
CSC 498R: Internet of Things
Lecture 09: TensorFlow

Instructor: Haidar M. Harmanani

Fal l 2017

IoT Components
§ Things we connect: Hardware, sensors and actuators

§ Connectivity
� Medium we use to connect things

§ Platform
� Processing and storing collected data
o Receive and send data via standardized interfaces or API
o Store the data
o Process the data.

§ Analytics
� Get insights from gathered data

§ User Interface

CSC 498R: Internet of Things 2Fall 2017

What’s TensorFlow™?
§ Open source software library for numerical computation

using data flow graphs
§ Originally developed by Google Brain Team to conduct

machine learning and deep neural networks research
§ General enough to be applicable in a wide variety of

other domains as well
§ TensorFlow provides an extensive suite of functions and

classes that allow users to build various models from
scratch

Fall 2017 CSC 498R: Internet of Things 3

Not the Only Deep Learning Library
§ Other interesting deep/machine learning libraries
� Theano [UoM]
� scikit-learn [started as Google Summer of Code]
� Torch
� Caffe
� CNTK [Miscrosoft]
� DisBelief [Google]
� cuDNN

§ For comparison see:
� https://en.wikipedia.org/wiki/Comparison_of_deep_learning_soft

ware

Fall 2017 CSC 498R: Internet of Things 4

TensorFlow vs. scikit-learn
§ scikit-learn
�Model already built; “off-the-shelf”’
� Fit/ predict style

§ TensorFlow
�Have to build model up
� Should be able to describe your model in the form of a

datagraph with functions like gradient descent, add, max,
etc.

Fall 2017 CSC 498R: Internet of Things 5

Fall 2017 CSC 498R: Internet of Things 6

TensorFlow vs. Scikit-learn

TensorFlow vs. Theano
§ Theano is a deep-learning library with python

wrapper

§ Very similar systems.

§ TensorFlow has better support for distributed systems
though, and has development funded by Google,
while Theano is an academic project.

Fall 2017 CSC 498R: Internet of Things 7

Fall 2017 CSC 498R: Internet of Things 8

TensorFlow vs. Theano

TensorFlow vs. Numpy
§ Few people make this comparison, but TensorFlow

and Numpy are quite similar.

§ Numpy has Ndarray support, but doesn’t offer
methods to create tensor functions and automatically
compute derivatives (+ no GPU support).

Fall 2017 CSC 498R: Internet of Things 9

Google Trends to the Rescue

Fall 2017 CSC 498R: Internet of Things 10

What is TensorFlow?
§ A deep learning library

recently open-sourced by
Google.

§ Provides primitives for
defining functions on
tensors and automatically
computing their
derivatives

Fall 2017 CSC 498R: Internet of Things 11

What is TensorFlow?
§ Python API
§ Portability: deploy computation to one or more CPUs or GPUs in a desktop,

server, or mobile device with a single API
§ Flexibility: from Raspberry Pi, Android, Windows, iOS, Linux to server farms
§ Visualization (TensorBoard)
§ Checkpoints (for managing experiments)
§ Auto-differentiation autodiff (no more taking derivatives by hand. Yay)
§ Large community (> 10,000 commits and > 3000 TF-related repos in 1 year)
§ Awesome projects already using TensorFlow

Fall 2017 CSC 498R: Internet of Things 12

Companies using Tensorflow
§ Google
§ OpenAI
§ DeepMind
§ Snapchat
§ Uber
§ Airbus
§ eBay
§ Dropbox
§ … and of course many startups

Fall 2017 CSC 498R: Internet of Things 13

How Does it Work?

§ Uses data flow graphs to represent a learning
model
� Comprise of nodes and edges
� Nodes represent mathematical operations
� Edges represent multi-dimensional data arrays

(tensors)
� “TensorFlow”

§ Core is written in a combination of highly-
optimized C++ and CUDA
� Using Eigen and cuDNN

Fall 2017 CSC 498R: Internet of Things 14

TensorFlow

Fall 2017 CSC 498R: Internet of Things 15

Getting Started…

Fall 2017 CSC 498R: Internet of Things 16

import tensorflow as tf

Data Flow Graphs
§ TensorFlow separates definition of computations from

their execution

Fall 2017 CSC 498R: Internet of Things 17

Data Flow Graphs
§ Phase 1: assemble a graph

§ Phase 2: use a session to execute operations in the
graph.

