
Standards
Editor: Barry Leiba • barryleiba@computer.org

62 Published by the IEEE Computer Society 1089-7801/12/$31.00 © 2012 IEEE IEEE INTERNET COMPUTING

M ore and more devices are becoming con-
nected. Automation systems, mobile
personal gadgets, building-automation

devices, cellular terminals, the smart grid, and
so on all benefit from interacting with other
objects close to them or halfway around the
globe. Although many limited, special-purpose
networks have been (and will be) built for this,
ubiquitous IP technology is now enabling a
leap from sheer quantity to a new quality, often
called the Internet of Things. Over the next
decade, this could grow to trillions of embedded
devices and will greatly increase the Internet’s
size and scope.

The IETF has already undertaken much stan-
dardization work to make the packets flow. The
IPv6 over Low-Power Wireless Area Networks
(6LoWPAN)1 standards (RFCs 4944 and 6282)
now enable IPv6 even on very constrained
networks — including the popular IEEE 802.15.4
wireless standard, ISM (industrial, scientific,
medical) band telemetry radios, and low-rate
power-line communications (PLC), all while using
very simple embedded microcontrollers. IETF
Routing Over Low-power and Lossy networks
(ROLL) standardization provides a routing solu-
tion optimized for these constrained networks. In
the ZigBee Smart Energy Profile 2.0, the ZigBee

Alliance has demonstrated how to combine
these components to build a complete, mature
IPv6 stack for integrating embedded devices
and systems into the Internet.

Networking alone, however, doesn’t make
the Internet useful. Applications today depend
on the Web architecture, using HTTP to access
information and perform updates. HTTP is
based on Representational State Transfer (REST),
an architectural style that makes information
available as resources identified by URIs: appli-
cations communicate by exchanging representa-
tions of these resources using a transfer protocol
such as HTTP. This powerful and extensible par-
adigm is quickly spreading to Internet of Things
applications, letting developers of Web-based
applications continue using their existing skills.
The IETF Constrained RESTful Environments
(CoRE) working group aims to make the REST
paradigm available for devices and networks
that might be too constrained to use the typi-
cal approaches around the HTTP protocol. The
main product of the CoRE WG is the Constrained
Application Protocol (CoAP).2

The CoRE World
What’s so special about the environment the
CoRE work targets? The large number of devices

CoAP: An Application
Protocol for Billions
of Tiny Internet Nodes
Carsten Bormann • Universität Bremen

Angelo P. Castellani • University of Padova

Zach Shelby • Sensinode

The Constrained Application Protocol (CoAP) is a transfer protocol for con-

strained nodes and networks, such as those that will form the Internet of Things.

Much like its older and heavier cousin HTTP, CoAP uses the REST architectural

style. Based on UDP and unencumbered by historical baggage, however, CoAP

aims to achieve its modest goals with considerably less complexity.

IC-16-02-Standards.indd 62 2/7/12 10:40 AM

CoAP: An Application Protocol for Billions of Tiny Internet Nodes

MARCH/APRIL 2012 63

envisaged will never emerge if
they’re too expensive, especially
if they consume too much power.
(A trillion devices using a watt each
would consume half the entire glob-
ally available electricity.) Worse,
many devices will need to live for
years off primary batteries, limiting
them to an average consumption on
the order of microwatts. They can
only achieve such thriftiness by
sleeping most of the time, making
some of them responsive to incom-
ing packets only for short intervals.

These power limitations also lead
to constraints on available net-
working. Because stringing wires
is prohibitively expensive in many
applications, most devices will con-
nect wirelessly, often using crowded
ISM spectrum. At a transmission
power of roughly a milliwatt, many
packet losses will occur, and the net
data rate achievable could make old
modems look good. Also, wireless
standards such as IEEE 802.15.4 need
fragmentation (which exacerbates
losses) to transport more than a few
dozen bytes of payload, requiring
strict frugality with regard to packet
size. Constrained networks aren’t a
wireless Ethernet!

