve A ™~
f;l S fe -
1 | 1 |
a; — a — (1,
Sik Sk;

Solution to §; = (Solution to §y) U {ay} U (Solution fo Sy)
[solution to $;l= Isolution to s, |+ 1 + Isolution to S|

CS 4771677 - Lecture 21

24

Optimal Substructure

Aij
r A N\
t Sk f‘ S
| | | |
) | I 1 | _
a; —— ay. —— U’
Aik Ay

Aj = Optimal solution to §;
e Claim: Sets A and A, must be optimal solutions
e Assume 3 A, that includes more activities than Ay
Size[A'] = Size[Ay'] + 1 + Size[Ay] > Size[Aj]
= Contradiction: we assumed that A; has the

maximum # of activities taken from §;

CS 477/677 - Lecture 21 25

Recursive Solution

* Any opfimal solufion (associated with a set §;)
contains within it optimal solutions to
subproblems Sy and Sy

e CJi, j] = size of maximum-size subset of mutually
compatible activities in §;

° IfSiJ-=(Z):> C[I,J] =0

CS 477/677 - Lecture 21 26

Recursive Solution

Al
'd N\
f' § ﬂ S’
| | | |
| | 1 1
a; —— a — q
Sik Sij

If S # @ and if we consider that a, is used in

an optimal solution (maximume-size subset of
mutually compatible activities of §;), then:

cli,j] = c[ik] +c[k, j] +1

CS 477/677 - Lecture 21 27

Recursive Solution

(

0 if S;=0
cli,jl= {max{clikl+clkj+1} ifS;#0

i<k<]j
aKESiJ-

e There are j—i— 1 possible values for k
- k=i+1,]—1

— Oy cannot be g; or g (from the definition of §;)
Sij={okeS:fiSsk<kasj}
— We check all the values and take the best one

We could now write a dynamic programming

algorithm
CS 477/677 - Lecture 21 28

Theorem

Let §; # @ and a,, the activity in §; with the
earliest finish fime:
fm = min { fk: Ay € S”}

Then:

1. a,,isusedin some maximum-size subset of
mutually compatible activities of §;
— There exists some optimal solution that contains a,,

— Choosing ap, leaves Sy, the only nonempty
subproblem
CS 477/677 - Lecture 21 29
Proof

2. Assume 3 g, € S,
fi<s <f <s,<fy

= f <f, contradiction |
., Must have the earliest finish time
AL

q N

fitg, Sm fn)
& |

a; — a — a;

Slm " smj

= Thereisnoa, €S, = S, =@

CS 477/677 - Lecture 21 30

Proof: Greedy Choice Property

1. a,,isusedin some maximum-size subset of
mutually compatible activities of §;

* A =optimal solution for activity selection from §;
— Order activities in A; in increasing order of finish time
- Let o be the first activity in Ay = {q, ...}

e Ifay=a,, Donel

e Otherwise, replace a, with ap, (resulfing in a set Ay')
- since f,, < fi the activities in Aj’ will confinue to be

compatible
- Ay willhave the same size as A;j= a, is used in some
maximume-size subset Sij
a I
fl Sm fm S,
| |
i 2 mmmm——— 1 1.
o am fi “i 31

Why Is the Theorem Usefule

Dynamic Using the

programming |theorem
Number of 2 subproblems: 1 subproblem: S
subproblems in the Sik Sy (Sim = 9)

optimal solution

. .. . 1 choice: the activity
Number of choices to |j-i-1 choices a.,. with the earliest

consider finish time in S;
 Making the greedy choice (the activity with the
earliest finish time in §;)
— Reduces the number of subproblems and choices
— Allows solving each subproblem in a top-down fashion

* Only one subproblem left to solvel
CS 477/677 - Lecture 21 32

Greedy Approach

e To select a maximums-size subset of mutually
compatible activities from set §y:

— Choose ay, € §; with earliest finish time (greedy
choice)

— Add qg,, to the set of activities used in the optimal
solution

— Solve the same problem for the set S

e From the theorem

— By choosing a,,, we are guaranteed to have used an
activity included in an optimal solution

= We do notf need to solve the subproblem §,,; before making
the choicel

— The problem has the GREEDY CHOICE property

CS 477/677 - Lecture 21 33

Characterizing the Subproblems

e The original problem: find the maximum subset
of mutually compatible activities for S = Sq 1+

e Activities are sorted by increasing finish time
Qo, O, Oy, A3, ..., Apnei

e We always choose an activity with the earliest
finish time
— Greedy choice maximizes the unscheduled time
remaining
— Finish time of activities selected is strictly increasing