Fall 2017 CSC 498R: Internet of Things 18

What’s a Tensor?
§ An n-dimensional matrix
� 0-d tensor: scalar (number)
� 1-d tensor: vector
� 2-d tensor: matrix
� and so on

Fall 2017 CSC 498R: Internet of Things 19

Data Flow Graphs
import tensorflow as tf
a = tf.add(2, 3)

§ Why x, y?
� TF automatically names the nodes when you don’t explicitly name

them.
� For now:
o x = 3
o y = 5

Fall 2017 CSC 498R: Internet of Things 20

Data Flow Graphs
import tensorflow as tf
a = tf.add(2, 3)

§ Nodes: operators, variables, and constants
§ Edges: tensors

§ Tensors are data.
� Data Flow ->Tensor Flow

Fall 2017 CSC 498R: Internet of Things 21

Data Flow Graphs
import tensorflow as tf
a = tf.add(2, 3)
print a

>> Tensor("Add:0", shape=(), dtype=int32)
(Not 5)

Fall 2017 CSC 498R: Internet of Things 22

How to get the value of a?
§ Create a session, assign it to variable sess so we can call it later
§ Within the session, evaluate the graph to fetch the value of a

Fall 2017 CSC 498R: Internet of Things 23

import tensorflow as tf
a = tf.add(3, 5)
sess = tf.Session()
print sess.run(a) # >> 8
sess.close()

The session will look at the graph, trying to think: hmm, how can I get the value of a,
then it computes all the nodes that leads to a.

How to get the value of a?
§ Create a session, within the session, evaluate the graph

to fetch the value of a

Fall 2017 CSC 498R: Internet of Things 24

import tensorflow as tf
a = tf.add(3, 5)
with clause takes care of sess.close()
with tf.Session() as sess:

print (sess.run(a))

The session will look at the graph, trying to think: hmm, how can I get the value of a,
then it computes all the nodes that leads to a.

tf.Session()
§ A Session object encapsulates the environment in

which Operation objects are executed, and Tensor
objects are evaluated.

Fall 2017 CSC 498R: Internet of Things 25

More Graphs

Fall 2017 CSC 498R: Internet of Things 26

import tensorflow as tf
x = 2
y = 3
op1 = tf.add(x, y)
op2 = tf.multiply(x, y)
op3 = tf.pow(op2, op1)
with tf.Session() as sess:

sess.run(op3)

Subgraphs

Fall 2017 CSC 498R: Internet of Things 27

import tensorflow as tf
x = 2
y = 3
op1 = tf.add(x, y)
op2 = tf.multiply(x, y)
useless = tf.multiply(x, op1)
op3 = tf.pow(op2, op1)
with tf.Session() as sess:

op3 = sess.run(op3)

Because we only want the value of op3 and op3 doesn’t depend on useless, session
won’t compute values of useless → save computation

Subgraphs

Fall 2017 CSC 498R: Internet of Things 28

import tensorflow as tf
x = 2
y = 3
op1 = tf.add(x, y)
op2 = tf.multiply(x, y)
useless = tf.multiply(x, op1)
op3 = tf.pow(op2, op1)
with tf.Session() as sess:

op3, not_useless = sess.run([op3, useless])

tf.Session.run(fetches, feed_dict=None, options=None, run_metadata=None)
Pass all variables whose values you want to a list in fetches

Subgraphs
§ Possible to break graphs into

several chunks and run them
in parallel across multiple
CPUs, GPUs, or devices

Fall 2017 CSC 498R: Internet of Things 29

Distributed Computation
§ To put part of a graph on a specific CPU or GPU:

Fall 2017 CSC 498R: Internet of Things 30

import tensorflow as tf

Creates a graph.
with tf.device('/gpu:2'):

a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], name='b')
c = tf.matmul(a, b)

Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

Runs the op.
print sess.run(c)

Building More Than One Graph
§ You can but you don’t need more than one graph
� The session runs the default graph

§ But what if I really want to?
�Multiple graphs require multiple sessions, each will try to use

all available resources by default
�Can't pass data between them without passing them

through python/numpy, which doesn't work in distributed
� It’s better to have disconnected subgraphs within one graph

Fall 2017 CSC 498R: Internet of Things 31

Example

Fall 2017 CSC 498R: Internet of Things 32

g = tf.Graph()
with g.as_default():

a = 3
b = 5
x = tf.add(a, b)

sess = tf.Session(graph=g) # session is run on graph g
run session
sess.close()

Example
§ To handle the default graph:

Fall 2017 CSC 498R: Internet of Things 33

g = tf.get_default_graph()

Why Graphs?
1) Save computation (only run subgraphs that lead to the

values you want to fetch)
2) Break computation into small, differential pieces to

facilitates auto-differentiation
3) Facilitate distributed computation, spread the work

across multiple CPUs, GPUs, or devices
4) Many common machine learning models are commonly

taught and visualized as directed graphs already

Fall 2017 CSC 498R: Internet of Things 34

Back to Our First TensorFlow Program

Fall 2017 CSC 498R: Internet of Things 35

import tensorflow as tf
a = tf.constant(2)
b = tf.constant(3)
x = tf.add(a, b)
with tf.Session() as sess:

print sess.run(x)

Visualize Our First TensorFlow Program

Fall 2017 CSC 498R: Internet of Things 36

import tensorflow as tf
a = tf.constant(2)
b = tf.constant(3)
x = tf.add(a, b)
with tf.Session() as sess:

add this line to use TensorBoard
writer = tf.summary.FileWriter('./graphs', sess.graph)
print (sess.run(x))

writer.close() # close the writer when you’re done using it

Run it
§ Go to terminal, run:

$ python [yourprogram].py
$ tensorboard --logdir="./graphs" --port 6006

§ Then open your browser and go to:

http://localhost:6006/

Fall 2017 CSC 498R: Internet of Things 37

Visualize Our First TensorFlow Program

Fall 2017 CSC 498R: Internet of Things 38

import tensorflow as tf
a = tf.constant(2)
b = tf.constant(3)
x = tf.add(a, b)
with tf.Session() as sess:

add this line to use TensorBoard
writer = tf.summary.FileWriter('./graphs, sess.graph)
print sess.run(x)

writer.close() # close the writer when you’re done using it

Change Const, Const_1 to the names
we give the variables

Fall 2017 CSC 498R: Internet of Things 39

import tensorflow as tf
a = tf.constant(2, name="a")
b = tf.constant(3, name="b")
x = tf.add(a, b, name="add")
writer = tf.summary.FileWriter("./graphs", sess.graph)
with tf.Session() as sess:

print sess.run(x) #>>5

Fall 2017 CSC 498R: Internet of Things 40

TensorBoard helps when building complicated
models.

More Constants

Fall 2017 CSC 498R: Internet of Things 41

import tensorflow as tf
a = tf.constant([2, 2], name="a")
b = tf.constant([[0, 1], [2, 3]], name="b")
x = tf.add(a, b, name="add")
y = tf.multiply(a, b, name="mul")
with tf.Session() as sess:

x, y = sess.run([x, y])
print x, y

tf.constant(value, dtype=None, shape=None,
name='Const', verify_shape=False)

Tensors filled with a specific value
tf.zeros(shape, dtype=tf.float32, name=None)

§ Creates a tensor of shape and all elements will be zeros (when
ran in session)

Fall 2017 CSC 498R: Internet of Things 42

tf.zeros([2, 3], tf.int32) ==>[[0, 0, 0], [0, 0, 0]] # Similar to numpy.zeros

more compact than other constants in the graph def →
faster startup (esp. in distributed)

Tensors filled with a specific value
tf.zeros_like(input_tensor, dtype=None, name=None,

optimize=True)
§ Create a tensor of shape and type (unless type is specified) as

the input_tensor but all elements are zeros

Fall 2017 CSC 498R: Internet of Things 43

input_tensor is [0, 1], [2, 3], [4, 5]]
tf.zeros_like(input_tensor) ==> [[0, 0], [0, 0], [0, 0]]

Tensors filled with a specific value
§ Same:

Fall 2017 CSC 498R: Internet of Things 44

tf.ones(shape, dtype=tf.float32, name=None)

tf.ones_like(input_tensor, dtype=None, name=None, optimize=True)

Similar to:
numpy.ones,
numpy.ones_like

Tensors filled with a specific value
§ Same:

§ creates a tensor filled with a scalar value.

Fall 2017 CSC 498R: Internet of Things 45

tf.fill(dims, value, name=None)

tf.fill([2, 3], 8) ==>[[8, 8, 8], [8, 8, 8]]
In numpy, this takes two step:
1. Create a numpy array a
2. a.fill(value)

Constants as Sequences
tf.linspace(start, stop, num, name=None) # slightly different from np.linspace
tf.linspace(10.0, 13.0, 4) ==>[10.0 11.0 12.0 13.0]

tf.range(start, limit=None, delta=1, dtype=None, name='range’)
§ # 'start' is 3, 'limit' is 18, 'delta' is 3
tf.range(start, limit, delta) ==>[3, 6, 9, 12, 15]

§ # 'limit' is 5
tf.range(limit) ==>[0, 1, 2, 3, 4]

§ Tensor objects are not iterable
for _ in tf.range(4): # TypeError

Fall 2017 CSC 498R: Internet of Things 46

Randomly Generated Constants

Fall 2017 CSC 498R: Internet of Things 47

tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

tf.random_uniform(shape, minval=0, maxval=None, dtype=tf.float32, seed=None, name=None)

tf.random_shuffle(value, seed=None, name=None)

tf.random_crop(value, size, seed=None, name=None)

tf.multinomial(logits, num_samples, seed=None, name=None)

tf.random_gamma(shape, alpha, beta=None, dtype=tf.float32, seed=None, name=None)

Randomly Generated Constants

Fall 2017 CSC 498R: Internet of Things 48

tf.set_random_seed(seed)

Operations

Fall 2017 CSC 498R: Internet of Things 49

a = tf.constant([3, 6])
b = tf.constant([2, 2])

tf.add(a, b) #>>[5 8]
tf.add_n([a, b, b]) #>>[7 10]. Equivalent to a + b + b

tf.multiply(a, b) #>>[6 12] because mul is element wise

tf.matmul(a, b) #>>ValueError
tf.matmul(tf.reshape(a, [1, 2]), tf.reshape(b, [2, 1])) #>>[[18]]

tf.div(a, b) #>>[1 3]
tf.mod(a, b) #>>[1 0]

TensorFlow Data Types
§ TensorFlow takes Python natives types: boolean, numeric (int, float), strings

Fall 2017 CSC 498R: Internet of Things 50

0-d tensor, or "scalar"
t_0 = 19
tf.zeros_like(t_0) # ==> 0
tf.ones_like(t_0) # ==> 1

1-d tensor, or "vector"
t_1 = ['apple', 'peach', 'banana']
tf.zeros_like(t_1) # ==> ['' '' '']
tf.ones_like(t_1) # ==> TypeError: Expected string, got 1 of type 'int' instead.