Constraints on nodes themselves
include not only power limitations but
also a desire to limit manufacturing
costs. There is no single type of con-
strained, Internet-connected device —
rather, the trend is toward a wider
variety of such devices than in the
current Internet — but commercially
available chips do group into certain
capability clusters. We can examine
these device classes to determine the
resulting design constraints.

Heroic at tempts to get some
Internet functionality into impos-
sibly limited devices get considerable
press, but these devices won’t be full-
fledged citizens of the Internet of
Things. These class-0 devices most
likely will form a symbiotic relation-
ship with larger devices to take part
in global conversations.

We can discern another clus-
ter of chips with about 10 Kbytes
of RAM and roughly 100 Kbytes of
code space (Flash or ROM); these are
the class-1 devices. Interestingly, this
class hasn’t changed much in the past
decade. Moore’s law tends to be less
effective in the embedded space than
in personal computing devices: chip
makers are more likely to invest gains
from increases in transistor count
and density into reducing cost and
power requirements than into con-
tinual increases in computing power.

Class-1 devices can’t easily talk
to other Internet nodes using HTTP,
Transport Layer Security (TLS) and
related security protocols, and XML-
based data representations. However,
they have enough power to partici-
pate in meaningful conversations

beyond a simple symbiotic relation-
ship to a single gateway node, so
giving them the power of the Inter-
net is worthwhile.

Another cluster of embedded devices
sports around 50 Kbytes of RAM and
maybe 250 Kbytes of code space.
These class-2 devices can indeed
speak the exact same protocols used
among desktops, laptops, and rack-
mount servers. However, even these
devices can benefit from constrained
protocols — they’d use less power and
fewer network resources, would leave
more functionality available to appli-
cations, and could also more easily
communicate with class-1 devices in
their environment.

In short, an Internet of Things
that wants to make good use of
inexpensive class-1 devices, and of

constrained networks limited to pack-
ets of maybe 60 to 80 bytes of pay-
load, will need application protocols
that fit this environment.

REST
HTTP is the most popular applica-
tion protocol on the Internet; it sup-
ports the architecture we refer to
as “the Web.” What does the Web
bring to constrained networks and
devices?

First and foremost, the Web is
a loosely coupled application-layer
architecture. Resources are key to
Web architecture: server-controlled
abstractions an application pro-
cess makes available, identified via
URIs. Clients access these server-
controlled resources in a synchro-
nous request–response fashion using

methods such as GET, PUT, POST,
and DELETE (see Figure 1).

The server owns the original state
of a resource, and the access to its
representation allows for caching,
proxying, and redirecting requests
and responses, enabling seamless
interoperation through proxies. Web
resources often contain links to
other resources, which creates a dis-
tributed Web between Internet end
points, resulting in a highly scal-
able and flexible architecture. These
core Web concepts are commonly
described as REST (http://java.sun.
com/developer/technicalArticles/
WebServices/restful/).3

CoAP
Loosely speaking, the Web consists of
three technologies: HTML, HTTP/REST,

HTTP has undergone more than a decade
of organic growth, leading to considerable
implementation baggage that overwhelms
small devices.

IC-16-02-Standards.indd 63 2/7/12 10:40 AM

Standards

64 www.computer.org/internet/ IEEE INTERNET COMPUTING

and URIs. Only the latter two are
useful where machines talk to
machines. Special data formats to
replace HTML for these applications
are being defined,4 often based on
XML and its compact binary rep-
resentation, EXI, or on the Java-
Script Object Notation (JSON, RFC
4627).

HTTP itself is a powerful and
well-tried protocol, but it’s relatively
expensive both in implementation
code space (a problem for class-1
devices) and network resource usage.
Part of the problem is that HTTP has
undergone more than a decade of
organic growth, leading to consid-
erable implementation baggage that
overwhelms small devices.

However, HTTP is designed to
interoperate through proxies; what we
really need in constrained environments
is REST, not necessarily all HTTP’s
bells and whistles. CoAP is a fresh
approach to a Web application trans-
fer protocol that tries to get by with
very limited resources. CoAP isn’t
just “compressed HTTP” — although
it provides the same basic set of ser-
vices, it does so with a very frugal
design (see Figure 2).