CS 477/677 - Lecture 21 34

A Recursive Greedy Algorithm

Aly: REC-ACT-SEL (s, f,i,n) ‘= .

o~

m—i+1 — —
while m < nand s, < f; »Find first activity in S; 1
dom—m+1
ifmz<n
then return {a,,} U REC-ACT-SEL(s, f, m, n)

else return @

* Activities are ordered in increasing order of finish time
Running time: ©(n) — each activity is examined only once
e Initial call: REC-ACT-SEL(s, f, 0, n)
CS 477/677 - Lecture 21 35
ko os i Example
S S S S S e o o o e e e e e o o o
1 1 40 e |
2 3 5 - Q
5 0 5 _
4 5 7 e
——] T i —— -, = == [N (N S R SN Sap—— ———
5 3 8 7 | 3] i
6 5 9 — P ——
! S A—
7 6 10 = i R
— |
8 8 1 a1 a4 i i m=8 |
T T SR~
9 8 12 I at I al4 [a8 —} i
————
10 2 13 at a|4= a8 i i
T] T . I
11 12 14 * a1 * al4 ; 8 I m=11 -
e e e e S e
12 «© 00+1 at 4 a8 I ai1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 36

An Incremental Algorithm

Alg.: GREEDY-ACTIVITY-SELECTOR(s, f, n)

N OOk~

A —{a) i,
i — 1 ‘ 'Uan f
form— 2ton T a t

doif s, > f; » activity a,, is compatible with g

then A — A U {a,,}
i<—m P q;is most recent addition to A
return A
Assumes that activities are ordered in increasing order of finish
time
Running time: @(n) — each activity is examined only once

CS 477/677 - Lecture 21 37

Steps Toward Our Greedy Solution

Determined the optimal substructure of the problem
Developed a recursive solution

Proved that one of the optimal choices is the greedy
choice

Showed that all but one of the subproblems resulted
by making the greedy choice are empty

Developed a recursive algorithm that implements
the greedy strategy

Converted the recursive algorithm to an iterative

one
CS 477/677 - Lecture 21 38

Designing Greedy Algorithms

1. Cast the optimization problem as one for
which:

e we make a (greedy) choice and are left with only
one subproblem to solve

2. Prove the GREEDY CHOICE property:

 that there is always an optimal solution to the
original problem that makes the greedy choice

3. Prove the OPTIMAL SUBSTRUCTURE:

 the greedy choice + an optimal solution to the
resulting subproblem leads to an optimal solution

CS 477/677 - Lecture 21 39

Correctness of Greedy Algorithms

1. Greedy Choice Property
— A globally optimal solution can be arrived at by
making a locally optimal (greedy) choice
2. Optimal Substructure Property

— We know that we have arrived at a subproblem
by making a greedy choice
— Optimal solution to subproblem + greedy choice

= optimal solution for the original problem

CS 477/677 - Lecture 21 40

Dynamic Programming Vs.
Greedy Algorithms

e Dynamic programming
— We make a choice at each step
— The choice depends on solutions to subproblems
— Bottom up solution, from smaller to larger
subproblems
e Greedy algorithm
— Make the greedy choice and THEN

— Solve the subproblem arising after the choice is
made

— The choice we make may depend on previous
choices, but not on solutions to subproblems

— Top down solution, problems decrease in size
CS 477/677 - Lecture 21 4]

The Knapsack Problem

 The 0-1 knapsack problem

— A thief robbing a store finds n items: the i-th item
is worth v; dollars and weights w; pounds (v;, w;
integers)

— The thief can only carry W pounds in his
knapsack

— Items must be taken entirely or left behind
— Which items should the thief take to maximize the
value of his loade
e The fractional knapsack problem
— Similar to above
— The thief can take fractions of items

CS 477/677 - Lecture 21 42

Fractional Knapsack Problem

e Knapsack capacity: W
e There are nitems: the i-th item has value v;
and weight w;

e Goal:
— Find fractions x; so thatforallO<x;<1,i=1,2, .., n
2 wx;<Wand

2 X;v; is maximum

CS 477/677 - Lecture 21 43

Fractional Knapsack Problem

e Greedy strategy 1.
— Pick the item with the maximum value
* £.g..
- W=1
- wy=100, v;=2
-w,=1v,=1
— Taking from the item with the maximum value:

Total value (choose item 1) = vW/w; = 2/100
— Smaller than what the thief can take if choosing the
other item

Total value (choose item 2) = voW/w, = 1

CS 477/677 - Lecture 21 44

Fractional Knapsack Problem

e Greedy strategy 2.