2x2 tensor, or "matrix"
t_2 = [[True, False, False],

[False, False, True],
[False, True, False]]

tf.zeros_like(t_2) # ==> 2x2 tensor, all elements are False
tf.ones_like(t_2) # ==> 2x2 tensor, all elements are True
TensorFlow Data Types

TF vs NP Data Types
§ TensorFlow integrates seamlessly with NumPy

tf.int32 == np.int32 # True

§ Can pass numpy types to TensorFlow ops
tf.ones([2, 2], np.float32) # ⇒ [[1.0 1.0], [1.0 1.0]]

§ For tf.Session.run(fetches):
� If the requested fetch is a Tensor , then the output of will be

a NumPy ndarray.

Fall 2017 CSC 498R: Internet of Things 51

Notes
§ Constants are stored in the graph definition
� This makes loading graphs expensive when constants are

big
�Only use constants for primitive types.

§ Use variables or readers for more data that requires
more memory

Fall 2017 CSC 498R: Internet of Things 52

Variables
§ # create variable a with scalar value

a = tf.Variable(2, name="scalar")
§ # create variable b as a vector

b = tf.Variable([2, 3], name="vector")
§ # create variable c as a 2x2 matrix

c = tf.Variable([[0, 1], [2, 3]], name="matrix")
§ # create variable W as 784 x 10 tensor, filled with zeros

W = tf.Variable(tf.zeros([784,10]))

Fall 2017 CSC 498R: Internet of Things 53

Note that tf.Variable is
a class, but tf.constant
is an op

You have to initialize your variables
§ The easiest way is initializing all variables at once:

init = tf.global_variables_initializer()
with tf.Session() as sess:

sess.run(init)
§ Initialize only a subset of variables:

init_ab = tf.variables_initializer([a, b], name="init_ab")
with tf.Session() as sess:

sess.run(init_ab)
§ Initialize a single variable

W = tf.Variable(tf.zeros([784,10]))
with tf.Session() as sess:

sess.run(W.initializer)

Fall 2017 CSC 498R: Internet of Things 54

Eval() a variable

Fall 2017 CSC 498R: Internet of Things 55

W is a random 700 x 100 variable object
W = tf.Variable(tf.truncated_normal([700, 10]))
with tf.Session() as sess:

sess.run(W.initializer)
print W

>>Tensor("Variable/read:0", shape=(700, 10), dtype=float32)

eval() a variable

Fall 2017 CSC 498R: Internet of Things 56

W is a random 700 x 100 variable object
W = tf.Variable(tf.truncated_normal([700, 10]))
with tf.Session() as sess:

sess.run(W.initializer)
print W

>>>> [[-0.76781619 -0.67020458 1.15333688 ..., -0.98434633 -1.25692499 -0.90904623]
[-0.36763489 -0.65037876 -1.52936983 ..., 0.19320194 -0.38379928 0.44387451]
[0.12510735 -0.82649058 0.4321366 ..., -0.3816964 0.70466036 1.33211911]
...,
[0.9203397 -0.99590844 0.76853162 ..., -0.74290705 0.37568584 0.64072722]
[-0.12753558 0.52571583 1.03265858 ..., 0.59978199 -0.91293705 -0.02646019]
[0.19076447 -0.62968266 -1.97970271 ..., -1.48389161 0.68170643 1.46369624]]

tf.Variable.assign()

Fall 2017 CSC 498R: Internet of Things 57

tf.Variable.assign()
W = tf.Variable(10)
W.assign(100)
with tf.Session() as sess:

sess.run(W.initializer)
print W.eval() #>>10

W.assign(100) doesn’t assign the value 100 to W. It creates
an assign op, and that op needs to be run to take effect.

tf.Variable.assign()

Fall 2017 CSC 498R: Internet of Things 58

tf.Variable.assign()
W = tf.Variable(10)
W.assign(100)
with tf.Session() as sess:

sess.run(W.initializer)
print W.eval() #>>10

W.assign(100) doesn’t assign the
value 100 to W. It creates an
assign op, and that op needs to
be run to take effect.W = tf.Variable(10)

assign_op = W.assign(100)
with tf.Session() as sess:

sess.run(W.initializer)
sess.run(assign_op)

print W.eval() # >> 100

assign_add() and assign_sub()

Fall 2017 CSC 498R: Internet of Things 59

my_var = tf.Variable(10)
With tf.Session() as sess:

sess.run(my_var.initializer)
increment by 10
sess.run(my_var.assign_add(10)) #>>20
decrement by 2
sess.run(my_var.assign_sub(2)) #>>18

assign_add() and assign_sub() can’t initialize the variable
my_var because these ops need the original value of my_var

Each session maintains its own copy of
variable

Fall 2017 CSC 498R: Internet of Things 60

W = tf.Variable(10)
sess1 = tf.Session()
sess2 = tf.Session()
sess1.run(W.initializer)
sess2.run(W.initializer)
print sess1.run(W.assign_add(10)) #>>20
print sess2.run(W.assign_sub(2)) #>> 8
print sess1.run(W.assign_add(100)) # >> 120
print sess2.run(W.assign_sub(50)) # >> -42
sess1.close()
sess2.close()

