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M ore and more devices are becoming con-
nected. Automation systems, mobile 
personal gadgets, building-automation 

devices, cellular terminals, the smart grid, and 
so on all benefit from interacting with other 
objects close to them or halfway around the 
globe. Although many limited, special-purpose 
networks have been (and will be) built for this, 
ubiquitous IP technology is now enabling a 
leap from sheer quantity to a new quality, often 
called the Internet of Things. Over the next 
decade, this could grow to trillions of embedded 
devices and will greatly increase the Internet’s 
size and scope.

The IETF has already undertaken much stan-
dardization work to make the packets flow. The 
IPv6 over Low-Power Wireless Area Networks 
(6LoWPAN)1 standards (RFCs 4944 and 6282) 
now enable IPv6 even on very constrained  
networks — including the popular IEEE 802.15.4 
wireless standard, ISM (industrial, scientific, 
medical) band telemetry radios, and low-rate 
power-line communications (PLC), all while using 
very simple embedded microcontrollers. IETF 
Routing Over Low-power and Lossy networks 
(ROLL) standardization provides a routing solu-
tion optimized for these constrained networks. In 
the ZigBee Smart Energy Profile 2.0, the ZigBee  

Alliance has demonstrated how to combine 
these components to build a complete, mature 
IPv6 stack for integrating embedded devices 
and systems into the Internet.

Networking alone, however, doesn’t make 
the Internet useful. Applications today depend 
on the Web architecture, using HTTP to access 
information and perform updates. HTTP is 
based on Representational State Transfer (REST), 
an architectural style that makes information 
available as resources identified by URIs: appli-
cations communicate by exchanging representa-
tions of these resources using a transfer protocol 
such as HTTP. This powerful and extensible par-
adigm is quickly spreading to Internet of Things 
applications, letting developers of Web-based 
applications continue using their existing skills. 
The IETF Constrained RESTful Environments 
(CoRE) working group aims to make the REST 
paradigm available for devices and networks 
that might be too constrained to use the typi-
cal approaches around the HTTP protocol. The 
main product of the CoRE WG is the Constrained 
Application Protocol (CoAP).2

The CoRE World
What’s so special about the environment the 
CoRE work targets? The large number of devices 
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envisaged will never emerge if 
they’re too expensive, especially  
if they consume too much power. 
(A trillion devices using a watt each 
would consume half the entire glob-
ally available electricity.) Worse, 
many devices will need to live for 
years off primary batteries, limiting 
them to an average consumption on 
the order of microwatts. They can 
only achieve such thriftiness by 
sleeping most of the time, making 
some of them responsive to incom-
ing packets only for short intervals.

These power limitations also lead 
to constraints on available net-
working. Because stringing wires 
is prohibitively expensive in many 
applications, most devices will con-
nect wirelessly, often using crowded 
ISM spectrum. At a transmission 
power of roughly a milliwatt, many 
packet losses will occur, and the net 
data rate achievable could make old 
modems look good. Also, wireless 
standards such as IEEE 802.15.4 need 
fragmentation (which exacerbates 
losses) to transport more than a few 
dozen bytes of payload, requiring 
strict frugality with regard to packet 
size. Constrained networks aren’t a 
wireless Ethernet!

Constraints on nodes themselves 
include not only power limitations but 
also a desire to limit manufacturing 
costs. There is no single type of con-
strained, Internet-connected device —  
rather, the trend is toward a wider 
variety of such devices than in the 
current Internet — but commercially 
available chips do group into certain 
capability clusters. We can examine 
these device classes to determine the 
resulting design constraints.

Heroic at tempts to get some 
Internet functionality into impos-
sibly limited devices get considerable 
press, but these devices won’t be full-
fledged citizens of the Internet of 
Things. These class-0 devices most 
likely will form a symbiotic relation-
ship with larger devices to take part 
in global conversations.

