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IoT Components
§ Things we connect: Hardware, sensors and actuators

§ Connectivity
� Medium we use to connect things

§ Platform
� Processing and storing collected data
o Receive and send data via standardized interfaces or API
o Store the data
o Process the data.

§ Analytics
� Get insights from gathered data

§ User Interface
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What’s TensorFlow™?
§ Open source software library for numerical computation 

using data flow graphs
§ Originally developed by Google Brain Team to conduct 

machine learning and deep neural networks research
§ General enough to be applicable in a wide variety of 

other domains as well
§ TensorFlow provides an extensive suite of functions and 

classes that allow users to build various models from 
scratch
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Not the Only Deep Learning Library
§ Other interesting deep/machine learning libraries
� Theano [UoM]
� scikit-learn [started as Google Summer of Code]
� Torch
� Caffe
� CNTK [Miscrosoft]
� DisBelief [Google]
� cuDNN

§ For comparison see:
� https://en.wikipedia.org/wiki/Comparison_of_deep_learning_soft

ware
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TensorFlow vs. scikit-learn
§ scikit-learn
�Model already built; “off-the-shelf”’
� Fit/ predict style

§ TensorFlow
�Have to build model up
� Should be able to describe your model in the form of a 

datagraph with functions like gradient descent, add, max, 
etc.
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TensorFlow vs. Scikit-learn



TensorFlow vs. Theano
§ Theano is a deep-learning library with python 

wrapper

§ Very similar systems.

§ TensorFlow has better support for distributed systems 
though, and has development funded by Google, 
while Theano is an academic project.
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TensorFlow vs. Theano



TensorFlow vs. Numpy
§ Few people make this comparison, but TensorFlow

and Numpy are quite similar.

§ Numpy has Ndarray support, but doesn’t offer 
methods to create tensor functions and automatically 
compute derivatives (+ no GPU support).
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Google Trends to the Rescue
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What is TensorFlow?
§ A deep learning library 

recently open-sourced by 
Google.

§ Provides primitives for 
defining functions on 
tensors and automatically 
computing their 
derivatives
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What is TensorFlow?
§ Python API
§ Portability: deploy computation to one or more CPUs or GPUs in a desktop, 

server, or mobile device with a single API
§ Flexibility: from Raspberry Pi, Android, Windows, iOS, Linux to server farms
§ Visualization (TensorBoard)
§ Checkpoints (for managing experiments)
§ Auto-differentiation autodiff (no more taking derivatives by hand. Yay)
§ Large community (> 10,000 commits and > 3000 TF-related repos in 1 year)
§ Awesome projects already using TensorFlow
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Companies using Tensorflow
§ Google
§ OpenAI
§ DeepMind
§ Snapchat
§ Uber
§ Airbus
§ eBay
§ Dropbox
§ … and of course many startups
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How Does it Work?

§ Uses data flow graphs to represent a learning 
model
� Comprise of nodes and edges
� Nodes represent mathematical operations
� Edges represent multi-dimensional data arrays 

(tensors)
� “TensorFlow”

§ Core is written in a combination of highly-
optimized C++ and CUDA 
� Using Eigen and cuDNN
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TensorFlow
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Getting Started…
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import tensorflow as tf



Data Flow Graphs
§ TensorFlow separates definition of computations from 

their execution
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Data Flow Graphs
§ Phase 1: assemble a graph

§ Phase 2: use a session to execute operations in the 
graph.
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What’s a Tensor?
§ An n-dimensional matrix
� 0-d tensor: scalar (number)
� 1-d tensor: vector
� 2-d tensor: matrix
� and so on
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Data Flow Graphs
import tensorflow as tf
a = tf.add(2, 3) 

§ Why x, y?
� TF automatically names the nodes when you don’t explicitly name 

them.
� For now:
o x = 3
o y = 5
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Data Flow Graphs
import tensorflow as tf
a = tf.add(2, 3) 

§ Nodes: operators, variables, and constants
§ Edges: tensors

§ Tensors are data.
� Data Flow ->Tensor Flow
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Data Flow Graphs
import tensorflow as tf
a = tf.add(2, 3)
print a 

>> Tensor("Add:0", shape=(), dtype=int32)
(Not 5)
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How to get the value of a?
§ Create a session, assign it to variable sess so we can call it later
§ Within the session, evaluate the graph to fetch the value of a
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import tensorflow as tf
a = tf.add(3, 5)
sess = tf.Session()
print sess.run(a) # >> 8
sess.close()

The session will look at the graph, trying to think: hmm, how can I get the value of a, 
then it computes all the nodes that leads to a.