Use a variable to initialize another
variable
§ Want to declare U = 2 * W

Fall 2017 CSC 498R: Internet of Things 61

W is a random 700 x 100 tensor
W = tf.Variable(tf.truncated_normal([700, 10]))
U = tf.Variable(2 * W)

Not so safe (but quite common)

Use a variable to initialize another
variable
§ Want to declare U = 2 * W

Fall 2017 CSC 498R: Internet of Things 62

W is a random 700 x 100 tensor
W = tf.Variable(tf.truncated_normal([700, 10]))
U = tf.Variable(2 * W.intialized_value())

ensure that W is initialized before its value is used to initialize U

Safer

Placeholder
§ A TF program often has 2 phases:
� Assemble a graph
� Use a session to execute operations in the graph

§ Can assemble the graph first without knowing the values
needed for computation

§ Analogy:
� Can define the function f(x, y) = x*2 + y without knowing value of

x or y.
o x, y are placeholders for the actual values.

Fall 2017 CSC 498R: Internet of Things 63

Placeholders
§ We, or our clients, can later supply their own data when

they need to execute the computation

Fall 2017 CSC 498R: Internet of Things 64

tf.placeholder(dtype, shape=None, name=None)
create a placeholder of type float 32-bit, shape is a vector of 3 elements
a = tf.placeholder(tf.float32, shape=[3])
create a constant of type float 32-bit, shape is a vector of 3 elements
b = tf.constant([5, 5, 5], tf.float32)
use the placeholder as you would a constant or a variable
c = a + b # Short for tf.add(a, b)
with tf.Session() as sess:

print sess.run(c) # Error because a doesn’t have any value

Placeholders
§ Feed the values to placeholders using a dictionary

Fall 2017 CSC 498R: Internet of Things 65

create a placeholder of type float 32-bit, shape is a vector of 3 elements
a = tf.placeholder(tf.float32, shape=[3])

create a constant of type float 32-bit, shape is a vector of 3 elements
b = tf.constant([5, 5, 5], tf.float32)

use the placeholder as you would a constant or a variable
c = a + b # Short for tf.add(a, b)
with tf.Session() as sess:

feed [1, 2, 3] to placeholder a via the dict {a: [1, 2, 3]}
fetch value of c
print sess.run(c, {a: [1, 2, 3]}) # the tensor a is the key, not the string ‘a’

#>>[6, 7, 8]

Placeholders
§ Placeholders are valid ops

§ How about feeding multiple data points in?

§ We feed all the values in, one at a time

Fall 2017 CSC 498R: Internet of Things 66

with tf.Session() as sess:
for a_value in list_of_values_for_a:

print sess.run(c, {a: a_value})

Placeholder

Fall 2017 CSC 498R: Internet of Things 67

Placeholder is just a way to indicate that
something must be fed

Feeding values to TF ops

Fall 2017 CSC 498R: Internet of Things 68

tf.Graph.is_feedable(tensor)
True if and only if tensor is feedable.

Feeding values to TF ops

Fall 2017 CSC 498R: Internet of Things 69

create operations, tensors, etc (using the default graph)
a = tf.add(2, 5)
b = tf.mul(a, 3)
with tf.Session() as sess:

define a dictionary that says to replace the
value of 'a' with 15
replace_dict = {a: 15}
Run the session, passing in 'replace_dict' as the value
to 'feed_dict’
sess.run(b, feed_dict=replace_dict) # returns 45

Avoid Lazy Loading
§ Separate the assembling of graph and executing ops

§ Use Python attribute to ensure a function is only
loaded the first time it’s called

Fall 2017 CSC 498R: Internet of Things 70

Linear Regression Using TensorFlow
§ Recall: Linear Regression models relationship

between a scalar dependent variable y and
independent variables X

Fall 2017 CSC 498R: Internet of Things 71

Linear Regression Using TensorFlow
We often hear insurance companies using factors
such as number of fire and theft in a
neighborhood to calculate how dangerous the
neighborhood is.

Fall 2017 CSC 498R: Internet of Things 72

Linear Regression Using TensorFlow
Question: is it redundant? Is there a relationship
between the number of fire and theft in a
neighborhood, and if there is, can we find it?

Can we find a function f so that if X is the
number of fires and Y is the number of thefts,
then: Y = f(X)?

