
CSC 498R: Internet of Things
Lecture 08: Web of Things (WoT) and Beyond …

Instructor: Haidar M. Harmanani

Fal l 2017

IoT Components
§ Things we connect: Hardware, sensors and actuators

§ Connectivity
� Medium we use to connect things

§ Platform
� Processing and storing collected data
o Receive and send data via standardized interfaces or API
o Store the data
o Process the data.

§ Analytics
� Get insights from gathered data

§ User Interface

CSC 498R: Internet of ThingsFall 2017 2

Web of Things
§ Integrating the real world data into the Web and

providing Web-based interactions with the IoT
resources is also often discussed under umbrella term
of “Web of Things” (WoT).

§ WoT data is not only large in scale and volume, but
also continuous, with rich spatiotemporal
dependency.

3Fall 2017 CSC 498R: Internet of Things 3

Web of Things
§ Connecting sensor, actuator and other devices to

the World Wide Web.
� “Things’ data and capabilities are exposed as web

data/services.

§ Enables an interoperable usage of IoT resources (e.g.
sensors, devices, their data and capabilities) by
enabling web based discovery, access, tasking, and
alerting.

Fall 2017 CSC 498R: Internet of Things 4

WSN

WSN

WSN

WSN

WSN

Network-enabled	
Devices

Semantically	
annotate	data

Gateway
CoAP

HTTP

CoAP

CoAP

HTTP

6LowPAN

Semantically	
annotate	data

http://mynet1/snodeA23/readTemp?

WSN
MQTT

MQTT

Gateway

Web of Things
Fall 2017 CSC 498R: Internet of Things 5

Web of Things

Fall 2017 CSC 498R: Internet of Things 6

Part I: Programming the Web of Things

Fall 2017 CSC 498R: Internet of Things 7

Fall 2017 CSC 498R: Internet of Things

The Web of Things is a refinement of the Internet
of Things by integrating smart things not only
into the Internet (network), but into the Web
Architecture (application)

Dominique Guinard

8

The Web of Things Architecture

Fall 2017 CSC 498R: Internet of Things 9

Fall 2017 CSC 498R: Internet of Things 10

Example: Hello WoT Using Node.js
§ Raspberry Pi
§ Processor
� With a fast processor, you can process images, sound, data from

sensors on the board itself.
� For example, use the computer vision library OpenCV.

§ Network
� Use the Node.js framework to use network

capabilities.
� Node.js is built on the Chrome JS runtime.

Fall 2017 CSC 498R: Internet of Things 11

Node.js

Fall 2017 CSC 498R: Internet of Things 12

Why is node.js so good ?
§ What is Node.js exactly ?
� Node.js is a server-side Javascript solution, written in C.
� It allows programmers to write JavaScript program and to

execute them as a standalone application on a server.

§ What should I do ?
� You easily develop server applications, typing less than 20 lines of

code !
� Node.js is very fast : non-blocking, asynchronous architecture!

It’s a way to be able to provide complex tools by using a simple
and powerful high level language.

Fall 2017 CSC 498R: Internet of Things 13

Fall 2017 CSC 498R: Internet of Things

Why Node?

14

Hello Node.js
§ Install NVM and Node.js on your Pi and computer
� curl -o-
https://raw.githubusercontent.com/creationix/nvm/v0.33.2/install.sh
| bash

� nvm install v4.8.3

§ Build a Node HTTP server

Fall 2017 CSC 498R: Internet of Things 15

JS Debugging
§ Debugging Chrome Dev Tools
� very powerful html, css, & JS debugger
o use for Node.js & browser apps

§ safari, IE have similar tools

Fall 2017 CSC 498R: Internet of Things 16

Back to our Application

browser

Web	server

Cloud

User Interface: HTML, served by cloud or Thing
REST API: to GET, POST, PUT, DELETE

Fall 2017 CSC 498R: Internet of Things 17

Node.js Hello World
§ Goal
� Node.js is a framework using the Chrome JavaScript runtime

and used to communicate over networks.
� Here we’ll create a web server listening on a port and answering
HelloWorld in your browser

§ Steps
� Create a folder, copy paste the content of the next slide

in a file called hello.js
� Replace the X.X.X.X IP in the file with your Raspberry Pi IP.

Fall 2017 CSC 498R: Internet of Things 18

Node.js Hello World
var http = require('http');
http.createServer(

function (req, res) {
res.writeHead(200,{'Content-Type': 'text/plain'});
res.end('Hello World\n');

}
).listen(1337, ‘X.X.X.X');
console.log(‘Server running at http://X.X.X.X:1337/');

Fall 2017 CSC 498R: Internet of Things 19

Node.js Hello World
§ Launch the server
� Launch the command : node hello.js

§ See the result
� From a PC on the same network, launch a browser with :
http://X.X.X.X:1337

� You should see Hello World

Fall 2017 CSC 498R: Internet of Things 20

IoT Application Architecture With Node.js
COMPONENTS & FUNCTION

Device: connect to physical world
◦ Microcontroller: behavior
◦ Sensors: switch, knob, temp, video, mic
◦ Actuators: led, speaker, servo, stepper motor