How to get the value of a?
§ Create a session, within the session, evaluate the graph 

to fetch the value of a
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import tensorflow as tf
a = tf.add(3, 5)
# with clause takes care of sess.close()
with tf.Session() as sess:

print (sess.run(a))

The session will look at the graph, trying to think: hmm, how can I get the value of a, 
then it computes all the nodes that leads to a.



tf.Session()
§ A Session object encapsulates the environment in 

which Operation objects are executed, and Tensor 
objects are evaluated.
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More Graphs
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import tensorflow as tf
x = 2
y = 3
op1 = tf.add(x, y)
op2 = tf.multiply(x, y)
op3 = tf.pow(op2, op1)
with tf.Session() as sess:

sess.run(op3)



Subgraphs
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import tensorflow as tf
x = 2
y = 3
op1 = tf.add(x, y)
op2 = tf.multiply(x, y)
useless = tf.multiply(x, op1)
op3 = tf.pow(op2, op1)
with tf.Session() as sess:

op3 = sess.run(op3)

Because we only want the value of op3 and op3 doesn’t depend on useless, session 
won’t compute values of useless → save computation

Subgraphs
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import tensorflow as tf
x = 2
y = 3
op1 = tf.add(x, y)
op2 = tf.multiply(x, y)
useless = tf.multiply(x, op1)
op3 = tf.pow(op2, op1)
with tf.Session() as sess:

op3, not_useless = sess.run([op3, useless])

tf.Session.run(fetches, feed_dict=None, options=None, run_metadata=None)
Pass all variables whose values you want to a list in fetches



Subgraphs
§ Possible to break graphs into 

several chunks and run them 
in parallel across multiple 
CPUs, GPUs, or devices
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Distributed Computation
§ To put part of a graph on a specific CPU or GPU:
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import tensorflow as tf

# Creates a graph.
with tf.device('/gpu:2'):

a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], name='b')
c = tf.matmul(a, b)

# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

# Runs the op.
print sess.run(c)



Building More Than One Graph
§ You can but you don’t need more than one graph
� The session runs the default graph

§ But what if I really want to?
�Multiple graphs require multiple sessions, each will try to use 

all available resources by default
�Can't pass data between them without passing them 

through python/numpy, which doesn't work in distributed
� It’s better to have disconnected subgraphs within one graph
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Example
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g = tf.Graph()
with g.as_default():

a = 3
b = 5
x = tf.add(a, b)

sess = tf.Session(graph=g) # session is run on graph g
# run session
sess.close()



Example
§ To handle the default graph:
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g = tf.get_default_graph()

Why Graphs?
1) Save computation (only run subgraphs that lead to the 

values you want to fetch)
2) Break computation into small, differential pieces to 

facilitates auto-differentiation
3) Facilitate distributed computation, spread the work 

across multiple CPUs, GPUs, or devices
4) Many common machine learning models are commonly 

taught and visualized as directed graphs already
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Back to Our First TensorFlow Program
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import tensorflow as tf
a = tf.constant(2)
b = tf.constant(3)
x = tf.add(a, b)
with tf.Session() as sess:

print sess.run(x)

Visualize Our First TensorFlow Program

Fall 2017 CSC 498R: Internet of Things 36

import tensorflow as tf
a = tf.constant(2)
b = tf.constant(3)
x = tf.add(a, b)
with tf.Session() as sess:

# add this line to use TensorBoard
writer = tf.summary.FileWriter('./graphs', sess.graph)
print (sess.run(x))

writer.close() # close the writer when you’re done using it



Run it
§ Go to terminal, run:

$ python [yourprogram].py
$ tensorboard --logdir="./graphs" --port 6006

§ Then open your browser and go to: 

http://localhost:6006/
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Visualize Our First TensorFlow Program
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import tensorflow as tf
a = tf.constant(2)
b = tf.constant(3)
x = tf.add(a, b)
with tf.Session() as sess:

# add this line to use TensorBoard
writer = tf.summary.FileWriter('./graphs, sess.graph)
print sess.run(x)

writer.close() # close the writer when you’re done using it



Change Const, Const_1 to the names 
we give the variables
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import tensorflow as tf
a = tf.constant(2, name="a")
b = tf.constant(3, name="b")
x = tf.add(a, b, name="add")
writer = tf.summary.FileWriter("./graphs", sess.graph)
with tf.Session() as sess:

print sess.run(x) #>>5
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TensorBoard helps when building complicated 
models.



More Constants
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import tensorflow as tf
a = tf.constant([2, 2], name="a")
b = tf.constant([[0, 1], [2, 3]], name="b")
x = tf.add(a, b, name="add")
y = tf.multiply(a, b, name="mul")
with tf.Session() as sess:

x, y = sess.run([x, y])
print x, y

tf.constant(value, dtype=None, shape=None, 
name='Const', verify_shape=False)

Tensors filled with a specific value
tf.zeros(shape, dtype=tf.float32, name=None)

§ Creates a tensor of shape and all elements will be zeros (when 
ran in session)
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tf.zeros([2, 3], tf.int32) ==>[[0, 0, 0], [0, 0, 0]] # Similar to numpy.zeros

more compact than other constants in the graph def → 
faster startup (esp. in distributed)



Tensors filled with a specific value
tf.zeros_like(input_tensor, dtype=None, name=None, 

optimize=True)
§ Create a tensor of shape and type (unless type is specified) as 

the input_tensor but all elements are zeros
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# input_tensor is [0, 1], [2, 3], [4, 5]]
tf.zeros_like(input_tensor) ==> [[0, 0], [0, 0], [0, 0]]

Tensors filled with a specific value
§ Same:
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tf.ones(shape, dtype=tf.float32, name=None)

tf.ones_like(input_tensor, dtype=None, name=None, optimize=True)

Similar to:
numpy.ones,
numpy.ones_like



Tensors filled with a specific value
§ Same:

§ creates a tensor filled with a scalar value.
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tf.fill(dims, value, name=None)

tf.fill([2, 3], 8) ==>[[8, 8, 8], [8, 8, 8]]
In numpy, this takes two step:
1. Create a numpy array a
2. a.fill(value)

Constants as Sequences
tf.linspace(start, stop, num, name=None) # slightly different from np.linspace
tf.linspace(10.0, 13.0, 4) ==>[10.0 11.0 12.0 13.0]

tf.range(start, limit=None, delta=1, dtype=None, name='range’)
§ # 'start' is 3, 'limit' is 18, 'delta' is 3
tf.range(start, limit, delta) ==>[3, 6, 9, 12, 15]

§ # 'limit' is 5
tf.range(limit) ==>[0, 1, 2, 3, 4] 

§ Tensor objects are not iterable
for _ in tf.range(4): # TypeError
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Randomly Generated Constants
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tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

tf.random_uniform(shape, minval=0, maxval=None, dtype=tf.float32, seed=None, name=None)

tf.random_shuffle(value, seed=None, name=None)

tf.random_crop(value, size, seed=None, name=None)

tf.multinomial(logits, num_samples, seed=None, name=None)

tf.random_gamma(shape, alpha, beta=None, dtype=tf.float32, seed=None, name=None)

Randomly Generated Constants
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tf.set_random_seed(seed)



Operations
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a = tf.constant([3, 6])
b = tf.constant([2, 2])

tf.add(a, b) #>>[5 8]
tf.add_n([a, b, b]) #>>[7 10]. Equivalent to a + b + b

tf.multiply(a, b) #>>[6 12] because mul is element wise

tf.matmul(a, b) #>>ValueError
tf.matmul(tf.reshape(a, [1, 2]), tf.reshape(b, [2, 1])) #>>[[18]]

tf.div(a, b) #>>[1 3]
tf.mod(a, b) #>>[1 0]

TensorFlow Data Types
§ TensorFlow takes Python natives types: boolean, numeric (int, float), strings
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# 0-d tensor, or "scalar"
t_0 = 19
tf.zeros_like(t_0) # ==> 0
tf.ones_like(t_0) # ==> 1

# 1-d tensor, or "vector"
t_1 = ['apple', 'peach', 'banana']
tf.zeros_like(t_1) # ==> ['' '' '']
tf.ones_like(t_1) # ==> TypeError: Expected string, got 1 of type 'int' instead.