A central element of CoAP’s
reduced complexity is that, instead of
TCP, it uses UDP and defines a very
simple “message layer” for retrans-
mitting lost packets. Within UDP
packets, CoAP uses a four-byte binary
header, followed by a sequence of
options (each with a one-byte header,
extensible to two bytes for longer
option values). This compact but eas-
ily parsable encoding enables a total
header size of 10 to 20 bytes for a
typical request. Differential encoding
of option types provides the future
extensibility needed without burden-
ing simple implementations.

On top of CoAP’s message layer, the
CoAP base specification defines the
familiar four request methods, GET,
PUT, POST, and DELETE. Similarly,
response codes are patterned after
the HTTP response codes (as in the
familiar “404 not found”), but encoded
in a single byte (“4.04” standing for
4 ∗ 32 + 04) (see Figure 3 on p. 66).

Interworking with HTTP
CoAP would already be useful if
we could use it only for communi-
cating between CoAP end points,
but it reaches its full potential by

interworking with HTTP. The REST
architectural style enables this through
proxies or, more generally, inter-
mediaries that behave like a server
to a client and play a client toward
another server. (REST terminology
reserves the term “proxy” for inter-
mediaries specifically configured on
a client. It also has a “gateway” that
acts as if it were the origin server;
these are often called “reverse prox-
ies” in the Web because they can be
much less intrusive than the general
concept of a gateway.)

We can generally build inter-
mediaries that speak CoAP on one
side and HTTP on the other without
encoding specific application knowl-
edge. This lets us deploy new appli-
cations without having to upgrade
all the intermediaries involved — a
requirement that’s typically the bane
of architectures heavily relying on
gateways in the general sense.

In many cases, an intermedi-
ary can perform the translation
between CoAP and HTTP without
posing further requirements either
on the client or server. Where equiv-
alent methods, response codes, and
options are present in both proto-
cols, the mapping between CoAP
and HTTP is straightforward, and
even completely stateless intermedi-
aries can handle the self-describing
REST-based messages by applying a
static mapping.

Both CoAP and HTTP identify
resources using URIs. Existing HTTP
end points might be unaware of
CoAP’s URI schemes — say, coap://
URIs. A reverse-proxy-style inter-
mediary can make a set of CoAP
resources available at what look
like regular http:// or https:// URIs,
enabling older Web clients to access
CoAP servers transparently (see
Figure 2). Similarly, an interception
proxy (RFC 3040) deployed in a net-
work location suitable for traff ic
interception that automatically redi-
rects client requests to itself might
provide such a service.

Figure 1. The Web architecture. (a) Clients access servers directly and via
proxies; (b) a GET request elicits a 200 OK response.

GET /temperature
200 OK
text/plain
22.5°C

Server

ClientClient
(a) (b)

Redirect

Proxy

Server Server Server

ServerServer

Server

/temperature

22.5°C

IC-16-02-Standards.indd 64 2/7/12 10:40 AM

CoAP: An Application Protocol for Billions of Tiny Internet Nodes

MARCH/APRIL 2012 65

By mapping a single HTTP request
to a multicast CoAP request and then
aggregating multiple responses back
into a single HTTP response body,
future types of intermediaries might
even support more complex commu-
nication patterns across HTTP and
CoAP, such as group communication.

Block
Basic CoAP messages work well for
the small payloads we expect from
temperature sensors, light switches,
and similar building-automation
devices. Occasionally, however, appli-
cations will need to transfer larger
payloads — for instance, for firmware
updates. With HTTP, TCP does the
grunt work of slicing large payloads
up into multiple packets and ensuring
that they all arrive and are handled
in the right order. Although UDP
supports larger payloads through IP
fragmentation, it’s limited to 64 KiB
and, more importantly, doesn’t really
work well for constrained applica-
tions and networks.

Instead of relying on IP fragmen-
tation, CoAP simply adds a pair of
“Block” options, transferring multiple

blocks of information from a resource
representation in multiple request–
response pairs.5 The block options
enable a server to be truly stateless
in the most likely cases: the server
can handle each block transfer sepa-
rately, with no need for a connection
setup or other server-side memory
of previous block transfers.