Fall 2017 CSC 498R: Internet of Things 73

Linear Regression Using TensorFlow
§ The City of Chicago
� X: number of incidents of fire
� Y: number of incidents of theft

§ Predict Predict Y from X

§ Model
�w * X + b
� (Y - Y_predicted)2

Fall 2017 CSC 498R: Internet of Things 74

Data Set
§ Name: Fire and Theft in Chicago
� X = fires per 1000 housing units
� Y = thefts per 1000 population within the same Zip code in

the Chicago metro area
� Total number of Zip code areas: 42

Fall 2017 CSC 498R: Internet of Things 75

Phase 1: Assemble our graph
§ Step 1: Read in data

§ Step 2: Create placeholders for inputs and labels

§ Step 3: Create weight and bias

§ Step 4: Build model to predict Y

§ Step 5: Specify loss function

§ Step 6: Create optimizer

Fall 2017 CSC 498R: Internet of Things 76

Phase 2: Train our model
§ Initialize variables

§ Run optimizer op
� (with data fed into placeholders for inputs and labels)

Fall 2017 CSC 498R: Internet of Things 77

Model

Fall 2017 CSC 498R: Internet of Things 78

Plot the results with matplotlib
§ Step 1: Uncomment the plotting code at the end of

your program

§ Step 2: Run it again

Fall 2017 CSC 498R: Internet of Things 79

ValueError?

Fall 2017 CSC 498R: Internet of Things 80

w, b = sess.run([w, b])

How does TensorFlow know what
variables to update?
§ Optimizer

§ Session looks at all trainable variables that loss
depends on and update them

Fall 2017 CSC 498R: Internet of Things 81

optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(loss)
_, l = sess.run([optimizer, loss], feed_dict={X: x, Y:y})

Trainable variables

Fall 2017 CSC 498R: Internet of Things 82

tf.Variable(initial_value=None, trainable=True, collections=None,
validate_shape=True, caching_device=None, name=None,
variable_def=None, dtype=None,
expected_shape=None, import_scope=None)

List of optimizers in TF

Fall 2017 CSC 498R: Internet of Things 83

tf.train.GradientDescentOptimizer
tf.train.AdagradOptimizer
tf.train.MomentumOptimizer
tf.train.AdamOptimizer
tf.train.ProximalGradientDescentOptimizer
tf.train.ProximalAdagradOptimizer
tf.train.RMSPropOptimizer
And more

Fall 2017 CSC 498R: Internet of Things 84

TensorFlow Example 1

Fall 2017 CSC 498R: Internet of Things 85

Recall: Machine Learning
§ Type of artificial intelligence (AI) that provides

computers with the ability to learn without being
explicitly programmed.

Training Data

Dataset Model Learn

Answer

Predict

Fall 2017 CSC 498R: Internet of Things 86

Recall: Artificial Neural Network
Basic Human Nervous System Diagram

Brain
Input

Output

Feedback - Memory

Forward Feed

Backward Feed

Fall 2017 CSC 498R: Internet of Things 87

Artificial Neural Network
§ Perceptron

Input

Output

Fall 2017 CSC 498R: Internet of Things 88

NN Model: Feed Forward

b

Y

Y_pred = Y (Wx * b)

Fall 2017 CSC 498R: Internet of Things 89

NN Model: Feed Forward

b

Y

Variables are state of nodes which
output their current value which is
retained across multiple execution.

- Gradient Descent, Regression and
etc.

Y_pred = Y (Wx * b)

Control / Bias – variable for
discrimination, preference that
affects Input – Weight
Relationship state.

Fall 2017 CSC 498R: Internet of Things 90

NN Model: Feed Forward

b

YPlaceholders are nodes where its
value is fed in at execution time.

Y_pred = Y (Wx * b)

Fall 2017 CSC 498R: Internet of Things 91

NN Model: Feed Forward

b

Y

Mathematical Operation

W(x) = Multiply Two Matrix or a
Weighted Input

Σ (Add) = Summation elementwise
with broadcasting

Y = Step Function with elementwise
rectified linear function

Y_pred = Y (Wx * b)

Fall 2017 CSC 498R: Internet of Things 92

TensorFlow Basic Flow
§ Build a graph
�Graph contains parameter specifications, model

architecture, optimization process

§ Optimize Predictions, Loss Functions and Learning

§ Initialize a session

§ Fetch and feed data with Session.run
�Compilation, optimization, visualization

Fall 2017 CSC 498R: Internet of Things 93

Back to Our Example…

b

Y

Mathematical Operation

W(x) = Multiply Two Matrix or a
Weighted Input

Σ (Add) = Summation elementwise
with broadcasting

Y = Step Function with elementwise
rectified linear function

Y_pred = Y (Wx * b)

Fall 2017 CSC 498R: Internet of Things 94

Fall 2017 CSC 498R: Internet of Things 95

%% imports
%matplotlib inline
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

%% Let's create some toy data
plt.ion()
n_observations = 100
fig, ax = plt.subplots(1, 1)
xs = np.linspace(-3, 3, n_observations)
ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations)
ax.scatter(xs, ys)
fig.show()
plt.draw()

%% tf.placeholders for the input and output of the network.
Placeholders are variables which we need to fill in when we
are ready to compute the graph.
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)

%% We will try to optimize min_(W,b) ||(X*w + b) - y||^2
The `Variable()` constructor requires an initial value for the
variable,, which can be a `Tensor` of any type and shape. The
initial value defines the type and shape of the variable.
After construction, the type and shape of # the variable are
#fixed. The value can be changed using one of the assign methods.
W = tf.Variable(tf.random_normal([1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
Y_pred = tf.add(tf.mul(X, W), b)

b

Y

Y_pred = Y (Wx * b)