Pick the item with the maximum value per pound v;/w;

If the supply of that element is exhausted and the
thief can carry more: take as much as possible from

the item with the next greatest value per pound

— Itis good to order items based on their value per

pound
MYy SV
w W, w,
CS 477/677 - Lecture 21 45

Fractional Knapsack Problem

Alg.: Fractional-Knapsack (W, v[n], w[n])

1. w=W

While w > 0 and there are items remaining
pick item i with maximum v,/w;
X; — min (1, w/w;)
remove item i from list

o N

W — W = X;W;
w — the amount of space remaining in the knapsack

e Running time: O(n) if items already ordered; else ©(nign)

CS 477/677 - Lecture 21 46

Fractional Knapsack - Example

* £.g..
20l 80
Item 3 301 +
— —
Item 2 50
20| $100
Item 1 30 N
20 -
10[$60
$60 $100 $120 $240
$6/pound $5/pound $4/pound
CS 477/677 - Lecture 21 47
Greedy Choice
ltems: 1 2 3 . J . n
Optimal solution: X1 X X3 Xj Xn
Greedy solution: X X, X3 Xj X

We know that: xq{' > x4
— greedy choice takes as much as possible from item 1

Modify the optimal solution to take x;" of item 1

— We have to decrease the quantity taken from some item
J:the new x; is decreased by: (x;' - x;) w; /wj

Increase in profit: (x,”-x,) v,
Decrease in profit: (x,”-x)w, v/w,

b b
(X, -%x) v, 2 (X, - X)W, V,/w,
V. > W Vi Vi > Vi True, since x; had the
1= "l = - best value/pound ratio
W, W, oW, P
CS 477/677 - Lecture 21 48

Huffman Codes

e Widely used technique for data compression

e Assume the data to be a sequence of

characters

e Looking for an effective way of storing the

data

e Binary character code

— Uniquely represents a character by a binary string

CS 477/677 - Lecture 22 49

Fixed-Length Codes

t.g.. Data file containing 100,000 characters

a o) C d e f

Frequency (thousands) | 45 | 13 | 12 | 16 9 5

e 3 bits needed

e =000, b=001,c=010,d=011,e =100, f =
101

e Requires: 100,000 x 3 = 300,000 bits

CS 477/677 - Lecture 22 50

Huffman Codes

e |deaq:

— Use the frequencies of occurrence of characters
to build a optimal way of representing each

character

Frequency (thousands) | 45 | 13 | 12 | 16 | 9 S

CS 477/677 - Lecture 22 51

Variable-Length Codes

t.g.. Data file containing 100,000 characters

a o) C d e f

Frequency (thousands) | 45 | 13 | 12 | 16 9 5

e Assign short codewords to frequent characters
and long codewords to infrequent characters

a=0,b=101,c=100,d=111,e=1101,f=1100
(45x 1 +13x3+12x3+16%x3+9x4+5x4)x 1,000

= 224,000 bits

CS 477/677 - Lecture 22 52

Prefix Codes

e Prefix codes:

— Codes for which no codeword is also a prefix of

some other codeword

— Better name would be “prefix-free codes”

e We can achieve optimal data compression
using prefix codes

— We will restrict our attention to prefix codes

CS 477/677 - Lecture 22 53

Encoding with Binary Character Codes

e Encoding

— Concatenate the codewords representing each

character in the file
° £.4g..
- a=0,b=101,c=100,d=111,e=1101,f=1100
—abc=0 x 101 x 100=0101100

CS 477/677 - Lecture 22 54

Decoding with Binary Character Codes

e Prefix codes simplify decoding
— No codeword is a prefix of another = the
codeword that begins an encoded file is
unambiguous
 Approach
— Identify the initial codeword
— Translate it back to the original character
— Repeat the process on the remainder of the file

* 4.