PC/Tablet/phone: user interface
◦ Observe, control

Server
◦ Proxy, connectivity
◦ Aggregation: collect sensor data
◦ Computation: speech/vision
◦ Storage: persistent logging
◦ Security: authentication
◦ Services: geocoding

TOPOLOGY

services

hosting

Thing
Human

Cloud

Fall 2017 CSC 498R: Internet of Things 21

JavaScript in One Slide …
§ Started as scripting language for browser
� Now for server, applications

§ Similar syntax to C & Java
� if (a > 3) b = 2;

§ Dynamic typing
> var a = 1
> a + 1
2
> a = '1'
> a + 1
'11'

Fall 2017 CSC 498R: Internet of Things 22

Environments for Javascript
§ Browser: runs on everything with a display
� PC, phone, tablet, …

§ Nodejs: does not require display
� Laptop, server, beaglebone, raspberry pi, galileo

Fall 2017 CSC 498R: Internet of Things 23

WoT Sensing and Actuating

Fall 2017 CSC 498R: Internet of Things 24

GPIO support via Node on Embedded Systems

Fall 2017 CSC 498R: Internet of Things 25

Node.js: Raspberry Pi
var gpio = require('rpi-gpio');
gpio.setup(7, gpio.DIR_OUT, write);

function write() {
gpio.write(7, true, function(err) {
if (err) throw err;
console.log('Written to pin'); });

}

Fall 2017 CSC 498R: Internet of Things 26

Connecting a PIR Sensor

Fall 2017 CSC 498R: Internet of Things

var Gpio = require('onoff').Gpio,
sensor = new Gpio(17,'in','both');//#A
sensor.watch(function(err, value) {//#B

if(err)
exit(err);

console.log(value ?'there is someone!':'not anymore!');
});

function exit(err) {
if (err)console.log('An error occurred: '+ err);
sensor.unexport();
console.log('Bye, bye!’)
process.exit();

}
process.on('SIGINT',exit);

27

blink.js: the Hello World of the IoT

Fall 2017 CSC 498R: Internet of Things 28

Connecting a Proximity Sensor

104 CHAPTER 4 Getting started with embedded systems

Save this file and run it by typing node blink.js. If everything works as expected, you
should now see your LED blinking. Well done if this is your first physical prototype!

PIR.JS—CONNECTING A PROXIMITY SENSOR

Let’s now move to a slightly more interesting use case by adding a sensor to your Pi.
The sensor you’ll add is known as a passive infrared (PIR) sensor. A PIR is sensitive to
infrared light and captures the beams emitted by warm bodies like humans—or your
cat, for that matter, but not zombies. This makes it a cheap and ideal sensor to detect
movements and intrusions somewhere, so these sensors are commonly used in simple
burglar alarms or automatic light switches to turn on/off lights when needed.

 Again, let’s begin with the hardware part of the project. You’ll need a digital PIR
sensor such as the ones we mentioned on the shopping list of section Meet the Rasp-
berry Pi, as well as five cables and a breadboard.

 As you can see in figure 4.8, the PIR sensor has three pins: one marked VCC (which
is its 5-volt power source), one marked OUT (which will contain a digital value of sen-
sor status at any point in time: 1 if a warm body is detected, 0 otherwise), and the last
marked GND (for ground). The pin marked OUT needs to be connected to a data pin
(GPIO 17 in our example).

 Connect the components as shown in figure 4.8. First, connect the GND pin to a
ground GPIO on the Pi (for example, pin 39) either directly if you have a female-female
cable (a cable that can plug into a pin on each side) or through the breadboard.

 Then, connect the OUT pin of the PIR to the GPIO 17 (pin 11) on the Pi; this is the
pin you’ll read the results from. Finally, connect the VCC pin to a GPIO (for example,
pin 4), providing 5 volts on the Pi, again either directly or through the breadboard.

VCC (red)GPIO17

GND (black)

Figure 4.8 Connecting a passive infrared sensor to the Pi. The big sensor on the breadboard
is the PIR, which is connected to a 5-volt power source, a GPIO pin, and the ground.Fall 2017 CSC 498R: Internet of Things 29

Fall 2017 CSC 498R: Internet of Things 30

pir.js: Reading a PIR Sensor Using the onoff Library

Fall 2017 CSC 498R: Internet of Things 31

dht.js: Connecting a Temperature and a Humidity Sensor
§ Use a DHT22 sensor
� Connect the first DHT22 pin to a ground (GND) pin; for example,

pin 39.
� Don’t connect anything to the second pin
� Connect the third pin to the GPIO 12 of your Pi (pin 32) and

place a 4.7K Ohm resistor (yellow, violet, red, gold/silver)
33between the DH22 pin and the connection to the pin of the Pi.

� Connect this resistor to the VCC line on the breadboard, the red
line.

� Connect the fourth pin to the VCC line on the breadboard.
� Connect the 3.3-volt power source to the VCC line on the

breadboard.

Fall 2017 CSC 498R: Internet of Things 32

dht.js: Connecting a Temperature and a Humidity Sensor

Fall 2017 CSC 498R: Internet of Things

1. Connect the first DHT22 pin to a ground
(GND) pin; for example, pin 39. Don’t
connect anything to the second pin

2. Connect the third pin to the GPIO 12 of
your Pi (pin 32) and place a 4.7K Ohm
resistor (yellow, violet, red, gold/silver)
33between the DH22 pin and the
connection to the pin of the Pi.