Implementation of Graph, Plot /
Planes, Variables

Codify – Rendering Graph

b

Y

• We can deploy this graph with a
session: a binding to a particular
execution context (e.g. CPU, GPU)

Y_pred = Y (Wx * b)

Fall 2017 CSC 498R: Internet of Things 96

Codify - Optimization

b

Y

%% Loss function will measure the distance between our observations
and predictions and average over them.
cost = tf.reduce_sum(tf.pow(Y_pred - Y, 2)) / (n_observations - 1)

%% Use gradient descent to optimize W,b
Performs a single step in the negative gradient
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

Y_pred = Y (Wx * b) Optimizing Predictions

Optimizing Learning Rate

Fall 2017 CSC 498R: Internet of Things 97

Codify - Optimization

b

Y

%% We create a session to use the graph
n_epochs = 1000
with tf.Session() as sess:

Here we tell tensorflow that we want to initialize all
the variables in the graph so we can use them
sess.run(tf.initialize_all_variables())

Fit all training data
prev_training_cost = 0.0
for epoch_i in range(n_epochs):

for (x, y) in zip(xs, ys):
sess.run(optimizer, feed_dict={X: x, Y: y})

training_cost = sess.run(
cost, feed_dict={X: xs, Y: ys})

print(training_cost)

if epoch_i % 20 == 0:
ax.plot(xs, Y_pred.eval(

feed_dict={X: xs}, session=sess),
'k', alpha=epoch_i / n_epochs)

fig.show()
plt.draw()

Allow the training to quit if we've reached a minimum
if np.abs(prev_training_cost - training_cost) < 0.000001:

break
prev_training_cost = training_cost

fig.show()

Y_pred = Y (Wx * b)

Implementation of Session to make the model
ready to be fed with data and show results

Fall 2017 CSC 498R: Internet of Things 98

Codify - Result

b

Y

Y_pred = Y (Wx * b)

Gradient Descent is used to optimize W, b which resulted
to this Decision Vector Plot

Fall 2017 CSC 498R: Internet of Things 99

TensorFlow Example 2

Fall 2017 CSC 498R: Internet of Things 100

Recall: Digit Recognition

…

1

63

1 5 10 15 20 25 …

strong +ve weight

low/zero weight

Fall 2017 CSC 688G: Internet of Things 101

The MNIST Data Set
§ MNIST (Mixed National Institute of Standards and Technology

database) large database of handwritten digits.
§ Used by almost everyone to demonstrate the power of deep

learning

Fall 2017 CSC 498R: Internet of Things 103

The MNIST Data Set

Fall 2017 CSC 688G: Internet of Things 104

Fall 2017 CSC 498R: Internet of Things 105

Fall 2017 CSC 498R: Internet of Things 106

Fall 2017 CSC 498R: Internet of Things 107

Fall 2017 CSC 498R: Internet of Things 108

Fall 2017 CSC 498R: Internet of Things 109

Fall 2017 CSC 498R: Internet of Things 110

Matrix Notation

Fall 2017 CSC 498R: Internet of Things 111

Softmax Function
§ The softmax function or the normalized exponential function is

a generalization of the logistic function that "squashes” a K-
dimensional vector Z of arbitrary real values to a K-dimensional
vector of real values in the range [0, 1] that add up to 1.

§ The function is given by

Fall 2017 CSC 498R: Internet of Things 112

Softmax Simple Model

Fall 2017 CSC 498R: Internet of Things 113

Softmax Simple Model

Fall 2017 CSC 498R: Internet of Things 114

In TensorFlow

Fall 2017 CSC 498R: Internet of Things 115

Check for Success
§ Need to include a cost or loss function for the

optimization/backpropagation to work on

§ Use the cross entropy cost function, represented by:

Fall 2017 CSC 498R: Internet of Things 116

Check for Success

Fall 2017 CSC 498R: Internet of Things 117

Fall 2017 CSC 498R: Internet of Things 118

Initialization

Fall 2017 CSC 498R: Internet of Things 119

Compute and Check for Success

Fall 2017 CSC 498R: Internet of Things 120

TensorFlow: Training

Fall 2017 CSC 498R: Internet of Things 121

TensorFlow: Run

Fall 2017 CSC 498R: Internet of Things 122

TensorFlow: Full Code

Fall 2017 CSC 498R: Internet of Things 123

Go Deep: Redo with 5 Layers

Fall 2017 CSC 498R: Internet of Things 124

TensorFlow: Initialisation

Fall 2017 CSC 498R: Internet of Things 125

TensorFlow: The model

Fall 2017 CSC 498R: Internet of Things 126

Slow Start ?

Fall 2017 CSC 498R: Internet of Things 127

RELU

Fall 2017 CSC 498R: Internet of Things 128

RELU

Fall 2017 CSC 498R: Internet of Things 129

Noisy Accuracy Curve ?