We can discern another clus-
ter of chips with about 10 Kbytes 
of RAM and roughly 100 Kbytes of 
code space (Flash or ROM); these are 
the class-1 devices. Interestingly, this 
class hasn’t changed much in the past 
decade. Moore’s law tends to be less 
effective in the embedded space than 
in personal computing devices: chip 
makers are more likely to invest gains 
from increases in transistor count 
and density into reducing cost and 
power requirements than into con-
tinual increases in computing power.

Class-1 devices can’t easily talk 
to other Internet nodes using HTTP, 
Transport Layer Security (TLS) and 
related security protocols, and XML-
based data representations. However, 
they have enough power to partici-
pate in meaningful conversations 

beyond a simple symbiotic relation-
ship to a single gateway node, so 
giving them the power of the Inter-
net is worthwhile.

Another cluster of embedded devices 
sports around 50 Kbytes of RAM and 
maybe 250 Kbytes of code space. 
These class-2 devices can indeed 
speak the exact same protocols used 
among desktops, laptops, and rack-
mount servers. However, even these 
devices can benefit from constrained  
protocols — they’d use less power and 
fewer network resources, would leave 
more functionality available to appli-
cations, and could also more easily 
communicate with class-1 devices in 
their environment.

In short, an Internet of Things 
that wants to make good use of 
inexpensive class-1 devices, and of  

constrained networks limited to pack-
ets of maybe 60 to 80 bytes of pay-
load, will need application protocols 
that fit this environment.

REST
HTTP is the most popular applica-
tion protocol on the Internet; it sup-
ports the architecture we refer to 
as “the Web.” What does the Web 
bring to constrained networks and  
devices?

First and foremost, the Web is 
a loosely coupled application-layer 
architecture. Resources are key to 
Web architecture: server-controlled 
abstractions an application pro-
cess makes available, identified via 
URIs. Clients access these server-
controlled resources in a synchro-
nous request–response fashion using 

methods such as GET, PUT, POST, 
and DELETE (see Figure 1).

The server owns the original state 
of a resource, and the access to its 
representation allows for caching, 
proxying, and redirecting requests 
and responses, enabling seamless  
interoperation through proxies. Web 
resources often contain links to 
other resources, which creates a dis-
tributed Web between Internet end 
points, resulting in a highly scal-
able and flexible architecture. These 
core Web concepts are commonly 
described as REST (http://java.sun.
com/developer/technicalArticles/
WebServices/restful/).3

CoAP
Loosely speaking, the Web consists of 
three technologies: HTML, HTTP/REST,  

HTTP has undergone more than a decade 
of organic growth, leading to considerable 
implementation baggage that overwhelms 
small devices.
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and URIs. Only the latter two are 
useful where machines talk to 
machines. Special data formats to 
replace HTML for these applications 
are being defined,4 often based on 
XML and its compact binary rep-
resentation, EXI, or on the Java-
Script Object Notation (JSON, RFC  
4627).

HTTP itself is a powerful and 
well-tried protocol, but it’s relatively 
expensive both in implementation 
code space (a problem for class-1 
devices) and network resource usage. 
Part of the problem is that HTTP has 
undergone more than a decade of 
organic growth, leading to consid-
erable implementation baggage that 
overwhelms small devices.

However, HTTP is designed to 
interoperate through proxies; what we 
really need in constrained environments  
is REST, not necessarily all HTTP’s 
bells and whistles. CoAP is a fresh 
approach to a Web application trans-
fer protocol that tries to get by with 
very limited resources. CoAP isn’t 
just “compressed HTTP” — although 
it provides the same basic set of ser-
vices, it does so with a very frugal 
design (see Figure 2).

A central element of CoAP’s 
reduced complexity is that, instead of 
TCP, it uses UDP and defines a very 
simple “message layer” for retrans-
mitting lost packets. Within UDP 
packets, CoAP uses a four-byte binary 
header, followed by a sequence of 
options (each with a one-byte header, 
extensible to two bytes for longer 
option values). This compact but eas-
ily parsable encoding enables a total 
header size of 10 to 20 bytes for a 
typical request. Differential encoding 
of option types provides the future 
extensibility needed without burden-
ing simple implementations.