3. Connect this resistor to the VCC line on the
breadboard, the red line.

4. Connect the fourth pin to the VCC line on
the breadboard.

5. Connect the 3.3-volt power source to the
VCC line on the breadboard.

33

dht.js: Connecting a Temperature and a Humidity Sensor

Fall 2017 CSC 498R: Internet of Things

§ Because the DHT22 uses a special protocol, you’ll first
need to install an additional driver on the Pi called the
BCM 2835 C Library

$ tar zxvf bcm2835-1.50.tar.gz
$ cd bcm2835-1.50
$./configure
$ make
$ sudo make check
$ sudo make install

34

Fall 2017 CSC 498R: Internet of Things

dht.js: Connecting a Temperature and a Humidity Sensor

35

Node.js /Express
§ Node.js has the infrastructure to write a web server
� Receive HTTP requests, send response

§ Express: node package, middleware that makes it
easy to make a server
� Serve static assets: HTML, JS, CSS, PNG, …
� REST API
o Parse URLs, Route requests, render HTML templates, set MIME types

Fall 2017 CSC 498R: Internet of Things 36

Getting Started With Express
§ Install node
§ Install express generator & nodemon

npm install –g express-generator nodemon

§ Make an app
express .

§ Launch it
nodemon bin/www

Fall 2017 CSC 498R: Internet of Things 37

Hosting
§ Easy to run nodejs on laptop, but networking may make sharing difficult
§ PaaS like Heroku make it easy to deploy your service
� IaaS: machine/OS, amazon
� PaaS: machine/OS/Application Stack/Scaling, Heroku, azure, elastic beanstalk
� BaaS: No server programming required: db, Parse, Kinvey, xively

§ PaaS
� Get the program running locally, deploy to their server in the cloud
� Free, https, managed

echo node_modules > .gitignore
git init
git add .
git commit -m 'initial version'
heroku create tpi-iotn
git push heroku master

Fall 2017 CSC 498R: Internet of Things 38

Part II: IoT/WoT Data and Semantic

Fall 2017 CSC 498R: Internet of Things 39

Wireless Sensor (and Actuator)
Networks Revisited
§ Sensors (and in general “Things”) are increasingly

being connected with Web infrastructure.

§ This can be supported by embedded devices that
directly support IP and web-based connection (e.g.
6LowPAN and CoAp) or devices that are connected
via gateway components.
�Broadening the IoT to the concept of “Web of Things”

Fall 2017 CSC 498R: Internet of Things 40

Wireless Sensor (and Actuator)
Networks Revisited
§ Standards such as Sensor Web Enablement (SWE) are

widely being adopted in industry, government and
academia.

§ While such frameworks provide some interoperability,
semantic technologies are increasingly seen as key
enabler for integration of IoT data and broader Web
information systems.

Fall 2017 CSC 498R: Internet of Things 41

Sink
node Gateway

Core network
e.g. InternetGateway

End-user

Computer services

The networks typically run Low Power Devices and cconsist of one or
more sensors, could be different type of sensors (or actuators)

Operating
Systems?

Services?

Protocols?
Protocols?

In-node Data
Processing

Data
Aggregation/

Fusion

Inference/
Processing of

IoT data

Interoperable/
Machine-

interpretable
representations

Interoperable/
Machine-

interpretable
representations

“Web of Things”

Interoperable/
Machine-

interpretable
representations

Wireless Sensor (and Actuator) Networks
Fall 2017 CSC 498R: Internet of Things 42

Observation and Measurement Data-Annotation

Tags

Data formats

Location

Source: Cosm.com
Fall 2017 CSC 498R: Internet of Things 43

Observation and Measurement Data

value

Unit of
measurement

Time

Longitude

Latitude

How to make the data representations more machine-readable
and machine-interpretable;

15, C, 08:15, 51.243057, -0.589444

Fall 2017 CSC 498R: Internet of Things 44

Observation and Measurement Data

What about this?
<value>15</value>
<unit>C</unit>
<time>08:15</time>
<longitude>51.243057</longitude>
<latitude>-0.58944</latitude>

15, C, 08:15, 51.243057, -0.589444

value

Unit of
measurement

Time

Longitude

Latitude

Fall 2017 CSC 498R: Internet of Things 45

Extensible Markup Language (XML)
§ XML is a simple, flexible text format that is used for

data representation and annotation.
§ XML was originally designed for large-scale electronic

publishing.
§ XML plays a key role in the exchange of a wide variety

of data on the Web and elsewhere.
§ It is one of the most widely-used formats for sharing

structured information.

