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What is Machine Learning?
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Field of study that gives computers the ability to learn without 
being explicitly programmed

A computer program is said to learn from experience E with 
respect to some class of tasks T and performance measure P, if 
its performance at tasks in T, as measured by P, improves 
with experience E.

Tom Mitchell

Arthur Samuel



What is Machine Learning?
§ More than just memorizing data

§ Fundamentally, learning is generalization
� Find the underlying structure of training data

§ Two broad classes of example use
� Prediction (continuous): “How much snow are we going to have 

tomorrow?”
�Classification (discrete): face recognition
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Machine Learning Today

Microsoft	translates	English	to	
Chinese	in	real-time

Google	learns	face/cat	detector	by	feeding	
machines	tons	of	unlabeled	images	

Facebook	recognizes	human	
faces	and	the	identities
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Machine Learning Tools

TensorFlow
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Predicting from Samples
§ Most datasets are samples from an infinite population.
§ We are most interested in models of the population, but we have 

access only to a sample of it. 

§ For datasets consisting of (X,y) 
� features X + label y
- A model is a prediction y = f(X)

§ Train on a training sample D
and we denote the model as fD(X)
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Idea: Build a Model that Maps Your Data to “Labels”
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f(x;	θ) yx

Predicted	value/
Class	labelTest	data

§ Use a (parametric) model
�Define a black box using a set of parameters θ
� This black box should read in a data vector and output the prediction 

(continuous value or class label)
� Formally, y = f(x; θ)

§ “Learning” is to determine the parameters θ using a set of 
training data

Train-Test-Validation Sets
§ When making measurements on a ML algorithm, we have 

additional challenges.

§ With a sample of data, any model fit to it models both:
� Structure in the entire population
� Structure in the specific sample not true of the population
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Train-Test-Validation Sets
§ Example: a 25-year old man and a 30-year old woman. 
�Age predicts gender perfectly. (age < 27 => man else woman)
�Gender predicts age perfectly. (gender == man => 25 else 30)
�Neither result generalizes. This is called over-fitting. 
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Model Tuning

Training	Data ML	model Validation	Data

Tune	Parameters

EvaluateBuild
Model

Test	Data Final	Model	Scores
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A Brief History of Machine Learning

Cleverly-
Designed
Features

Input	Data ML	model

Most	of	the	“heavy	lifting”	in	here.
Final	performance	only	as	good	as	the
feature	set.	

§ Before 2012*:

§ * Before publication of Krizhevsky et al.’s ImageNet CNN paper.

Fall 2017 CSC 498R: Internet of Things (IoT) 11

A Brief History of Machine Learning
§ After 2012:

FeaturesInput	Data model
Deep	Learning

Features	and	model	learned	together,
mutually	reinforcing

Fall 2017 CSC 498R: Internet of Things (IoT) 12



A Brief History of Machine Learning
§ But this (pre-2012) picture is still typical of many pipelines.

§ We’ll focus on one aspect of feature design: feature selection, 
i.e. choosing which features from a list of candidates to use for a 
ML problem. 

Cleverly-
Designed
Features

Input	Data ML	model
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Choosing the Right Model
§ Should have some insights on why this model would fit the data 

well or make correct class predictions

§ Keep the model simple (i.e., not too many parameters)
� So you have enough data to train
� So you can train in a reasonable amount of time
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Predicting from Samples: Example 1

X

y
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Predicting from Samples: Example 1
§ Easy: Find the best line (linear function y=f(X)) to explain the 

data.
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Predicting from Samples: Example 2
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Predicting from Samples: Example 2
§ Tough using Logistic Regression
�Although doable
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Predicting from Samples: Example 2
§ Solution?
�Use non-linear approaches but sophisticated ones will wait till next time!
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Bias and Variance
§ Our data-generated model !" # is a statistical estimate of the 

true function ! # .