-—a=0,b=101,c=100,d=111,e=1101,f=1100
— 001011101 = 0x0x101x 1101 =aabe
CS 477/677 - Lecture 22 55

Prefix Code Representation

e Binary tree whose leaves are the given characters

e Binary codeword

- the path from the root to the character, where 0 means
“go to the left child” and T means “go to the right child”

e Length of the codeword

— Length of the path from root to the character leaf (depth
of node)

c:12

CS 477/677 - Lecture 22 f:5]|e9 56

Optimal Codes

 An optimal code is always represented by a
full binary tree

— Every non-leaf has two children

— Fixed-length code is not optimal, variable-length is
e How many bits are required to encode a file?

— Let C be the alphabet of characters

— Let f(c) be the frequency of character ¢

— Let d¢(c) be the depth of c’sleafinthe tree T
corresponding to a prefix code

B(T)= Zf(c)dT (¢) the cost of free T

ceC

CS 477/677 - Lecture 22 57

Constructing a Huffman Code

e Let's build a greedy algorithm that constructs an
optimal prefix code (called a Huffman code)

e Assume that:
- Cis aset of ncharacters

— Each character has a frequency f(c)

* |dea: £.5 || e:9 |[c: 12][b: 13][d: 16][a: 45
— The free T is built in a bottom up manner

— Start with a set of |C| = nleaves

— At each step, merge the two least frequent objects: the
frequency of the new node = sum of two frequencies

— Use a min-priority queue Q, keyed on f to identify the two

least frequent objects
CS 477/677 - Lecture 22 58

Example

f:5 || e:9|c:12]||b: 13||d: 16||a: 45
@ d4- 16 a: 45
0 1 0 1 0 1
f5 1 e 9 c:12||b: 13 c:121|b: 13
a: 45
O/ a: 45
Og: 1

Building a Huffman Code

CS 477/677 - Lecture 22

:16||a: 45

c:12||b: 13

Alg.: HUFFMAN(C)
1. n« |C |

2.

Running time: O(nlgn)

Q—C -

3. fori—1ton-1
do allocate a new node z

4
5
6.
/
8
9

left[z] « x «— EXTRACT-MIN(Q)
r'ighT[z] —Y — EXTRACT-MIN(Q)
f[z] « f[x]+ fly]

INSERT (Q, 2)

. return EXTRACT-MIN(Q)

O(n)

CS 477/677 - Lecture 22

> O(nign)

60

Greedy Choice Property

Let C be an alphabet in which each character
c € C has frequency f[c]. Let x and y be two

characters in € having the lowest frequencies.

Then, there exists an optimal prefix code for C
in which the codewords for x and y have the

same (maximum) length and differ only in the
last bit.

CS 477/677 - Lecture 22 61

Proof of the Greedy Choice

e |deaq:

— Consider a tfree T representing an arbitrary
optimal prefix code

— Modify T to make a tree representing another
optimal prefix code in which x and y will appear
as sibling leaves of maximum depth

= The codes of x and y will have the same length
and differ only in the last bit

CS 477/677 - Lecture 22 62

Proof of the Greedy Choice (cont.)

T
X] a —_— -
Y y b

a b X b X Y

- a, b-two characters, sibling leaves of max. depthin T

e Assume: f[a] < f[b] and f[x] < f[y]

e f[x] and f[y] are the two lowest leaf frequencies, in order
= f[x] < f[a] and f[y] < f[b]

e Exchange the positions of aand x (T') and of band y (T"')

CS 477/677 - Lecture 22 63

Proof of the Greedy Choice (cont.)

T 0.

a b X b X Yy

B(T) - B(T") = Zf(C)d (c) - Zf(C)d (¢)
= f[x]dT(X) + f[o]dT(G) - f[x]dr (x) — fla]dr(a)
= f[x]d(x) + fla]d(a) - f[x]di(a) - fla]dy (x)
= (f[a] - f[x]) (dr(a) - dr(x))
>0 >0
X is a minimum ais a leaf of
frequency leaf maximum depth

2 O CS 477/677 - Lecture 22 64

Proof of the Greedy Choice (cont.)