Fall 2017 CSC 498R: Internet of Things 46

XML Document Example

<?xml version="1.0"?>

<measurement>
<value>15</value>
<unit>C</unit>
<time>08:15</time>
<longitude>51.243057</longitude>
<latitude>-0.58944</latitude>

</measurement>

XML Prologue- the XML declaration

XML elements

XML documents
MUST be “well

formed”

Root element

Fall 2017 CSC 498R: Internet of Things 47

XML Document Example: Attributes
<?xml version="1.0“ encoding="ISO-8859-1"?>

<measurement>
<value type=“Decimal”>15</value>
<unit>C</unit>
<time>08:15</time>
<longitude>51.243057</longitude>
<latitude>-0.58944</latitude>

</measurement>

Fall 2017 CSC 498R: Internet of Things 48

Well Formed XML Documents
§ A "Well Formed" XML document has correct XML

syntax.
§ XML documents must have a root element
§ XML elements must have a closing tag
§ XML tags are case sensitive
§ XML elements must be properly nested
§ XML attribute values must be quoted

Source: W3C Schools, http://www.w3schools.com/Fall 2017 CSC 498R: Internet of Things 49

Validating XML Documents
§ A "Valid" XML document is a "Well Formed" XML

document, which conforms to the structure of the
document defined in an XML Schema.

§ XML Schema defines the structure and a list of
defined elements for an XML document.

Fall 2017 CSC 498R: Internet of Things 50

XML Schema- example
<xs:element name=“measurement">

<xs:complexType>
<xs:sequence>
<xs:element name=“value" type="xs:decimal"/>
<xs:element name=“unit" type="xs:string"/>
<xs:element name=“time" type="xs:time"/>
<xs:element name=“longitude" type="xs:double"/>

<xs:element name=“latitude" type="xs:double"/>
</xs:sequence>

</xs:complexType>

</xs:element>

- XML Schema defines the structure and elements
- An XML document then becomes an instantiation of the document defined by the

schema;

Fall 2017 CSC 498R: Internet of Things 51

XML Documents: Revisiting the Example
<?xml version="1.0"?>

<measurement>
<value>15</value>
<unit>C</unit>
<time>08:15</time>
<longitude>51.243057</longitude>
<latitude>-0.58944</latitude>

</measurement>

Fall 2017 CSC 498R: Internet of Things 52

XML: limitations for semantic markup
§ XML representation makes no commitment on:
�Domain specific ontological vocabulary
o Which words shall we use to describe a given set of concepts?

�Ontological modelling primitives
o How can we combine these concepts, e.g. “car is a-kind-of (subclass-of)

vehicle”

ð requires pre-arranged agreement on vocabulary and
primitives

Fall 2017 CSC 498R: Internet of Things 53

Semantic Web technologies
§ XML provide a metadata format.

§ It defines the elements but does not provide any
modelling primitive nor describes the meaningful
relations between different elements.

§ Using semantic technologies can help to solve some
of these issues.

Fall 2017 CSC 498R: Internet of Things 54

Semantic Web
Fall 2017 CSC 498R: Internet of Things

“An extension of the current web in which
information is given well-defined meaning,
better enabling computers and people to
work in co-operation.“ (Tim Berners-Lee
et al, 2001)

55

IoT data: semantic related issues
§ The current IoT data communications often rely on binary

or syntactic data models which lack of providing machine
interpretable meanings to the data.
� Syntactic representation or in some cases XML-based data
� Often no general agreement on annotating the data;
o requires a pre-agreement between different parties to be able to process and

interpret the data;
� Limited reasoning based on the content and context data
� Limited interoperability in data and resource/device description

level;
� Data integration and fusion issues.

Fall 2017 CSC 498R: Internet of Things 56

Requirements
§ Structured representation of concepts
�Machine-interpretable descriptions
� Reasoning and interpretation mechanisms

§ Access mechanism to heterogeneous resource
descriptions with diverse capabilities

§ Automated interactions and horizontal integration
with existing applications

Fall 2017 CSC 498R: Internet of Things 57

What are the challenges?
§ The models provide the basic description frameworks,

but alignment between different models and frameworks
are required.

§ Semantics are the starting point, reasoning and
interpretation of data is required for automated
processes.

§ Real interoperability happens when data/services from
different frameworks and providers can be interchanged
and used with minimised intervention.

Fall 2017 CSC 498R: Internet of Things 58

Possible solutions
§ The semantic Web has faced this problem earlier.
� Proposed solution: using machine-readable and machine-interpretable meta-data
o Important not: machine-interpretable but not machine-untreatable!
o Well defined standards and description frameworks: RDF, OWL, SPARQL
o Variety of open-source, commercial tools for creating/managing/querying and accessing semantic data

§ Jena, Sesame, Protégé, …

§ An Ontology defines conceptualisation of a domain.
� Terms and concepts
� A common vocabulary
� Relationships between the concepts

§ There are several existing and emerging ontologies in the IoT domain.
§ Automated annotation methods, dynamic semantics;

Fall 2017 CSC 498R: Internet of Things 59

How to adapt the solutions
§ Creating ontologies and defining data models are not enough
� tools to create and annotate data
� data handling components

§ Complex models and ontologies look good, but
� design lightweight versions for constrained environments
� think of practical issues
� make it as much as possible compatible and/or link it to the other existing ontologies

§ Domain knowledge and instances
� Common terms and vocabularies
o Location, unit of measurement, type, theme, …

§ Link it to other resource
§ In many cases, semantic annotations and semantic processing should be intermediary

not the end products.