§ Because of this, its subject to bias and variance
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Bias and Variance
§ Bias: if we train models !" # on many 

training sets $, bias is the expected 
difference between their predictions 
and the true %’s. 
� &'() = E !" # − %
� E[] is taken over points X and datasets D

§ Variance: if we train models !"(#)	on 
many training sets $, variance is the 
variance of the estimates:
� 0(1'(234	 = E !" # − !̅ #

6

� Where !̅ # = E !" # is the average 
prediction on X.
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Bias and Variance Tradeoff
§ There is usually a bias-variance tradeoff caused by model 

complexity. 

§ Complex models (many parameters) usually have lower bias, but 
higher variance. 

§ Simple models (few parameters) have higher bias, but lower 
variance.
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Bias and Variance Tradeoff: Example
§ A linear model can only fit a straight line while a high-degree 

polynomial can fit a complex curve. 
§ The polynomial can fit the individual sample, rather than the 

population. 
� Its shape can vary from sample to sample, so it has high variance. 
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Bias and Variance Tradeoff
§ The total expected error 

is	"#$%& + ($)#$*+,
§ Because of the bias-variance 

trade-off, we want to balance 
these two contributions. 

§ If ($)#$*+, strongly dominates, it 
means there is too much variation 
between models. 
� Over-fitting. 

§ If "#$% strongly dominates, then 
the models are not fitting the data 
well enough
� Under-fitting. 
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Bias and Variance Tradeoff
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Under-fitting would occur, for example, when fitting a 
linear model to non-linear data. Such a model would have 
poor predictive performance.

A model that has been over-fitted has poor predictive 
performance, as it overreacts to minor fluctuations in the training 
data

Back to Machine Learning …
§ Lots of data that are generated by a lot of sources
�Want techniques that minimize software engineering effort
� simple algorithms, teach computer how to learn from data
� don’t spend time hand-engineering algorithms or high level features 

from the raw data
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Machine Learning
§ Learning by labeled example: supervised learning
� e.g. An email spam detector
� amazingly effective if you have lots of examples

§ Discovering patterns: unsupervised learning
� e.g. data clustering
� difficult in practice, but useful if you lack labeled examples

§ Feedback right/wrong: reinforcement learning
� e.g. learning to play chess by winning or losing
�works well in some domains, becoming more important
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Machine Learning: Supervised
§ Given data about the size of houses on the real estate market, try 

to predict their price. 
� Price as a function of size is a continuous output, so this is a regression 

problem.

§ Other Examples:
� Is this image a cat, dog, car, house?
�How would this user score that restaurant?
� Is this email spam? 
� Is this blob a supernova?
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Machine Learning: Unsupervised
§ Clustering
� Cluster some hand-written digit data into 10 classes.
� Take a collection of 1000 essays written on the US Economy, and find a way to automatically 

group these essays into a small number that are somehow similar or related by different 
variables, such as word frequency, sentence length, page count, and so on.

� What are the top 20 topics in Twitter right now? 
� Find and cluster distinct accents of people in a location 
� Cluster News based on topics

§ Associative
� A doctor over years of experience forms associations in his mind between patient 

characteristics and illnesses that they have
� If a new patient shows up then based on this patient’s characteristics such as symptoms, 

family medical history, physical attributes, mental outlook, etc the doctor associates possible 
illness or illnesses based on what the doctor has seen before with similar patients. 
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Classification
§ Given a new sample, predicting discrete values (the class) 

instead of continuous values

§ Several popular models
�Nearest neighbor
�Decision tree
� Support vector machine

Male	or	female?
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k-Nearest Neighbors
§ Memorize all training samples, search for the closest ones to the test sample
§ Classification by majority vote
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k-Nearest Neighbors
§ Defer the decision to generalize beyond the training examples 

till a new query is encountered 
�Whenever we have a new point to classify, we find its K nearest neighbors 

from the training data. 
� The distance is calculated using some measure 
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k-Nearest Neighbors
§ Given a 

query 
item:

� Find k 
closest 
matches
in a labeled 
dataset
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k-Nearest Neighbors
§ Given a 

query 
item: 

� Return the 
most
frequent 
label
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k-Nearest Neighbors
§ k = 3 

votes for 
“cat”
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k-Nearest Neighbors
§ 2 votes for 

cat,

§ 1 each for 
Buffalo,                                           
Cat 
wins…

§ Deer, Lion
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K Nearest Neighbour (kNN) Classifier 
§ How many neighbors should we count ?