On top of CoAP’s message layer, the 
CoAP base specification defines the 
familiar four request methods, GET, 
PUT, POST, and DELETE. Similarly, 
response codes are patterned after 
the HTTP response codes (as in the 
familiar “404 not found”), but encoded 
in a single byte (“4.04” standing for  
4 ∗ 32 + 04) (see Figure 3 on p. 66).

Interworking with HTTP
CoAP would already be useful if 
we could use it only for communi-
cating between CoAP end points, 
but it reaches its full potential by  

interworking with HTTP. The REST 
architectural style enables this through 
proxies or, more generally, inter-
mediaries that behave like a server 
to a client and play a client toward 
another server. (REST terminology 
reserves the term “proxy” for inter-
mediaries specifically configured on 
a client. It also has a “gateway” that 
acts as if it were the origin server; 
these are often called “reverse prox-
ies” in the Web because they can be 
much less intrusive than the general 
concept of a gateway.)

We can generally build inter-
mediaries that speak CoAP on one 
side and HTTP on the other without 
encoding specific application knowl-
edge. This lets us deploy new appli-
cations without having to upgrade 
all the intermediaries involved — a 
requirement that’s typically the bane 
of architectures heavily relying on 
gateways in the general sense.

In many cases, an intermedi-
ary can perform the translation 
between CoAP and HTTP without 
posing further requirements either 
on the client or server. Where equiv-
alent methods, response codes, and 
options are present in both proto-
cols, the mapping between CoAP 
and HTTP is straightforward, and 
even completely stateless intermedi-
aries can handle the self-describing 
REST-based messages by applying a 
static mapping.

Both CoAP and HTTP identify  
resources using URIs. Existing HTTP 
end points might be unaware of 
CoAP’s URI schemes — say, coap:// 
URIs. A reverse-proxy-style inter-
mediary can make a set of CoAP 
resources available at what look 
like regular http:// or https:// URIs, 
enabling older Web clients to access 
CoAP servers transparently (see 
Figure 2). Similarly, an interception  
proxy (RFC 3040) deployed in a net-
work location suitable for traff ic 
interception that automatically redi-
rects client requests to itself might 
provide such a service.

Figure 1. The Web architecture. (a) Clients access servers directly and via 
proxies; (b) a GET request elicits a 200 OK response.
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By mapping a single HTTP request 
to a multicast CoAP request and then 
aggregating multiple responses back 
into a single HTTP response body, 
future types of intermediaries might 
even support more complex commu-
nication patterns across HTTP and 
CoAP, such as group communication.

Block
Basic CoAP messages work well for 
the small payloads we expect from 
temperature sensors, light switches, 
and similar building-automation 
devices. Occasionally, however, appli-
cations will need to transfer larger 
payloads — for instance, for firmware 
updates. With HTTP, TCP does the 
grunt work of slicing large payloads 
up into multiple packets and ensuring 
that they all arrive and are handled  
in the right order. Although UDP 
supports larger payloads through IP 
fragmentation, it’s limited to 64 KiB 
and, more importantly, doesn’t really 
work well for constrained applica-
tions and networks.

Instead of relying on IP fragmen-
tation, CoAP simply adds a pair of 
“Block” options, transferring multiple  

blocks of information from a resource 
representation in multiple request–
response pairs.5 The block options 
enable a server to be truly stateless 
in the most likely cases: the server 
can handle each block transfer sepa-
rately, with no need for a connection 
setup or other server-side memory 
of previous block transfers.

Observe
In HTTP, transactions are always 
client-initiated, and the client must 
perform GET operations again and 
again (polling) if it wants to stay up 
to date about a resource’s status. This 
pull model becomes expensive in an  
environment with limited power, 
limited network resources, and nodes 
that sleep most of the time. Web 
developers have come up with some 
more or less savory workarounds for 
HTTP (RFC 6202), but, as a new pro-
tocol, CoAP can do better.