# 2x2 tensor, or "matrix"
t_2 = [[True, False, False],

[False, False, True],
[False, True, False]]

tf.zeros_like(t_2) # ==> 2x2 tensor, all elements are False
tf.ones_like(t_2) # ==> 2x2 tensor, all elements are True
TensorFlow Data Types



TF vs NP Data Types
§ TensorFlow integrates seamlessly with NumPy

tf.int32 == np.int32 # True

§ Can pass numpy types to TensorFlow ops
tf.ones([2, 2], np.float32) # ⇒ [[1.0 1.0], [1.0 1.0]]

§ For tf.Session.run(fetches):
� If the requested fetch is a Tensor , then the output of will be 

a NumPy ndarray.
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Notes
§ Constants are stored in the graph definition
� This makes loading graphs expensive when constants are 

big
�Only use constants for primitive types.

§ Use variables or readers for more data that requires 
more memory
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Variables
§ # create variable a with scalar value

a = tf.Variable(2, name="scalar")
§ # create variable b as a vector

b = tf.Variable([2, 3], name="vector")
§ # create variable c as a 2x2 matrix

c = tf.Variable([[0, 1], [2, 3]], name="matrix")
§ # create variable W as 784 x 10 tensor, filled with zeros

W = tf.Variable(tf.zeros([784,10]))
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Note that tf.Variable is 
a class, but tf.constant
is an op

You have to initialize your variables
§ The easiest way is initializing all variables at once:

init = tf.global_variables_initializer()
with tf.Session() as sess:

sess.run(init)
§ Initialize only a subset of variables:

init_ab = tf.variables_initializer([a, b], name="init_ab")
with tf.Session() as sess:

sess.run(init_ab)
§ Initialize a single variable

W = tf.Variable(tf.zeros([784,10]))
with tf.Session() as sess:

sess.run(W.initializer)
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Eval() a variable
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# W is a random 700 x 100 variable object
W = tf.Variable(tf.truncated_normal([700, 10]))
with tf.Session() as sess:

sess.run(W.initializer)
print W

>>Tensor("Variable/read:0", shape=(700, 10), dtype=float32)

eval() a variable
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# W is a random 700 x 100 variable object
W = tf.Variable(tf.truncated_normal([700, 10]))
with tf.Session() as sess:

sess.run(W.initializer)
print W

>>>> [[-0.76781619 -0.67020458 1.15333688 ..., -0.98434633 -1.25692499 -0.90904623]
[-0.36763489 -0.65037876 -1.52936983 ..., 0.19320194 -0.38379928 0.44387451]
[ 0.12510735 -0.82649058 0.4321366 ..., -0.3816964 0.70466036 1.33211911]
...,
[ 0.9203397 -0.99590844 0.76853162 ..., -0.74290705 0.37568584 0.64072722]
[-0.12753558 0.52571583 1.03265858 ..., 0.59978199 -0.91293705 -0.02646019]
[ 0.19076447 -0.62968266 -1.97970271 ..., -1.48389161 0.68170643 1.46369624]]



tf.Variable.assign()
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tf.Variable.assign()
W = tf.Variable(10)
W.assign(100)
with tf.Session() as sess:

sess.run(W.initializer)
print W.eval() #>>10

W.assign(100) doesn’t assign the value 100 to W. It creates 
an assign op, and that op needs to be run to take effect.