(k=1) (k=4)	
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k-NN issues
§ The Data is the model
�No training needed.
�Accuracy generally improves with more data.
�Matching is simple and fast (and single pass). 
�Usually need data in memory, but can be run off disk. 

§ Minimal configuration:
�Only parameter is k (number of neighbors)
� Two other choices are important:
o Weighting of neighbors (e.g. inverse distance)
o Similarity metric
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Application: Gas activity sensing
§ Goal: Identify the appliance that is turned on/off
§ Form a feature vector with (1) step size of flow change (2) time of 

change
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k-NN Flavors 
§ Classification: 
�Model is y = f(X), y is from a discrete set (labels). 
�Given X, compute y = majority vote of the k nearest neighbors. 
�Can also use a weighted vote of the neighbors. 

§ Regression: 
�Model is y = f(X), y is a real value. 
�Given X, compute y = average value of the k nearest neighbors. 
�Can also use a weighted average of the neighbors. 

§ Weight function is usually the inverse distance. 
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K-NN Metrics or Measures
§ Euclidean Distance:  Simplest, fast to compute
� ! ", $ = " − $
§ Cosine Distance: Good for documents, images, etc.
� ! ", $ = 1	 −	 )*+

) +

§ Jaccard Distance: For set data:
� ! ,, - = 1 − .∩0

.∪0

§ Hamming Distance: For string data:
� ! ", $ = 	∑ "3 ≠ $35

367
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K-NN metrics
§ Manhattan Distance:  Coordinate-wise distance
� ! ", $ = 	∑ "( − $(*

(+,

§ Edit Distance: for strings, especially genetic data.

§ Mahalanobis Distance: Normalized by the sample covariance 
matrix – unaffected by coordinate transformations.  

Fall 2017 CSC 498R: Internet of Things (IoT) 42



Choosing k
§ Recall that prediction errors can be decomposed into two main 

categories:
� Error due to bias
� Error due to variance

§ There is a tradeoff between a model's ability to minimize bias 
and variance

§ There is a bias/variance tradeoff, depending on the value of K:
� Small k à ?
� Large k à ?

§ Understanding these two types of error can help us diagnose 
model results and avoid the mistake of over- or under-fitting

Fall 2017 CSC 498R: Internet of Things (IoT) 43

Choosing k
§ Error due to Bias
�Difference between the expected (or average) prediction of our model 

and the correct value which we are trying to predict

§ Error due to Variance
� The variability of a model prediction for a given data point

§ We have a bias/variance tradeoff
� Small k à low bias, high variance
� Large k à high bias, low variance
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Choosing k
§ Assume the real data follows the blue curve, with some mean-

zero additive noise. Red points are a data sample.

X

y

y	=	f(X)
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Choosing k
§ Small k à low bias, high variance
§ Large k à high bias, low variance

X

y

k=1
Bias	=	average
of	this	offset

Points	from
original	sample

y	=	f(X)

Fall 2017 CSC 498R: Internet of Things (IoT) 46



Choosing k
§ Small k à low bias, high variance
§ Large k à high bias, low variance

X

k=1
yBias	=	average

of	this	offset

Points	from	a	
different	sample

y	=	f(X)
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Choosing k
§ Small k à low bias, high variance
§ Large k à high bias, low variance

X

y

k=8
Bias	=	average
of	this	offset

y	=	f(X)
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Choosing k
§ Small k à low bias, high variance
§ Large k à high bias, low variance

X

y

k=8
Bias	=	average
of	this	offset

y	=	f(X)
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Choosing k in Practice 
§ Use cross-validation
�Break data into train, validation and test subsets, e.g. 60-20-20% random 

split. 

§ Predict
� For each point in the validation set, predict using the k-Nearest 

neighbors from the training set
�Measure the error rate (classification) or squared error (regression). 

§ Tune
� Try different values of k, and use the one that gives minimum error on the 

validation set. 

§ Evaluate
� Test on the test set to measure performance 
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kNN and the Curse of Dimensionality 
§ The curse of dimensionality refers to phenomena that occur in 

high dimensions (100s to millions) that do not occur in low-
dimensional (e.g. 3-dimensional) space. 