T T, Tn

X - =) a -— - a
Y y b

a b X b X Y

B(T)-B(T') =0

Similarly, exchanging y and b does not increase the cost:
B(T')-B(T"") =0

= B(T'') < B(T). Also, since Tis optimal, B(T) <B(T"’)
Therefore, B(T) = B(T"') = T'' is an optimal tree, in which x

and y are sibling leaves of maximum depth
CS 477/677 - Lecture 22 65

Discussion

e Greedy choice property:
— Building an optimal tfree by mergers can begin

with the greedy choice: merging the two

characters with the lowest frequencies

— The cost of each merger is the sum of

frequencies of the two items being merged

— Of all possible mergers, HUFFMAN chooses the

one that incurs the least cost

CS 477/677 - Lecture 22 66

Interval Partitioning

* Lecture jstarts at sy and finishes at f;

e Goal: find minimum number of classrooms
to schedule all lectures so that no two occur
at the same fime in the same room

— Ex: this schedule uses 4 classrooms to schedule
10 lectures

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2-:30 3 3:30 4 4:30 T
Ime
CS 477/677 - Lecture 23 67

Interval Partitioning

* Lecture j starts af sy and finishes at f;

e Goal: find minimum number of classrooms
to schedule all lectures so that no two occur
at the same fime in the same room

— Ex: this schedule uses only 3

‘a e _n

9 930 10 1030 11 11:30 12 12:30 1 130 2 230 3 330 4 4:30 T
ime

CS 477/677 - Lecture 23 68

Interval Partitioning: Lower Bound on
Optimal Solution

* The depth of a set of open intervals is the
maximum number that contain any given time

e Key observation:
— The number of classrooms needed = depth

* Ex: Depth of schedule below =3 = schedule
belOW lS Opﬂmgl a, b, c all contain 9:30

* Does there always exist a schedule equal to
depth ofintervalse o

e

a e _n

9 9:-30 1-0 16:30 1 11-:30 -12 12-:30 1 1:-30 2 2-:30 3 3:-30 4 4;30 .' 69
CS 477/677 - Lecture 23 Time

Greedy Strategy

e Consider lectures in increasing order of start
time: assign lecture to any compatible
classroom

— Labelsset {1, 2, 3, ..., d}, where d is the depth of

the set of intervals
— Overlapping intervals are given different labels

— Assign a label that has not been assigned to any

previous interval that overlaps it

CS 477/677 - Lecture 23 70

Greedy Algorithm

1. Sortintervals by start times, such thats; ¢ s, ¢ ...

A
(7]
S

(let I;, I,, .., I, denote the intervals in this order)
2. forj=1ton
3. Exclude from set {1, 2, ..., d} the labels of preceding and

overlapping intervals I; from consideration for I

4, if there is any label from {1, 2, ..., d} that was not excluded

assign that label fo I;

5. else
6. leave IJ- unlabeled
CS 477/677 - Lecture 23 71
e
H g B
h
o
9 9:30 10 10:30 11 11:30 12 12:30 1 2:30 3 3:30 4 4:30 _'
_ _ Time
3 o d f j
| b g i
10 e e n

9 930 10 1080 11 1130 12 1230 1 130 2 230 3 330 4 430 _
CS 477/677 - Lecture 23 Time 72

Claim

e Every interval will be assigned a label

— For interval Ij, assume there are t intervals earlier

in the sorted order that overlap it

— We have t + 1 intervals that pass over a common

point on the timeline
-t+1<d, thust<d-1

— At least one of the d labels is not excluded by this

set of f intervals, which we can assign to I

CS 477/677 - Lecture 23 73

Claim

* No two overlapping intervals are assigned
the same label

— Consider l and I’ that overlap, and | precedes I’

in the sorted order

- When I’ is considered, the label for | is excluded

from consideration

— Thus, the algorithm will assign a different label to |

CS 477/677 - Lecture 23 74

Greedy Choice Property

* The greedy algorithm schedules every interval
OoNn aresource, using a number of resources
equal to the depth of the set of intervals. This
Is the optimal number of resources needed.

e Proof:
— Follows from previous claims

Structural proof

— Discover a simple “structural” bound asserting that
every possible solution must have a certain value

— Then show that your algorithm always achieves this
bound

CS 477/677 - Lecture 23 75

Scheduling to Minimizing Lateness

e Single resource processes one job at a fime

e Jobjrequires t; units of processing time, is due at
time d

o Ifjstarts at time s;, it finishes at time f; = 5; + 1;

e Lateness: =max {0, fi-d;}

e Goal: schedule all jobs to minimize maximum

lateness L = max ¢ .-.-.n

* Example:
- 6 9 9 14 15
lateness = 2 lateness =0 maox lateness = 6
| | |
d;=9 d,=8 dg=15 d;, =6 d;=14 d,=9
0 1 2 3 4 5) 7 8 9 10 11 12 13 14 15