tf.Variable.assign()
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tf.Variable.assign()
W = tf.Variable(10)
W.assign(100)
with tf.Session() as sess:

sess.run(W.initializer)
print W.eval() #>>10

W.assign(100) doesn’t assign the 
value 100 to W. It creates an 
assign op, and that op needs to 
be run to take effect.W = tf.Variable(10)

assign_op = W.assign(100)
with tf.Session() as sess:

sess.run(W.initializer)
sess.run(assign_op)

print W.eval() # >> 100



assign_add() and assign_sub()
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my_var = tf.Variable(10)
With tf.Session() as sess:

sess.run(my_var.initializer)
# increment by 10
sess.run(my_var.assign_add(10)) #>>20
# decrement by 2
sess.run(my_var.assign_sub(2)) #>>18

assign_add() and assign_sub() can’t initialize the variable 
my_var because these ops need the original value of my_var

Each session maintains its own copy of
variable
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W = tf.Variable(10)
sess1 = tf.Session()
sess2 = tf.Session()
sess1.run(W.initializer)
sess2.run(W.initializer)
print sess1.run(W.assign_add(10)) #>>20
print sess2.run(W.assign_sub(2)) #>> 8
print sess1.run(W.assign_add(100)) # >> 120
print sess2.run(W.assign_sub(50)) # >> -42
sess1.close()
sess2.close()



Use a variable to initialize another 
variable
§ Want to declare U = 2 * W
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# W is a random 700 x 100 tensor
W = tf.Variable(tf.truncated_normal([700, 10]))
U = tf.Variable(2 * W)

Not so safe (but quite common)

Use a variable to initialize another 
variable
§ Want to declare U = 2 * W
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# W is a random 700 x 100 tensor
W = tf.Variable(tf.truncated_normal([700, 10]))
U = tf.Variable(2 * W.intialized_value())

# ensure that W is initialized before its value is used to initialize U

Safer



Placeholder
§ A TF program often has 2 phases:
� Assemble a graph
� Use a session to execute operations in the graph

§ Can assemble the graph first without knowing the values 
needed for computation

§ Analogy:
� Can define the function f(x, y) = x*2 + y without knowing value of 

x or y. 
o x, y are placeholders for the actual values.

Fall 2017 CSC 498R: Internet of Things 63

Placeholders
§ We, or our clients, can later supply their own data when 

they need to execute the computation
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tf.placeholder(dtype, shape=None, name=None)
# create a placeholder of type float 32-bit, shape is a vector of 3 elements
a = tf.placeholder(tf.float32, shape=[3])
# create a constant of type float 32-bit, shape is a vector of 3 elements
b = tf.constant([5, 5, 5], tf.float32)
# use the placeholder as you would a constant or a variable
c = a + b # Short for tf.add(a, b)
with tf.Session() as sess:

print sess.run(c) # Error because a doesn’t have any value



Placeholders
§ Feed the values to placeholders using a dictionary

Fall 2017 CSC 498R: Internet of Things 65

# create a placeholder of type float 32-bit, shape is a vector of 3 elements
a = tf.placeholder(tf.float32, shape=[3])

# create a constant of type float 32-bit, shape is a vector of 3 elements
b = tf.constant([5, 5, 5], tf.float32)

# use the placeholder as you would a constant or a variable
c = a + b # Short for tf.add(a, b)
with tf.Session() as sess:

# feed [1, 2, 3] to placeholder a via the dict {a: [1, 2, 3]}
# fetch value of c
print sess.run(c, {a: [1, 2, 3]}) # the tensor a is the key, not the string ‘a’

#>>[6, 7, 8]

Placeholders
§ Placeholders are valid ops

§ How about feeding multiple data points in?

§ We feed all the values in, one at a time
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with tf.Session() as sess:
for a_value in list_of_values_for_a:

print sess.run(c, {a: a_value})



Placeholder
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Placeholder is just a way to indicate that
something must be fed

Feeding values to TF ops
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tf.Graph.is_feedable(tensor)
# True if and only if tensor is feedable.