Observe
In HTTP, transactions are always
client-initiated, and the client must
perform GET operations again and
again (polling) if it wants to stay up
to date about a resource’s status. This
pull model becomes expensive in an
environment with limited power,
limited network resources, and nodes
that sleep most of the time. Web
developers have come up with some
more or less savory workarounds for
HTTP (RFC 6202), but, as a new pro-
tocol, CoAP can do better.

CoAP uses an asynchronous
approach to support pushing infor-
mation from servers to clients:
observation.6 In a GET request, a
client can indicate its interest in
further updates from a resource by

specifying the “Observe” option. If
the server accepts this option, the
client becomes an observer of this
resource and receives an asynchro-
nous notification message each time
it changes. Each such notification
message is identical in structure
to the response to the initial GET
request.

Instead of trying to create another
complex publish–subscribe architec-
ture, CoAP effectively provides a
minimal enhancement to the REST
model, just adding the well-known
observer design pattern.7

Discovery
In the machine-to-machine (M2M)
environments that will be typical
of CoAP applications, devices must
be able to discover each other and
their resources. Resource discovery
is common on the Web, and is called
Web discovery in the HTTP com-
munity. One form of Web discovery
occurs when humans access a serv-
er’s default resource (such as index.
html), which often includes links to
other Web resources available on
that or related servers.

Figure 2. Implementing the Web architecture with HTTP and the Constrained Application Protocol (CoAP). (a) HTTP
and CoAP work together across constrained and traditional Internet environments; (b) the CoAP protocol stack is similar
to, but less complex than, the HTTP protocol stack.

Server

Proxy

Server

C

Node

C

C

C

Internet(a) (b)Constrained environments

Server

CoAP

CoAP

HTTP

HTTP

CoAP

REST

CoAP

Constrained link

IP

UDP

CoAP

Payload

Ethernet link

IP

TCP

HTTP

Payload

IC-16-02-Standards.indd 65 2/7/12 10:40 AM

Standards

66 www.computer.org/internet/ IEEE INTERNET COMPUTING

Machines can also perform Web
discovery if standardized interfaces
and resource descriptions are avail-
able. New approaches from the IETF
include the well-known resource
path /.well-known/scheme (RFC
5785) and the HTTP link header (RFC
5988). Several related techniques are
common today. In CoRE, we’re deal-
ing with autonomous devices and
embedded systems; thus, the impor-
tance of uniform, interoperable
resource discovery is much greater
than on the current Web. To ensure
interoperability between CoAP end
points, the protocol includes a tech-
nique for discovering and advertis-
ing resource descriptions. Because
these descr iptions are machine-
interpreted, we’re also standardiz-
ing the description format itself. To
achieve resource discovery, CoAP
servers are encouraged to provide
a resource description available via
the well-known URI /.well-known/
core for resource discovery. Clients
then access this description with a
GET request on that URI. The same
description could be advertised, or
even posted to a description direc-
tory. The description format is based
on the HTTP link header format as
an Internet media type carried in the
payload, which is simple and easy to
parse.8

Security
For applications that require some
level of security, HTTP is usually

employed in combination with TLS
(formerly Secure Sockets Layer, or
SSL). This protects the message con-
tent’s confidentiality and integrity.
Server authentication often employs
a public-key infrastructure (PKI) based
on certif ication authorities (CAs).
This approach works quite well in
practice, but suffered some well-
publicized attacks in 2011.9

Similarly, we can use CoAP on
top of Datagram Transport Layer
Security (DTLS).10 We expect CoAP
deployments to use a wider variety
of key-management options avail-
able for TLS than most HTTP appli-
cations do today; the IETF TLS
working group is developing some
additional particularly lightweight
combinations.11

Standardization Activities
and Adoption
CoRE technology has already become
widespread in both open source com-
munities and industry applications,
with implementations of CoAP and
related specifications available in
several programming languages
along with Firefox and Wireshark
support. Many informal tests estab-
lished interoperability between dozens
of implementations; the European
Telecommunications Standards Insti-
tute (ETSI) will conduct a formal
interop event on 24–25 March 2012,
colocated with IETF 83 in Paris.