§ In particular data in high dimensions are much sparser (less 
dense) than data in low dimensions. 

§ For kNN, that means there are less points that are very close in 
feature space (very similar), to the point we want to predict 
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kNN and the Curse of Dimensionality 
§ Example: Consider a collection of uniformly random points in the 

unit cube. In one dimension, the average squared Euclidean 
distance between any two points is:
� ∫ ∫ " − $ %&"	&$ = 	 )*

)
+

)
+

§ In N dimensions, we add up the squared differences for all N 
coordinates (because the coordinates are independent in a 
uniform random cube), giving:
� &% = E " − $ % = 	-*
§ So the Euclidean distance scales as .
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kNN and the Curse of Dimensionality 
§ From this perspective, its surprising that kNN works at all in high 

dimensions.

§ Luckily real data are not like random points in a high-dimensional 
cube. Instead they live in dense clusters and near much lower-
dimensional surfaces. 

§ Finally, points can be very “similar” even if their Euclidean 
distance is large. E.g. documents with the same few dominant 
words (with tf-idf weighing) are likely to be on the same topic. 
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When to Consider Nearest Neighbor ?
§ Lots of training data

§ Less than 20 attributes per example
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Pros and Cons of K-NN
§ Pros
� Simple. No complex parameter tuning
�No training is needed
� Training is very fast
� Learn complex target functions
�Don’t lose information

§ Cons
�Computationally expensive. Need to scan through all training samples
� Slow at query time
� Easily fooled by irrelevant attributes
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Support Vector Machine
§ Find a linear decision boundary that has the lowest 

generalization error

§ Idea: the best one should have the largest margin

Note	that	this	separating	
plane	is	only	determined	
by	the	“support	vectors”
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Most of the time data are not linearly 
separable
§ Include a penalty from mis-classification

min

1/Margin
Classification	
error	in	training	
set

Regularization	parameter	
to	weight	training	error
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Non-linear SVM
§ Map data points to a high-dimensional space and do linear classification 

there
§ Kernel trick: turns out solving SVM one only needs to known the feature 

space similarity between training samples – we don’t need to explicitly do 
the mapping
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Decision Trees
§ We have seen these before with Xbox Kinect and Motion 

Tracking

§ Tree structure where nodes are “questions” and the leaves 
determine a classification or labeling
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Decision Trees

Height	>	65

yes no

Weight	<	
145

Female Male

yes no

Weight	>	
150

Male Female

yes no

M

FF

M
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Decision Trees
§ Generally nonparametric, depending on learning algorithm, don’t 

need to define depth or number of nodes
§ Goal of learning algorithm is to find features that provide the most 

discrimination based on class 
� For example for determining gender, asking someone’s height will provide 

pretty low error rate where something like eye color provides little information

§ Algorithm Sketch:
� Find feature that provides best separation accuracy 
� Create a node and separate data according to the feature
� If zero error (all examples with height > 72 are male, make a leaf node)
� Else: recurse for each subset generated.

§ Common Algorithm is ID3, a precursor to the C4.5 algorithm
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Decision Trees
§ Advantages:
�Model is very easy to interrogate, you can look at each node and easily 

understand its purpose (i.e. the feature and the threshold or value)
�Can handle multi-domain data (real numbers, categorical data, all 

together)
�Cost of classification is O(log n) where n in the tree depth

§ Disadvantages:
�Optimization is most likely full of local optima and is an NP-complete 

problem (i.e. exact computation is too expensive)
�Highly sensitive to the distribution of the training data (often over-fits!)
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Logistic Regression
§ Logistic regression is probably the most widely used 

general-purpose classifier. 
§ Its very scalable and can be very fast to train. It’s used for
�Spam filtering
�News message classification
�Web site classification
�Product classification
�Most classification problems with large, sparse feature sets.
§ The only caveat is that it can overfit on very sparse data, so 

its often used with regularization

Fall 2017 CSC 498R: Internet of Things (IoT) 63

Linear Regression
§ We want to find the best line (linear function y=f(X)) to explain 

the data.