Feeding values to TF ops
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# create operations, tensors, etc (using the default graph)
a = tf.add(2, 5)
b = tf.mul(a, 3)
with tf.Session() as sess:

# define a dictionary that says to replace the 
# value of 'a' with 15
replace_dict = {a: 15}
# Run the session, passing in 'replace_dict' as the value
# to 'feed_dict’
sess.run(b, feed_dict=replace_dict) # returns 45

Avoid Lazy Loading
§ Separate the assembling of graph and executing ops

§ Use Python attribute to ensure a function is only 
loaded the first time it’s called
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Linear Regression Using TensorFlow
§ Recall: Linear Regression models relationship 

between a scalar dependent variable y and 
independent variables X
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Linear Regression Using TensorFlow
We often hear insurance companies using factors 
such as number of fire and theft in a 
neighborhood to calculate how dangerous the 
neighborhood is. 
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Linear Regression Using TensorFlow
Question: is it redundant? Is there a relationship 
between the number of fire and theft in a 
neighborhood, and if there is, can we find it?

Can we find a function f so that if X is the 
number of fires and Y is the number of thefts, 
then: Y = f(X)?
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Linear Regression Using TensorFlow
§ The City of Chicago
� X: number of incidents of fire
� Y: number of incidents of theft

§ Predict Predict Y from X

§ Model
�w * X + b
� (Y - Y_predicted)2

Fall 2017 CSC 498R: Internet of Things 74



Data Set
§ Name: Fire and Theft in Chicago
� X = fires per 1000 housing units
� Y = thefts per 1000 population within the same Zip code in 

the Chicago metro area
� Total number of Zip code areas: 42
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Phase 1: Assemble our graph
§ Step 1: Read in data

§ Step 2: Create placeholders for inputs and labels

§ Step 3: Create weight and bias

§ Step 4: Build model to predict Y

§ Step 5: Specify loss function

§ Step 6: Create optimizer

Fall 2017 CSC 498R: Internet of Things 76



Phase 2: Train our model
§ Initialize variables

§ Run optimizer op
� (with data fed into placeholders for inputs and labels)
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Model
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Plot the results with matplotlib
§ Step 1: Uncomment the plotting code at the end of 

your program

§ Step 2: Run it again
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ValueError?
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w, b = sess.run([w, b])



How does TensorFlow know what 
variables to update?
§ Optimizer

§ Session looks at all trainable variables that loss 
depends on and update them
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optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(loss)
_, l = sess.run([optimizer, loss], feed_dict={X: x, Y:y})

Trainable variables
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tf.Variable(initial_value=None, trainable=True, collections=None,
validate_shape=True, caching_device=None, name=None, 
variable_def=None, dtype=None,
expected_shape=None, import_scope=None)



List of optimizers in TF
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tf.train.GradientDescentOptimizer
tf.train.AdagradOptimizer
tf.train.MomentumOptimizer
tf.train.AdamOptimizer
tf.train.ProximalGradientDescentOptimizer
tf.train.ProximalAdagradOptimizer
tf.train.RMSPropOptimizer
And more
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TensorFlow Example 1
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Recall: Machine Learning
§ Type of artificial intelligence (AI) that provides 

computers with the ability to learn without being 
explicitly programmed.

Training Data

Dataset Model Learn

Answer

Predict
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Recall: Artificial Neural Network
Basic Human Nervous System Diagram

Brain
Input

Output

Feedback - Memory

Forward Feed

Backward Feed

Fall 2017 CSC 498R: Internet of Things 87

Artificial Neural Network
§ Perceptron

Input

Output 
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NN Model: Feed Forward

b

Y

Y_pred = Y (Wx * b)  
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NN Model: Feed Forward

b

Y

Variables are state of nodes which 
output their current value which is 
retained across multiple execution.

- Gradient Descent, Regression and 
etc.

Y_pred = Y (Wx * b)  

Control / Bias – variable for 
discrimination, preference that 
affects Input – Weight 
Relationship state.
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NN Model: Feed Forward

b

YPlaceholders are nodes where its 
value is fed in at execution time.