Fall 2017 CSC 498R: Internet of Things 130

Learning Rate Decay

Fall 2017 CSC 498R: Internet of Things 131

Dying Neurons

Fall 2017 CSC 498R: Internet of Things 132

Dropout

Fall 2017 CSC 498R: Internet of Things 133

Dropout

Fall 2017 CSC 498R: Internet of Things 134

Fall 2017 CSC 498R: Internet of Things 135

Fall 2017 CSC 498R: Internet of Things 136

All the Party Tricks

Fall 2017 CSC 498R: Internet of Things 137

Overfitting

Fall 2017 CSC 498R: Internet of Things 138

Convolutional Layer

Fall 2017 CSC 498R: Internet of Things 139

Convolutional Neural Network

Fall 2017 CSC 498R: Internet of Things 140

Tensorflow : Initialisation

Fall 2017 CSC 498R: Internet of Things 141

Tensorflow: The model

Fall 2017 CSC 498R: Internet of Things 142

Fall 2017 CSC 498R: Internet of Things 143

Can We do Better?

Fall 2017 CSC 498R: Internet of Things 144

Bigger Convolutional Network + Dropout

Fall 2017 CSC 498R: Internet of Things 145

Fall 2017 CSC 498R: Internet of Things 146

Better!

Fall 2017 CSC 498R: Internet of Things 147

References
§ Notes by:
�Martin Gorner [The Examples we just did]
� Tzar C. Umang
�CS 20SI: TensorFlow for Deep Learning Research

�Code: github.com/martin-gorner/tensorflow-mnist-tutorial

Fall 2017 CSC 498R: Internet of Things 148

Tensorflow Resources
§ Main Site https://www.tensorflow.org/

§ Tutorials
� https://github.com/nlintz/TensorFlow-Tutorials/

Fall 2017 CSC 498R: Internet of Things 149

Appendix

Fall 2017 CSC 498R: Internet of Things 150

Houses Prices

Fall 2017 CSC 498R: Internet of Things 151

§ Predict the price of a house given its area

House Size (ft2) 1400 1600 1700 1875 1100 1550 2350 2450 1425 1700

House Price $ (Y) 245,000 312,000 279,000 308,000 199,000 219,000 405,000 324,000 319,000 255,000

Fall 2017 CSC 498R: Internet of Things 152

Predict Housing Prices
§ Use a simple linear model, where we fit a line on the

historical data, to predict the price of a new house
(Ypred) given its size (X)

§ Ypred = a+bX

Fall 2017 CSC 498R: Internet of Things 153

Fall 2017 CSC 498R: Internet of Things 154

• The blue line gives the actual house prices from historical data
(Yactual)

• The difference between Yactual and Ypred (given by the yellow dashed
lines) is the prediction error (E)

Predict Housing Prices
§ Need to find a line with optimal a and b weights that

best fits the historical data by reducing the prediction
error and improving prediction accuracy

§ So, our objective is to find optimal a, b weights that
minimize the error between actual and predicted values
of house price
� Sum of Squared Errors (SSE) = ½ Sum (Actual House Price –

Predicted House Price)2 = ½ Sum(Y – Ypred)2

� (1/2 is for mathematical convenience since it helps in calculating
gradients in calculus)

Fall 2017 CSC 498R: Internet of Things 155

Gradient Descent Algorithm
1) Step 1: Initialize the weights (a and b) with random values and calculate Error

(SSE)
2) Step 2: Calculate the gradient i.e. change in SSE when the weights (a and b)

are changed by a very small value from their original randomly initialized
value. This helps us move the values of a and b in the direction in which SSE
is minimized.

3) Step 3: Adjust the weights with the gradients to reach the optimal values
where SSE is minimized

4) Step 4: Use the new weights for prediction and to calculate the new SSE
5) Step 5: Repeat steps 2 and 3 till further adjustments to weights doesn’t

significantly reduce the Error

Fall 2017 CSC 498R: Internet of Things 156

Step 2: Calculate the error gradient
w.r.t the weights
§ Yp = a+b*X

§ ∂SSE/∂a = – (Y-YP) and ∂SSE/∂b = – (Y-YP)X

§ Here, SSE=½ (Y-YP)2 = ½(Y - (a+bX))2

The gradient vector, [∂SSE/∂a ∂SSE/∂b]T, gives the
direction of the movement of a and b with respect to
SSE

Fall 2017 CSC 498R: Internet of Things 157

Step 3: Adjust the weights with the
gradients to reach the optimal values where
SSE is minimized

Fall 2017 CSC 498R: Internet of Things 158

Update a and b
§ Update rules:
� a – ∂SSE/∂a
� b – ∂SSE/∂b

§ So, update rules:
�New a = a – r * ∂SSE/∂a = 0.45 - 0.01*3.300 = 0.42
�New b = b – r * ∂SSE/∂b= 0.75 - 0.01*1.545 = 0.73

§ Here, r is the learning rate = 0.01, which is the pace of
adjustment to the weights.

Fall 2017 CSC 498R: Internet of Things 159

Step 5: Repeat step 3 and 4
§ Repeat step 3 and 4 till the time further adjustments

to a, b doesn’t significantly reduces the error. At that
time, we have arrived at the optimal a,b with the
highest prediction accuracy.

Fall 2017 CSC 498R: Internet of Things 160