X

y
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Linear Regression

* *

*

* *

*
*

*

SAT	Score

Annual	
Income

*

*
*

*

*
*

*

*

Parameters

y	=	c1 x	+	c2
Model:	straight	line

Predict	Alice’s	annual	income	
given	her	SAT	score

Least	squares	solution!
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High-Order Polynomial Models
§ If data has more 

complicated 
structure, we may use 
high-order 
polynomial models
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You	need	a	lot	more	data	to	learn	a	
degree-100	polynomial

More Data are Needed to Learn Correct 
Model
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Logistic Regression
§ Logistic regression is designed as a binary classifier (output say {0,1}) but 

actually outputs the probability that the input instance is in the “1” class. 

§ A logistic classifier has the form:

! " 	= 		 1
1 + exp	 −"+

where " = 	 ",, … , "/ is a vector of features.
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Logistic Regression
§ Logistic regression maps the “regression” value −"# in 

(-¥,¥) to the range [0,1] using a “logistic” function:

$ " 	= 		 1
1 + exp	 −"#

§ i.e. the logistic function maps any value on the real line to a probability in 
the range [0,1]
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Application: Gas activity sensing
§ Predict the amount of gas flow using microphone

Exploit	the	“hissing	sound”	when	
gas	pass	through	the	gas	
regulator

[Cohn	et	al,	Pervasive	
2010]Fall 2017 CSC 498R: Internet of Things (IoT) 70



Audio intensity is linear to gas flow
§ A simple linear regression does the job
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Logistic Regression: Summary
§ What is in the model?
� Linear separating plane
� Logistic function for probability

§ Summary
� Training is fast
� Very simple model (less overfitting)
� Prediction is also fast
� The output of prediction has simple explanation (probability of belonging 

to a class)
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Recap: Comparison of Classifiers
Decision	Tree Logistic Regression SVM

Model Tree	(horizontal/vertical separating	plane) Linear	separating	plane Can	also use	non-linear	separating	plane

Simplicity	 Very simple Simple Complicated

Interpretation	of	output Clear, follow	the	questions	asked Probability Unclear

Chances of	over-fit High Less	worry Should	be	careful

Development time Just plug	data	in Just plug	data	in Tuning tuning	tuning

Off-the-shelf accuracy Okay Okay Probably the	highest

Use	case When	features	are	clear Often combined	with	neural	networks Often suggest	RBF	as	a	starting	point	if	
you	have	zero	knowledge	on	data

Random Forests
§ Grow K trees on datasets sampled from the original dataset with 

replacement (bootstrap samples), p = number of features.

• Draw K bootstrap samples of size N

• Grow each Decision Tree, by selecting a random set of m out of 
p features at each node, and choosing the best feature to split 
on. 

• Aggregate the predictions of the trees (most popular vote) to 
produce the final class. 

§ Typically m might be e.g. sqrt(p) but can be smaller.



Random Forests
§ Principles: we want to take a vote between different learners so 

we don’t want the models to be too similar. These two criteria 
ensure diversity in the individual trees:

§ Draw K bootstrap samples of size N: 
� Each tree is trained on different data.

§ Grow a Decision Tree, by selecting a random set of m out of p 
features at each node, and choosing the best feature to split on.
�Corresponding nodes in different trees (usually) cant use the same 

feature to split.

Random Forests
§ Very popular in practice, probably the most popular classifier for 

dense data (<= a few thousand features)
§ Easy to implement (train a lot of trees). Good match for 

MapReduce.
§ Parallelizes easily (but not necessarily efficiently).
§ Not quite state-of-the-art accuracy – boosted trees generally do 

better – or DNNs.
§ Needs many passes over the data – at least the max depth of the 

trees. (<< boosted trees though)
§ Easy to overfit – hard to balance accuracy/fit tradeoff.



Clustering – Why?
Clustering has one or more goals:

§ Segment a large set of cases into small subsets that can be 
treated similarly - segmentation

§ Generate a more compact description of a dataset -
compression

§ Model an underlying process that generates the data as a 
mixture of different, localized processes – representation
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Clustering – Why?
Examples:

§ Segment: image segmentation

§ Compression: Cluster-based kNN, e.g. handwritten digit 
recognition.