CS 477/677 - Lecture 23 76

Greedy Algorithms

o Greedy strategy: consider jobs in some order

— [Shortest processing time first] Consider jobs in
ascending order of processing fime f;

counterexample
Choosing t first: 1, = 1
110 Choosing 1, first: I, =1, =0
S 100 10

— [Smallest slack] Consider jobs in ascending order

of slack d; - f;
counterexample
Choosing t, first: I; = 9
110 Choosing t; first: I, =0 and |, = 1

210

CS 477/677 - Lecture 23 77

Greedy Algorithm

e Greedy choice: earliest deadline first

Sort n jobs by deadline so that d; < d, <.. < 4,

t=20

for j =1 ton
Assign job j to interval [t, t + ty]
s; = t, £5 =t + ¢t
t=t +

output intervals [s;, £;]

max lateness = 1

!
di =6 d,=8 dz=9 dy=9 ds=14 dy=15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CS 477/677 - Lecture 23 78

Minimizing Lateness: No Idle
[ime

e Observation: The greedy schedule has no
idle time

e Observation: There exists an optimal
schedule with no idle time

d=4 d=6 d=12

0 1 2 3 4 5 6 7 8 9 10 11
d=4 d=é6 d=12

0 1 2 3 4 5 6 7 8 9 10 11

CS 477/677 - Lecture 23

Minimizing Lateness: Inversions

79

* Aninversion in schedule S is a pair of jobs |
and j such that: d; < d; but j scheduled
before |

inversion

v |
IV

e Observation: greedy schedule has no
inversions

CS 477/677 - Lecture 23

80

Greedy Choice Property

Optimal Sol

Greedy Sol

* Optimal solution: d; < d; but j scheduled before |

e Greedy solution: i scheduled before |
— Job i finishes sooner, no increase in latency
Lateness(Job j)greepy = fi — d;
S = No increase in latency
Lateness(Job i)ppr = i — d;
CS 477/677 - Lecture 23 81

Greedy Analysis Strategies

e Exchange argument

— Gradually transform any solution to the one
found by the greedy algorithm without hurting its
quality

e Structural

— Discover a simple “structural” bound asserting
that every possible solution must have a certain
value, then show that your algorithm always
achieves this bound

e Greedy algorithm stays ahead

— Show that after each step of the greedy
algorithm, its solution is at least as good as any

other algorithm &5 477/677 - Lecture 23 82

Coin Changing

e Given currency denominations: 1, 5, 10, 25,
100, devise a method to pay amount to
customer using fewest number of coins

CS 477/677 - Lecture 23 83

Greedy Algorithm

e Greedy strategy: at each iteration, add coin
of the largest value that does not take us
past the amount to be paid

Sort coins denominations by value: c; < ¢, < .. < ¢c,.

coins selected

s = {}
while (x > 0) {
let k be largest integer such that ¢, <= x
if (k = 0)
return "no solution found"
X - C
S U ({k}

return S

CS 477/677 - Lecture 23 84

Greedy Choice Property

e Algorithm is optimal for U.S. coinage: 1, 5, 10, 25, 100
Change=D*100+Q*25+D*10+N*5+P

— Consider optimal way to change ¢, <= x < C4;: greedy takes
coin k

— We claim that any optimal solution must also take coin k

— If not, it needs enough coins of type ¢;, ..., ¢, to add up to x

— Problem reduces to coin-changing x - ¢, cents, which, by

induction, is optimally solved by greedy algorithm

CS 477/677 - Lecture 23 85

Greedy Choice Property

e Algorithm is optimal for U.S. coinage: 1, 5, 10,
25, 100

Change =DI* 100+ Q*25+D*10+N*5+P
e Optimal solution: DI Q DNP
e Greedy solution: DI’ Q D' N P
1. Value <5
— Both optimal and greedy use the same # of coins

2. 10 (D) > Value > 5 (N)
— Greedy uses one N and then pennies after that

— If OPT does not use N, then it should use pennies for
the entire amount => could replace 5 P for 1 N
CS 477/677 - Lecture 23 86