Fall 2017 CSC 498R: Internet of Things 60

Resource Description Framework
A world Wide Web Consortium (W3C) recommendation

Relationships between documents

Consisting of triples or sentences:
◦ <subject, property, object>
◦ <“Sensor”, hasType, “Temperature”>
◦ <“Node01”, hasLocation, “Room_BA_01” >

RDFS extends RDF with standard “ontology vocabulary”:
◦ Class, Property
◦ Type, subClassOf
◦ domain, range

Fall 2017 CSC 498R: Internet of Things 61

RDF
Fall 2017 CSC 498R: Internet of Things

RDF is the most mature standard for describing
complex data and complex interrelationships for
semantic data that do not fit into traditional
relational database rows and columns or simple XML.
It is also the standard that allows for data exchange
of semantic graph databases that support contextual
and conceptual meaning.

62

RDF for semantic annotation
RDF provides metadata about resources

Object -> Attribute-> Value triples or

Object -> Property-> Subject

It can be represented in XML

The RDF triples form a graph

Fall 2017 CSC 498R: Internet of Things 63

xsd:decimal

Measurement

hasValue
hasTime

xsd:double

xsd:time

xsd:double

xsd:string

hasLongitude hasLatitude

hasUnit

RDF Graph
Fall 2017 CSC 498R: Internet of Things 64

15

Measurement#0
001

hasValue
hasTime

-0.589444

08:15

51.243057

C

hasLongitude hasLatitude

hasUnit

RDF Graph: An instance
Fall 2017 CSC 498R: Internet of Things 65

RDF/XML

<rdf:RDF>
<rdf:Description rdf:about=“Measurment#0001">
<hasValue>15</hasValue>
<hasUnit>C</hasUnit>
<hasTime>08:15</hasTime>
<hasLongitude>51.243057</hasLongitude>
<hasLatitude>-0.589444</hasLatitude>
</rdf:Description>

</rdf:RDF>

Fall 2017 CSC 498R: Internet of Things 66

xsd:decimal

Location

hasValue

hasTime

xsd:double

xsd:time

xsd:double

xsd:string

hasLongitude

hasLatitude
hasUnit

Measurement

hasLocation

More RDF
Fall 2017 CSC 498R: Internet of Things 67

15

Location
#0126

hasValue

hasTime

51.243057

08:15

-0.589444

C

hasLongitude

hasLatitude

hasUnit

Measurement#0
001

hasLocation

An instance of our model
Fall 2017 CSC 498R: Internet of Things 68

RDF: Basic Ideas
Resources
◦ Every resource has a URI (Universal Resource Identifier)
◦ A URI can be a URL (a web address) or a some other kind of identifier;
◦ An identifier does not necessarily enable access to a resources
◦ We can think of a resources as an object that we want to describe it.

◦ Car

◦ Person

◦ Places, etc.

Fall 2017 CSC 498R: Internet of Things 69

RDF: Basic Ideas
§ Properties
� Properties are special kind of resources;
� Properties describe relations between resources.
� For example: “hasLocation”, “hasType”, “hasID”, “sratTime”,

“deviceID”,.
� Properties in RDF are also identified by URIs.
� This provides a global, unique naming scheme.
� For example:
o “hasLocation” can be defined as:
§ URI: http://www.loanr.it/ontologies/DUL.owl#hasLocation

� SPARQL is a query language for the RDF data.
o SPARQL provide capabilities to query RDF graph patterns along with their conjunctions

and disjunctions.

Fall 2017 CSC 498R: Internet of Things 70

JSON
§ A subset of JavaScript, using its object literal notation

§ A lightweight data-interchange format
�Can be simply evaled in JavaScript, and parsed with little

effort in most other languages.

§ A popular alternative to XML

Fall 2017 CSC 498R: Internet of Things 71

Evaluation
§ JSON is simpler than XML and more compact
§ No closing tags, but if you compress XML and JSON the

difference is not so great
§ XML parsing is hard because of its complexity
§ JSON has a better fit for OO systems than XML, but not

as extensible
§ Preferred for simple data exchange by many
§ MongoDB is a very popular open-source ‘NoSQL’

database for JSON objects

Fall 2017 CSC 498R: Internet of Things 72

Example
{"firstName":	"John",

"lastName"	:	"Smith",

"age"										:	25,

"address"			:

{"streetAdr”	:	"21	2nd	Street",

"city"									:	"New	York",

"state"							:	"NY",

”zip"										:	"10021"},

"phoneNumber":

[{"type"		:	"home",

"number":	"212	555-1234"},

{"type"		:	"fax",

"number”	:	"646	555-4567"}]

}

• A	JSON	object	with	five	key-value	pairs

• Objects	are	wrapped	by	curly	braces

• There	are	no	object	IDs

• Keys	are	strings

• Values	are	numbers,	strings,	objects	or	

arrays

• Arrays	are	wrapped	by	square	brackets

Fall 2017 CSC 498R: Internet of Things 73

RDF/JSON

Fall 2017 CSC 498R: Internet of Things

A Specification for serializing RDF in JSON

74

RDF in JSON

Fall 2017 CSC 498R: Internet of Things

Flat Triples Approach

{
"data" : [
{"s" : { "type" : "uri" , "uri" : "http://example.org/about" } ,
"p" : "http://purl.org/dc/elements/1.1/creator",
"o" : { "type" : "literal", "val" : "Anna Wilder" }
},
{
"s" : { "type" : "uri" , "uri" : "http://example.org/about" } ,
"p" : "http://purl.org/dc/elements/1.1/title",
"o" : { "type" : "literal", "val" : "Anna's Homepage", "lang" :"en" }
}
]}