§ Underlying process: Accents of people at some place – because 
place of origin strongly influences the accent you have. 
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Stereotypical Clustering
§ Note: Points are samples 

plotted in feature space, e.g. 
10,000-dimensional space for 
100x100 images. 
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K-means
§ Very popular algorithms for clustering

§ Minimize the sum of distances to cluster 
centroids



K-means: Algorithm 
1. Compute the centroids of each class

2. Update each example to the closest cluster centroid.

K-means May Be Stuck at Local Optimal
§ Centroid initialization is important



Model-based Clustering
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Clustering for Segmentation

Fall 2017 CSC 498R: Internet of Things (IoT) 84



Condensation/Compression
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“Cluster Bias”
§ Human beings conceptualize the world through categories 

represented as examplars (Rosch 73, Estes 94).

§ We tend to see cluster structure whether it is there or not.
§ Works well for dogs, but… 
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Cluster Bias

Fall 2017 CSC 498R: Internet of Things (IoT) 87

Netflix
§ More of a continuum 

than discrete clusters

§ Factor models, kNN
do much better than 
discrete cluster 
models.
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“Cluster Bias”
§ Upshot
�Clustering is used more than it should be, because people assume an 

underlying domain has discrete classes in it.
� This is especially true for characteristics of people, e.g. Myers-Briggs 

personality types like “ENTP”.
� In reality the underlying data is usually continuous. 
� Just as with Netflix, continuous models (dimension reduction, kNN) tend 

to do better. 
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Terminology
§ Hierarchical clustering: clusters form a hierarchy. Can be 

computed bottom-up or top-down.

§ Flat clustering: no inter-cluster structure.

§ Hard clustering: items assigned to a unique cluster.

§ Soft clustering: cluster membership is a real-valued function, 
distributed across several clusters. 
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K-means clustering
§ The standard k-means algorithm is based on Euclidean distance.

§ The cluster quality measure is an intra-cluster measure only, 
equivalent to the sum of item-to-centroid kernels.

§ A simple greedy algorithm locally optimizes this measure (usually 
called Lloyd’s algorithm):
� Find the closest cluster center for each item, and assign it to that cluster. 
� Recompute the cluster centroid as the mean of items, for the newly-

assigned items in the cluster. 
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K-means clustering
§ Cluster centers – can pick by sampling the input data.
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K-means clustering
§ Assign points to closest center
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K-means clustering
§ Recompute centers (old = cross, new = dot)
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K-means clustering
§ Iterate
� For fixed number of iterations
�Until no change in assignments
�Until small change in quality
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K-means properties
§ It’s a greedy algorithm with random setup – solution isn’t optimal

and varies significantly with different initial points. 
§ Very simple convergence proofs.
§ Performance is O(nk) per iteration, not bad and can be 

heuristically improved. 
n = total features in the dataset, k = number clusters

§ Many generalizations, e.g. 
� Fixed-size clusters
� Simple generalization to m-best soft clustering

§ As a “local” clustering method, it works well for data 
condensation/compression. 
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Choosing clustering dimension
§ AIC or Akaike Information Criterion:

§ K=dimension, L(K) is the likelihood (could be RSS) and q(K) is a 
measure of model complexity (cluster description complexity). 

§ AIC favors more compact (fewer clusters) clusterings. 

§ For sparse data, AIC will incorporate the number of non-zeros in 
the cluster spec. Lower is better. 
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K-means
§ Advantages
� Simple, easy to implement 
� Very parallelizable
� Easy to extend to use other distance metrics

§ Disadvantages
� Sensitive to initial approximation
� Easily stuck at local optimal especially when dimensionality is high
�May be difficult to determine the number of clusters



5-minute break

Unsupervised Learning Can Help Supervise 
Learning
§ Obtaining labeled examples is labor intensive

§ Can we teach the machines to learn some structures from 
unlabeled samples, and then exploit the structures for 
classification?