Greedy Choice Property

Change =DI* 100+ Q*25+D*10+N*5+P
e Optimal solution: DI Q DNP

e Greedy solution: DI’ Q D' N P

3. 25 (Q) > Value > 10 (D)

— Greedy uses dimes (D's)

— If OPT does not use D's, it needs to use either 2
coins (2 N), or 6 coins (1 Nand 5 P) or 10 coins
(10 P) to cover 10 cents

— Could replace those with 1 D for a better
solution

CS 477/677 - Lecture 23 87

Greedy Choice Property

Change =DI* 100+ Q*25+D*10+N*5+P
e Optimal solution: DI Q DNP

e Greedy solution: DI’ Q D' N P

4. 100 (DI) > Value > 25 (Q)

— Greedy picks at least one quarter (Q), OPT does not

— If OPT has no Ds: take all the Ns and Ps and replace
25 cents into one quarter (Q)

— If OPT has 2 or fewer dimes: it uses at least 3 coins to
cover one quarter, so we can replace 25 cents with
1 Q

— If OPT has 3 or more dimes (e.g., 40 cents: with 4 Ds):
take the first 3 Ds and replace them with 1 Q and 1 N

CS 477/677 - Lecture 23 88

Coin-Changing US Postal Denominations

e Observation: greedy algorithm is sub-
optimal for US postal denominations:

- $.01, .02, .03, .04, .05, .10, .20, .32, .40, .44, .50, .64,
.65,.75,.79, .80, .85, .98

— 31, $1.05, $2, $4.95, $5, $5.15, $18.30, $18.95

e Counterexample: 160¢
— Greedy: 105, 50, 5
— Optimal: 80, 80

CS 477/677 - Lecture 23 89

Selecting Breakpoints

e Road trip from Princeton to Palo Alto along fixed route
e Refueling stations at certain points along the way (red
marks)
 Fuel capacity = C
e Goal:
— makes as few refueling stops as possible
e Greedy strategy:
— go as far as you can before refueling
C C C C

11111 1 11 1111 I I I I | 1] 1
T L T 1T 1 LI

1] 1 | | 1] | &
LI I I LIl LI g

11 | 11
1] I 1]

Princeton C Cc C Palo Alto

1 2 3 4 5 6 7

CS 477/677 - Lecture 23 90

Greedy Algorithm

Sort breakpoints so that: 0 = b, < b; < b, < ... < b, =1L
S = {0} «—— breakpoints selected
x =0 «—— current location

while (x < b,)
let p be largest integer such that b, <= x + C
if (b, = x)
return "no solution"
X b,
S =8 U {p}

return S

e Implementation: O(n log n)
— Use binary search to select each breakpoint p

CS 477/677 - Lecture 23 91

Greedy Choice Property

e lef0=9gp <g;< ...<g, =L denote set of
breakpoints chosen by the greedy
e let0=fy<f; < ...<fy=Ldenote set of breakpoints

in an optimal solution with fs =g, 1= 97, ..., f,=Q,
e Note: g1 > f4 by greedy choice of algorithm

|
9o 91 92 O i Or+1

Greedy: The greedy solution has the
i same number of
: breakpoints as the optimal
|

oPT: I

fO f1 f2 fr fr+‘1 N fq
why doesn't optimal solution
drive a little furthere

CS 477/677 - Lecture 23 92

Problem — Buying Licenses

e Your company needs to buy licenses for n
pieces of software

e Licenses can be bought only one per month

e Each license currently sells for $100, but
becomes more expensive each month
— The price increases by a factorr; > 1 each month
— License j will cost 100*r if bought t months from now
- r<rforlicensei< j

* |In which order should the company buy the
licenses, to minimize the amount of money
spente

CS 477/677 - Lecture 23 93

Solution

e Greedy choice:
— Buy licenses in decreasing order of rate r,

— N>r>rs...
e Proof of greedy choice property
— Optimal solutfion: ... rir..... n<r

— Greedy solution: ... fr.....

— Cost by optimal solution: 100* rf + 100* ro+1
— Cost by greedy solution: 100* ro + 100* r;t*!
CG-CO=100"* (rf +r*"-rt-r1) <0

ri’r+1 _ ri’r < rjf+1 _ rj’r

ri(ri 1) <rf(r-1) OK! (because r; <)

CS 477/677 - Lecture 23 94

Readings

\\(ﬁ e Chapters 14, 15

C

X

CSC611/ Lecturell