75

Fall 2017 CSC 498R: Internet of Things

Resource-oriented Approach

{
"@namespaces": {

"dc":"http://purl.org/dc/elements/1.1/",
"rss":"http://purl.org/rss/1.0/",
"georss":http://www.georss.org/georss/

},
"@type":"rss:channel",
"rss:items": [

{ "@type":"rss:item",
"rss:title":"A visit to Astoria",
"rss:description":"sample description",
"dc:coverage":{

"@id":"a0",
"dc:title":"Astoria, Oregon, US",
"georss:point":"46.18806-123.83“

}
},

]
}

The	'@id'	keyword	means	'This	value	is	an	
identifier	that	is	an	IRI'

76

JSON-LD: a W3C recommendation for
representing RDF data as JSON objects
{"@context": {

"name": "http://xmlns.com/foaf/0.1/name",
"homepage": {
"@id": "http://xmlns.com/foaf/0.1/workplaceHomepage",
"@type": "@id"

},
"Person": "http://xmlns.com/foaf/0.1/Person"

},
"@id": "http://me.markus-lanthaler.com",
"@type": "Person",
"name": "Markus Lanthaler",
"homepage": "http://www.tugraz.at/"

}

Fall 2017 CSC 498R: Internet of Things 77

{ "@context":

{

"name": "http://schema.org/name", % [1]

"image": {

"@id": "http://schema.org/image", % [2]

"@type": "@id" % [3]

},

"homepage": {

"@id": "http://schema.org/url", % [4]

"@type": "@id" % [5]

} } }

[1]	This	means	that	'name'	is	shorthand	for	'http://schema.org/name'	

[2]	This	means	that	'image'	is	shorthand	for	'http://schema.org/image'	

[3]	This	means	that	a	string	value	associated	with	'image'	should	be	interpreted	as	an	identifier	that	is	an	IRI	

[4]	This	means	that	'homepage'	is	shorthand	for	'http://schema.org/url'	

[5]	This	means	that	a	string	value	associated	with	'homepage'	should	be	interpreted	as	an	identifier	that	is	an	IRI	

Define	a	context

Fall 2017 CSC 498R: Internet of Things 78

Google looks for JSON-LD
§ Google looks for and uses some JSON-LD markup

(e.g., for organizations)
§ Put a JSON-LD object in the head of a web page

wrapped with script tags:

<script type="application/ld+json">
{...}
</script>

Fall 2017 CSC 498R: Internet of Things 79

Ontologies
§ The term ontology is originated from philosophy. In

that context it is used as the name of a subfield of
philosophy, namely, the study of the nature of
existence.

§ In the Semantic Web:
�An ontology is a formal specification of a domain; concepts

in a domain and relationships between the concepts (and
some logical restrictions).

Fall 2017 CSC 498R: Internet of Things 80

Ontologies and Semantic Web
§ In general, an ontology describes formally a domain of

discourse.
§ An ontology consists of a finite list of terms and the

relationships between the terms.
§ The terms denote important concepts (classes of objects)

of the domain.
§ For example, in a university setting, staff members,

students, courses, modules, lecture theatres, and schools
are some important concepts.

Fall 2017 CSC 498R: Internet of Things 81

Web Ontology Language (OWL)
§ RDF(S) is useful to describe the concepts and their

relationships, but does not solve all possible requirements
§ Complex applications may want more possibilities:
� similarity and/or differences of terms (properties or classes)
� construct classes, not just name them
� can a program reason about some terms? e.g.:
o each «Sensor» resource «A» has at least one «hasLocation»
o each «Sensor» resource «A» has maximum one ID

§ This lead to the development of Web Ontology Language or
OWL.

Fall 2017 CSC 498R: Internet of Things 82

OWL
§ OWL provide more concepts to express meaning and

semantics than XML and RDF(S)

§ OWL provides more constructs for stating logical
expressions such as: Equality, Property
Characteristics, Property Restrictions, Restricted
Cardinality, Class Intersection, Annotation Properties,
Versioning, etc.

Source: http://www.w3.org/TR/owl-features/
Fall 2017 CSC 498R: Internet of Things 83

Ontology engineering
§ An ontology: classes and properties (also referred to as

schema ontology)
§ Knowledge base: a set of individual instances of classes

and their relationships
§ Steps for developing an ontology:
� defining classes in the ontology and arranging the classes in a

taxonomic (subclass–superclass) hierarchy
� defining properties and describing allowed values and restriction

for these properties
� Adding instances and individuals

Fall 2017 CSC 498R: Internet of Things 84

Basic rules for designing ontologies
§ There is no one correct way to model a domain; there are

always possible alternatives.
� The best solution almost always depends on the application that

you have in mind and the required scope and details.

§ Ontology development is an iterative process.
� The ontologies provide a sharable and extensible form to

represent a domain model.

§ Concepts that you choose in an ontology should be close
to physical or logical objects and relationships in your
domain of interest (using meaningful nouns and verbs).