Several other standards activities
are using IETF CoRE standards as

part of more complete M2M systems.
The ETSI M2M Technical Committee
has specified a service-layer archi-
tecture for M2M that includes bind-
ings for both HTTP and CoAP. The
ZigBee IP Smart Energy 2.0 speci-
fication includes support for CoAP
for constrained battery-powered
devices.

A s a tiny but well-designed and
quite functional stand-in for

HTTP, CoAP is slated to become a
ubiquitous application protocol for
the future Internet of Things — or,
really, the “Internet of Innumerable
Embedded Systems.”

References
1. Z. Shelby and C. Bormann, 6LoWPAN: The

Wireless Embedded Internet, Wiley, 2009.

2. Z. Shelby et al., “Constrained Application

Protocol (CoAP),” IETF Internet draft,

work in progress, Oct. 2011.

3. R.T. Fielding, Architectural Styles and the

Design of Network-Based Software Archi-

tectures, PhD thesis, Univ. of California,

Irvine, 2000.

4. C. Jennings, Z. Shelby, and J. Arkko,

“Media Types for Sensor Markup Lan-

guage (SENML),” IETF Internet draft,

work in progress, Oct. 2011.

5. C. Bormann and Z. Shelby, “Blockwise

Transfers in CoAP,” IETF Internet draft,

work in progress, July 2011.

6. K. Hartke and Z. Shelby, “Observing

Resources in CoAP,” IETF Internet draft,

work in progress, Oct. 2011.

Figure 3. Constrained Application Protocol (CoAP) request–response examples. (a) A confirmable GET request elicits a
2.05 response piggy-backed in an ACK; (b) packet loss is fixed by retransmission, reusing the message id (mid).

CoAP
client

CoAP
server

CON (mid =124) GET /humidity

ACK (mid =124) 2.05 "<humidity>..."

X

CON (mid =124) GET /humidityTimeout

CoAP
client

(a) (b)

CoAP
server

CON (mid =123) GET /light

ACK (mid =123) 2.05 "<light>..."

IC-16-02-Standards.indd 66 2/7/12 10:40 AM

CoAP: An Application Protocol for Billions of Tiny Internet Nodes

MARCH/APRIL 2012 67

7. E. Gamma et al., Design Patterns: Ele-

ments of Reusable Object-Oriented Soft-

ware, Addison-Wesley, 1994.

8. Z. Shelby, “CoRE Link Format,” IETF

Internet draft, work in progress, Nov.

2011.

9. N. Leavit t , “Internet Secur ity Under

Attack: The Undermining of Digital

Cer t if icates,” Computer, Dec. 2011,

pp. 17–20.

10. E. Rescorla and N. Modadugu, “Datagram

Transport Layer Security version 1.2,”

IETF Internet draft, work in progress,

July 2011.

11. P. Wouters et al., “TLS Out-of-Band Pub-

lic Key Validation,” IETF Internet draft,

work in progress, Nov. 2011.

Carsten Bormann is Honorarprofessor for

Internet technology at the Universität

Bremen and a board member of its Cen-

ter for Computing and Communica-

tions Technology (TZI). He’s a protocol

designer by heart, a standardization

geek by necessity, and coauthor of

6LoWPAN: The Wireless Embedded Inter-

net (Wiley, 2009). Contact him at cabo@

tzi.org.

Angelo P. Castellani is a PhD student at the Uni-

versity of Padova. His research interests

include the Internet of Things and wire-

less sensor networks. Castellani has an

ME in telecommunication engineer-

ing from the University of Rome, Sapi-

enza. Contact him at castellani@dei.

unipd.it.

Zach Shelby is cofounder and chief nerd at

Sensinode, where he leads Internet of

Things research and standardization

activities. He’s actively involved with

IETF standardization and EU research

projects, and is coauthor of 6LoWPAN:

The Wireless Embedded Internet (Wiley,

2009). Contact him at zach@sensinode.

com.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

IC-16-02-Standards.indd 67 2/7/12 10:40 AM