CoAP uses an asynchronous 
approach to support pushing infor-
mation from servers to clients: 
observation.6 In a GET request, a 
client can indicate its interest in 
further updates from a resource by 

specifying the “Observe” option. If 
the server accepts this option, the 
client becomes an observer of this 
resource and receives an asynchro-
nous notification message each time 
it changes. Each such notification 
message is identical in structure 
to the response to the initial GET 
request.

Instead of trying to create another 
complex publish–subscribe architec-
ture, CoAP effectively provides a 
minimal enhancement to the REST 
model, just adding the well-known 
observer design pattern.7

Discovery
In the machine-to-machine (M2M) 
environments that will be typical 
of CoAP applications, devices must 
be able to discover each other and 
their resources. Resource discovery 
is common on the Web, and is called 
Web discovery in the HTTP com-
munity. One form of Web discovery 
occurs when humans access a serv-
er’s default resource (such as index.
html), which often includes links to 
other Web resources available on 
that or related servers.

Figure 2. Implementing the Web architecture with HTTP and the Constrained Application Protocol (CoAP). (a) HTTP 
and CoAP work together across constrained and traditional Internet environments; (b) the CoAP protocol stack is similar 
to, but less complex than, the HTTP protocol stack.
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Machines can also perform Web 
discovery if standardized interfaces 
and resource descriptions are avail-
able. New approaches from the IETF 
include the well-known resource 
path /.well-known/scheme (RFC 
5785) and the HTTP link header (RFC 
5988). Several related techniques are 
common today. In CoRE, we’re deal-
ing with autonomous devices and 
embedded systems; thus, the impor-
tance of uniform, interoperable 
resource discovery is much greater 
than on the current Web. To ensure 
interoperability between CoAP end 
points, the protocol includes a tech-
nique for discovering and advertis-
ing resource descriptions. Because 
these descr iptions are machine-
interpreted, we’re also standardiz-
ing the description format itself. To 
achieve resource discovery, CoAP 
servers are encouraged to provide 
a resource description available via 
the well-known URI /.well-known/
core for resource discovery. Clients 
then access this description with a 
GET request on that URI. The same 
description could be advertised, or 
even posted to a description direc-
tory. The description format is based 
on the HTTP link header format as 
an Internet media type carried in the 
payload, which is simple and easy to 
parse.8

Security
For applications that require some 
level of security, HTTP is usually 

employed in combination with TLS 
(formerly Secure Sockets Layer, or 
SSL). This protects the message con-
tent’s confidentiality and integrity. 
Server authentication often employs  
a public-key infrastructure (PKI) based 
on certif ication authorities (CAs). 
This approach works quite well in 
practice, but suffered some well-
publicized attacks in 2011.9

Similarly, we can use CoAP on 
top of Datagram Transport Layer 
Security (DTLS).10 We expect CoAP 
deployments to use a wider variety 
of key-management options avail-
able for TLS than most HTTP appli-
cations do today; the IETF TLS 
working group is developing some 
additional particularly lightweight 
combinations.11

Standardization Activities 
and Adoption
CoRE technology has already become 
widespread in both open source com-
munities and industry applications, 
with implementations of CoAP and 
related specifications available in 
several programming languages 
along with Firefox and Wireshark  
support. Many informal tests estab-
lished interoperability between dozens 
of implementations; the European 
Telecommunications Standards Insti-
tute (ETSI) will conduct a formal 
interop event on 24–25 March 2012, 
colocated with IETF 83 in Paris.

Several other standards activities 
are using IETF CoRE standards as 

part of more complete M2M systems. 
The ETSI M2M Technical Committee 
has specified a service-layer archi-
tecture for M2M that includes bind-
ings for both HTTP and CoAP. The 
ZigBee IP Smart Energy 2.0 speci-
fication includes support for CoAP 
for constrained battery-powered 
devices.

A s a tiny but well-designed and 
quite functional stand-in for 

HTTP, CoAP is slated to become a 
ubiquitous application protocol for 
the future Internet of Things — or, 
really, the “Internet of Innumerable 
Embedded Systems.” 
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