Fall 2017 CSC 498R: Internet of Things 85

A simple methodology
1. Determine the domain and scope of the model that you want to design your

ontology.
2. Consider reusing existing concepts/ontologies; this will help to increase the

interoperability of your ontology.
3. Enumerate important terms in the ontology; this will determine what are the

key concepts that need to be defined in an ontology.
4. Define the classes and the class hierarchy; decide on the classes and the

parent/child relationships.
5. Define the properties of classes; define the properties that relate the classes.
6. Define features of the properties; if you are going to add restriction or other

OWL type restrictions/logical expressions.
7. Define/add instances.

Fall 2017 CSC 498R: Internet of Things 86

Semantic technologies in the IoT
§ Applying semantic technologies to the IoT can

support:
� Interoperability
� effective data access and integration
� resource discovery
� reasoning and processing of data
� information extraction (for automated decision making and

management)

Fall 2017 CSC 498R: Internet of Things 87

Data/Service description frameworks
§ There are standards such as Sensor Web Enablement

(SWE) set developed by the Open Geospatial
Consortium that are widely being adopted in industry,
government and academia.

§ While such frameworks provide some interoperability,
semantic technologies are increasingly seen as key
enabler for integration of IoT data and broader Web
information systems.

Fall 2017 CSC 498R: Internet of Things 88

Sensor Markup Language (SensorML)
§ The Sensor Model Language Encoding (SensorML)

defines models and XML encoding to represent the
geometric, dynamic, and observational characteristics
of sensors and sensor systems.

Fall 2017 CSC 498R: Internet of Things 89

Using semantics
§ Find all available resources (which can provide data) and data

related to �Room A� (which is an object in the linked data)?
�What is �Room A�? What is its location?à returns �location�

data
�What type of data is available for �Room A� or that �location�?

(sensor types)

§ Predefined Rules can be applied based on available data
� (TempRoom_A > 80°C) AND (SmokeDetectedRoom_A position==TRUE)
à FireEventRoom_A

Fall 2017 CSC 498R: Internet of Things 90

Semantic modelling
§ Lightweight: experiences show that a lightweight ontology

model that well balances expressiveness and inference
complexity is more likely to be widely adopted and reused; also
large number of IoT resources and huge amount of data need
efficient processing

§ Compatibility: an ontology needs to be consistent with those
well designed, existing ontologies to ensure compatibility
wherever possible.

§ Modularity: modular approach to facilitate ontology evolution,
extension and integration with external ontologies.

Fall 2017 CSC 498R: Internet of Things 91

What SSN does not model
§ Sensor types and models

§ Networks: communication, topology

§ Representation of data and units of measurement

§ Location, mobility or other dynamic behaviours

§ Control and actuation

§ ….

Fall 2017 CSC 498R: Internet of Things 92

WebRTC
Fall 2017 CSC 498R: Internet of Things 93

WebRTC
§ Media stack: audio & video

§ Real time communication
�Audio, video, data

§ Peer-to-peer

§ Accessible from browser: easy & available

Fall 2017 CSC 498R: Internet of Things 94

Demo
http://simplewebrtc.com/demo.html?cs144r

Fall 2017 CSC 498R: Internet of Things 95

WebRTC & IoT
§ How could it be used in your project?
� IoT connects to physical world through sensors
�Audio/Video
� Peer to Peer

Fall 2017 CSC 498R: Internet of Things 96

Where Did WebRTC Come From?
§ 5/2011: Google open sourced WebRTC, using

audio/video streaming technology from $70M
acquisition of Global IP Solutions

§ ‘Make the browser the home for innovation in real
time communications’

§ Real-time audio video relied on proprietary
technology and plugins
� Skype (acquired by Msft for $8.5B 5/11)

Fall 2017 CSC 498R: Internet of Things 97

Reach
§ Browser
�Chrome, Firefox, Opera
�Not IE, Safari

§ App
� SDK for iOS & Android native apps
�Windows/linux/mac in JS with Node-webkit

Fall 2017 CSC 498R: Internet of Things 98

API
§ Set up peer connection
� RTCPeerConnection

§ Access local camera/audio
� getUserMedia

§ Add data channel
� RTCDataChannel

Fall 2017 CSC 498R: Internet of Things 99

Media Stack

Fall 2017 CSC 498R: Internet of Things 100

Demo: Connect Camera to Local
Browser Video Display
§ http://www.simpl.info/getusermedia/

Camera MediaStream Video

Fall 2017 CSC 498R: Internet of Things 101

Demo: Process Camera Data
§ http://idevelop.ro/ascii-camera/

Camera MediaStream Video Canvas

Da
ta

Fall 2017 CSC 498R: Internet of Things 102

Demo: Process Camera Data2
§ http://shinydemos.com/facekat/

Camera MediaStream Video Canvas

Object	Recognition

Fall 2017 CSC 498R: Internet of Things 103

Connecting Clients

Fall 2017 CSC 498R: Internet of Things 104

Signaling
§ Session control messages: to initialize or close

communication and report errors.

§ Network configuration: to the outside world, what's
my computer's IP address and port?

§ Media capabilities: what codecs and resolutions can
be handled by my browser and the browser it wants
to communicate with?