Y_pred = Y (Wx * b)  
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NN Model: Feed Forward

b

Y

Mathematical Operation

W(x) = Multiply Two Matrix or a 
Weighted Input

Σ (Add) = Summation elementwise 
with broadcasting

Y = Step Function with elementwise 
rectified linear function

Y_pred = Y (Wx * b)  
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TensorFlow Basic Flow
§ Build a graph
�Graph contains parameter specifications, model 

architecture, optimization process

§ Optimize Predictions, Loss Functions and Learning 

§ Initialize a session

§ Fetch and feed data with Session.run
�Compilation, optimization, visualization
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Back to Our Example…

b

Y

Mathematical Operation

W(x) = Multiply Two Matrix or a 
Weighted Input

Σ (Add) = Summation elementwise 
with broadcasting

Y = Step Function with elementwise 
rectified linear function

Y_pred = Y (Wx * b)  
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# %% imports
%matplotlib inline
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

# %% Let's create some toy data
plt.ion()
n_observations = 100
fig, ax = plt.subplots(1, 1)
xs = np.linspace(-3, 3, n_observations)
ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations)
ax.scatter(xs, ys)
fig.show()
plt.draw()

# %% tf.placeholders for the input and output of the network. 
# Placeholders are variables which we need to fill in when we 
# are ready to compute the graph.
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)

# %% We will try to optimize min_(W,b) ||(X*w + b) - y||^2
# The `Variable()` constructor requires an initial value for the
# variable,, which can be a `Tensor` of any type and shape. The
# initial value defines the type and shape of the variable. 
# After construction, the type and shape of # the variable are 
#fixed. The value can be changed using one of the assign methods.
W = tf.Variable(tf.random_normal([1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
Y_pred = tf.add(tf.mul(X, W), b)

b

Y

Y_pred = Y (Wx * b)  

Implementation of Graph, Plot / 
Planes, Variables

Codify – Rendering Graph

b

Y

• We can deploy this graph with a 
session: a binding to a particular 
execution context (e.g. CPU, GPU)

Y_pred = Y (Wx * b)  
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Codify - Optimization

b

Y

# %% Loss function will measure the distance between our observations
# and predictions and average over them.
cost = tf.reduce_sum(tf.pow(Y_pred - Y, 2)) / (n_observations - 1)

# %% Use gradient descent to optimize W,b
# Performs a single step in the negative gradient
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

Y_pred = Y (Wx * b)  Optimizing Predictions

Optimizing Learning Rate
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Codify - Optimization

b

Y

# %% We create a session to use the graph
n_epochs = 1000
with tf.Session() as sess:

# Here we tell tensorflow that we want to initialize all
# the variables in the graph so we can use them
sess.run(tf.initialize_all_variables())

# Fit all training data
prev_training_cost = 0.0
for epoch_i in range(n_epochs):

for (x, y) in zip(xs, ys):
sess.run(optimizer, feed_dict={X: x, Y: y})

training_cost = sess.run(
cost, feed_dict={X: xs, Y: ys})

print(training_cost)

if epoch_i % 20 == 0:
ax.plot(xs, Y_pred.eval(

feed_dict={X: xs}, session=sess),
'k', alpha=epoch_i / n_epochs)

fig.show()
plt.draw()

# Allow the training to quit if we've reached a minimum
if np.abs(prev_training_cost - training_cost) < 0.000001:

break
prev_training_cost = training_cost

fig.show()

Y_pred = Y (Wx * b)  

Implementation of Session to make the model 
ready to be fed with data and show results
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Codify - Result

b

Y

Y_pred = Y (Wx * b)  

Gradient Descent is used to optimize W, b which resulted 
to this Decision Vector Plot 
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TensorFlow Example 2
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Recall: Digit Recognition

…

1

63

1                5                10                 15                20                25 …

strong +ve weight

low/zero weight
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The MNIST Data Set
§ MNIST (Mixed National Institute of Standards and Technology 

database) large database of handwritten digits.
§ Used by almost everyone to demonstrate the power of deep 

learning
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The MNIST Data Set 
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Matrix Notation
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Softmax Function
§ The softmax function or the normalized exponential function is 

a generalization of the logistic function that "squashes” a K-
dimensional vector Z of arbitrary real values to a K-dimensional 
vector of real values in the range [0, 1] that add up to 1.