§ This is semi-supervised learning



Outline for this Evening
§ Three Basic Algorithms
� kNN
� Linear Regression
� K-Means

§ Training Issues
�Measuring model quality
�Over-fitting
�Cross-validation
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Model Quality
§ Almost every model optimizes some quality criterion:
� For linear regression it was the Residual Sum-of-Squares
� For k-Means it is the “Inertia” – the mean squared distance from each 

sample to its cluster center. 
�…

§ The quality criterion is chosen often because of its good 
properties:
�Convexity: so that there is a unique, best solution
�Closed form for the optimum (linear regression) or at least for the 

gradient (for SGD). 
�An algorithm that provably converges.

Fall 2017 CSC 498R: Internet of Things (IoT) 102



Model Quality
§ There are typically other criteria used to measure the quality of 

models. e.g. for clustering models 
� Silhouette score
� Inter-cluster similarity (e.g. mutual information)
� Intra-cluster entropy

§ For regression models 
� Stability of the model (sensitivity to small changes)
�Compactness (sparseness or many zero coefficients)
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Evaluating Clusterings: Silhouette
§ The silhouette score is

�where a(i) is the mean distance from sample i to its own cluster,
� b(i) the mean distance from i to the second-closest cluster. 
� -1 ≤ S(i) ≤1

§ Provides a succinct graphical representation of how well each 
object lies within its cluster

§ Perhaps surprisingly, silhouette scores can be, and often are, 
negative
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Evaluating Clusterings: Silhouette
§ silhouette coefficients near +1 indicate that the sample is far 

away from the neighboring clusters

§ A value of 0 indicates that the sample is on or very close to the 
decision boundary between two neighboring clusters

§ Negative values indicate that those samples might have been 
assigned to the wrong cluster.
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Evaluating Clusterings: Silhouette
§ Silhouette plot: horizontal bars with cluster score.

§ Sort (vertically) first by cluster, then by score.
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Regularization with Secondary Criteria
§ While secondary criteria can be measured after the model is 

built, its too late then to affect the model. 

§ Using secondary criteria during the optimization process is called 
“regularization”. 

§ Examples:
� L1 (LASSO) regularization adds a term to the measure being optimized 

which is the sum of absolute value of model coefficients.
� L2 (Ridge) regularization adds a term to the measure being optimized 

which is the sum of squares of model coefficients. 
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Regularization with Secondary Criteria
§ L1 regularization in particular is very widely used. It has the 

following impacts:
� Yields a convex optimization problem in many cases, so there is a unique 

solution.
� The solution is usually stable to small input changes.
� The solution is quite sparse (many zero coefficients) and requires less disk 

and memory to run. 
� L1 regularization on factorization models tends to decrease the 

correlation between model factors. 
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Over-fitting
§ Your model should ideally fit an infinite sample of the type of 

data you’re interested in.

§ In reality, you only have a finite set to train on. A good model for 
this subset is a good model for the infinite set, up to a point.

§ Beyond that point, the model quality (measured on new data) 
starts to decrease. 

§ Beyond that point, the model is over-fitting the data. 
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Over-fitting
§ Over-fitting during training

Number	of	iterations

Model	
error

Training	error

Error	on	
new	data
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Over-fitting
§ Another kind of over-fitting

Model	degrees	of	freedom

Model	
error

Training	error

Error	on	
new	data
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Regularization and Over-fitting
§ Adding a regularizer:

Number	of	iterations

Model	
error Without	regularizer

With	regularizer
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Cross-Validation
§ Cross-validation involves partitioning your data into distinct 

training and test subsets. 

§ The test set should never be used to train the model.

§ The test set is then used to evaluate the model after training.  
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K-fold Cross-Validation
§ To get more accurate estimates of performance you 

can do this k times.
§ Break the data into k equal-sized subsets Ai

§ For each i in 1,…,k do:
�Train a model on all the other folds A1,…, Ai-1, Ai+1,…, Ak

�Test the model on Ai

§ Compute the average performance of the k runs

Fall 2017 CSC 498R: Internet of Things (IoT) 114



5-fold Cross-Validation
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Summary
§ Three Basic Algorithms
� kNN
� Linear Regression
� K-Means

§ Training Issues
�Measuring model quality
�Over-fitting
�Cross-validation
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