Fall 2017 CSC 498R: Internet of Things 105

Peer to Peer

Fall 2017 CSC 498R: Internet of Things 106

NAT: STUN/TURN/ICE

STUN TURN

ICE

STUN:	86%
TURN:	14%

Fall 2017 CSC 498R: Internet of Things 107

WebRTC Protocol Stack

Real	Time Peer	to	Peer Secure

Fall 2017 CSC 498R: Internet of Things 108

Video Example
§ http://www.simpl.info/rtcpeerconnection/index.html

Fall 2017 CSC 498R: Internet of Things 109

Data
§ Demo: http://www.simpl.info/rtcdatachannel/

Fall 2017 CSC 498R: Internet of Things 110

Summary
§ Webrtc
� Real time, secure, peer to peer communication
�Audio, video, data
�Open source. Browser. iOS & Android native. Desktop

Fall 2017 CSC 498R: Internet of Things 111

References
§ WebRTC
� Examples:
o http://simpl.info/
o http://simplewebrtc.com/

�Overview:
http://www.html5rocks.com/en/tutorials/webrtc/basics/

� Free book: High Performance Browser Networking, Ilya
Grigorik

Fall 2017 CSC 498R: Internet of Things 112

Discussion
§ Serendipity

§ NabuBU

§ SEMA

§ Clothes closet

§ SmartSwitch

§ Miho

§ Beagle-Badger

§ Running App

§ Headphone interrupt

§ Horton

§ Baby Monitor

§ Traffic control

§ WeighTrackr

Fall 2017 CSC 498R: Internet of Things 113

Part III: The Web of Things Architecture

Fall 2017 CSC 498R: Internet of Things 114

The Web of Things Architecture

Fall 2017 CSC 498R: Internet of Things 115

Fall 2017 CSC 498R: Internet of Things 116

Web API for Things: 5 Steps Design
Process
§ Integration strategy
� Choose a pattern to integrate Things to the internet and the web.

§ Resource design
� Identify the functionality or services of a Thing, and organize the hierarchy of these

services.

§ Representation design
� Decide which representations will be served for each resource.

§ Interface design
� Decide which commands are possible for each service, along with which error codes.

§ Resource linking design
� Decide how the different resources are linked to each other.

Fall 2017 CSC 498R: Internet of Things 117

Integration Strategy

Fall 2017 CSC 498R: Internet of Things 118

But: Not all devices can speak Web!

Fall 2017 CSC 498R: Internet of Things 119

Integration via Gateway

Fall 2017 CSC 498R: Internet of Things 120

The Cloud as a Gateway

Fall 2017 CSC 498R: Internet of Things 121

Example: EVRYTHNG [cloud solution] Smart Products Platform

Fall 2017 CSC 498R: Internet of Things 122

Resources, Representations and Links

Fall 2017 CSC 498R: Internet of Things 123

Beyond HTTP: Websockets for Event
Driven Communication

Fall 2017 CSC 498R: Internet of Things 124

WebSocket Client

Fall 2017 CSC 498R: Internet of Things

function subscribeToWs(url, msg) {
var socket = new WebSocket(url);
socket.onmessage = function (event) {

console.log(event.data);
};
socket.onerror = function (error) {

console.log('An error occurred while trying to connect to a Websocket!’);
console.log(error);

};
socket.onopen = function (event) {

if (msg) {
socket.send(msg);

}
};

}
//subscribeToWs('ws://localhost:8484/pi/sensors/temperature');

125

WoT Architecture: Find

Fall 2017 CSC 498R: Internet of Things 126

Three Challenges in IoT Findability

Fall 2017 CSC 498R: Internet of Things 127

Web Thing Model & Semantic Web

Fall 2017 CSC 498R: Internet of Things 128

Web Thing Model Resources

Fall 2017 CSC 498R: Internet of Things 129

Say Hi to the Semantic Web (of Things!)

Fall 2017 CSC 498R: Internet of Things 130

WoT Architecture: Share and Secure

Fall 2017 CSC 498R: Internet of Things 131

Securing Things
§ The most dangerous thing about Web Things is to bring

them to the Web!
§ Problem 1:
� Web Encryption

§ Problem 2:
� TLS (SSL) certificates

§ Problem 3:
� API keys (oAuth)
� Authorization header
� Token query param

Fall 2017 CSC 498R: Internet of Things 132

Securing Things (over simplified)

Fall 2017 CSC 498R: Internet of Things 133

Sharing Things: Social Web of Things

Fall 2017 CSC 498R: Internet of Things 134

WoT Architecture: Compose

Fall 2017 CSC 498R: Internet of Things 135

Node-RED
§ Mashup tool for makers

§ Box and wires

§ Wire your prototypes

§ Large community support
�Nodes
� E.g., https://flows.nodered.org/node/node-red-contrib-

evrythng

Fall 2017 CSC 498R: Internet of Things 136

Node-RED

Fall 2017 CSC 498R: Internet of Things 137

IFTTT: Solid Mashups for the Masses

Fall 2017 CSC 498R: Internet of Things

§ https://ifttt.com/recipes

§ IOS notifications

§ Text

§ Mail

§ Facebook

§ Lights

138

Slide References

Fall 2017 CSC 498R: Internet of Things

http://book.webofthings.io

139