§ The function is given by
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Softmax Simple Model
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Softmax Simple Model
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In TensorFlow
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Check for Success
§ Need to include a cost or loss function for the 

optimization/backpropagation to work on

§ Use the cross entropy cost function, represented by:
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Check for Success
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Initialization
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Compute and Check for Success
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TensorFlow: Training
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TensorFlow: Run
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TensorFlow: Full Code
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Go Deep: Redo with 5 Layers
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TensorFlow: Initialisation
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TensorFlow: The model
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Slow Start ?
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RELU
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RELU
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Noisy Accuracy Curve ?
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Learning Rate Decay
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Dying Neurons
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Dropout
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Dropout
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All the Party Tricks
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Overfitting
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Convolutional Layer
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Convolutional Neural Network
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Tensorflow : Initialisation

Fall 2017 CSC 498R: Internet of Things 141

Tensorflow: The model
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Can We do Better?
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Bigger Convolutional Network + Dropout
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Better!
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References
§ Notes by:
�Martin Gorner [The Examples we just did]
� Tzar C. Umang
�CS 20SI: TensorFlow for Deep Learning Research

�Code: github.com/martin-gorner/tensorflow-mnist-tutorial

Fall 2017 CSC 498R: Internet of Things 148



Tensorflow Resources
§ Main Site https://www.tensorflow.org/

§ Tutorials
� https://github.com/nlintz/TensorFlow-Tutorials/
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Appendix
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Houses Prices
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§ Predict the price of a house given its area

House Size (ft2) 1400 1600 1700 1875 1100 1550 2350 2450 1425 1700

House Price $ (Y) 245,000 312,000 279,000 308,000 199,000 219,000 405,000 324,000 319,000 255,000
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Predict Housing Prices
§ Use a simple linear model, where we fit a line on the 

historical data, to predict the price of a new house 
(Ypred) given its size (X)

§ Ypred = a+bX
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• The blue line gives the actual house prices from historical data 
(Yactual)

• The difference between Yactual and Ypred (given by the yellow dashed 
lines) is the prediction error (E)



Predict Housing Prices
§ Need to find a line with optimal a and b weights that 

best fits the historical data by reducing the prediction 
error and improving prediction accuracy

§ So, our objective is to find optimal a, b weights that 
minimize the error between actual and predicted values 
of house price 
� Sum of Squared Errors (SSE) = ½ Sum (Actual House Price –

Predicted House Price)2 = ½ Sum(Y – Ypred)2

� (1/2 is for mathematical convenience since it helps in calculating 
gradients in calculus)
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Gradient Descent Algorithm
1) Step 1: Initialize the weights (a and b) with random values and calculate Error 

(SSE)
2) Step 2: Calculate the gradient i.e. change in SSE when the weights (a and b) 

are changed by a very small value from their original randomly initialized 
value. This helps us move the values of a and b in the direction in which SSE 
is minimized.

3) Step 3: Adjust the weights with the gradients to reach the optimal values 
where SSE is minimized

4) Step 4: Use the new weights for prediction and to calculate the new SSE
5) Step 5: Repeat steps 2 and 3 till further adjustments to weights doesn’t 

significantly reduce the Error
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Step 2: Calculate the error gradient 
w.r.t the weights
§ Yp = a+b*X

§ ∂SSE/∂a = – (Y-YP) and ∂SSE/∂b = – (Y-YP)X

§ Here, SSE=½ (Y-YP)2 = ½(Y - (a+bX))2

The gradient vector, [∂SSE/∂a ∂SSE/∂b]T, gives the 
direction of the movement of a and b with respect to 
SSE

Fall 2017 CSC 498R: Internet of Things 157

Step 3: Adjust the weights with the 
gradients to reach the optimal values where 
SSE is minimized
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Update a and b
§ Update rules:
� a – ∂SSE/∂a
� b – ∂SSE/∂b

§ So, update rules:
�New a = a – r * ∂SSE/∂a = 0.45 - 0.01*3.300 = 0.42
�New b = b – r * ∂SSE/∂b= 0.75 - 0.01*1.545 = 0.73

§ Here, r is the learning rate = 0.01, which is the pace of 
adjustment to the weights.
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Step 5: Repeat step 3 and 4
§ Repeat step 3 and 4 till the time further adjustments 

to a, b doesn’t significantly reduces the error. At that 
time, we have arrived at the optimal a,b with the 
highest prediction accuracy.
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