
CSC 498R: Internet of Things
Lecture 06: IoT Application Layer, Integration Patterns, REST, and
CoAp

Instructor: Haidar M. Harmanani

Fal l 2017

Topics
§ Two of the most promising protocols for small

devices:
�Constrained Application Protocol (CoAP)
�Message Queuing Telemetry Transport (MQTT)

CSC 498R: Internet of Things 2Fall 2017

Internet Protocol Suite

HTTP, Websockets, DNS, XMPP, MQTT, CoAp Application layer

TLS, SSL Application Layer (Encryption)
TCP, UDP Transport
IP(V4, V6), 6LowPAN Internet Layer
Ethernet, 802.11 WiFi, 802.15.4 Link Layer

Principles: Layering, modularity, separation of concerns
Each layer focuses on a particular set of concerns and
abstracts these concerns from the layer above.

Fall 2017 CSC 498R: Internet of Things 3

We are here!

Where are we?

Fall 2017 CSC 498R: Internet of Things 4

CoAP: Background
§ GOAL: to enable web-based services in constrained

wireless networks
� 8 bit micro-controllers
� limited memory
� low-power networks

§ Problem: Web solutions are hardly applicable
� Redesign web-based services for constrained networks!

Fall 2017 CSC 498R: Internet of Things 5

How Does the Web Work?
§ Resources in the Web are:
�Managed by servers
� Identified by URIs
�Accessed synchronously by clients through request/response

paradigms

§ Is not that we call Representational State Transfer
(REST)?

Fall 2017 CSC 498R: Internet of Things 6

RESTful means …
§ REpresentational State Transfer is a software architectural style

for Web client-server
§ Resources are represented as URL:
� “example.com/profile/johnny”
� “example.com/domain/sensor3/temp1“

§ REST makes information available as resources that are
identified by URIs.

§ Resources can be retrieved and manipulated using VERBS:
� GET, POST, PUT, DELETE

Fall 2017 CSC 498R: Internet of Things 7

CoAp is based on REST

Fall 2017 8

• CoAP provides a request/response RESTful interaction like
HTTP.

• Smaller messages than HTTP and with very low overhead.
• BLE nodes, for example, have limited memory and storage.
• Sensors and actuators on BLE nodes are simply CoAP REST

resources.
• For example, to obtain a current temperature, send a GET

request.
• To turn on/off or toggle LEDs we use PUT requests.

CSC 498R: Internet of Things

Difference Between URL and URI

Fall 2017 CSC 498R: Internet of Things 9

Difference Between URL and URI
Fall 2017 CSC 498R: Internet of Things 10

Tim Berners-Lee, et. al. in rfc 3986: uniform resource
identifier (uri): generic syntax:

A Uniform Resource Identifier (URI) is a compact sequence of
characters that identifies an abstract or physical resource.
A URI can be further classified as a locator, a name, or both. The
term “Uniform Resource Locator” (URL) refers to the subset of URIs
that, in addition to identifying a resource, provide a means of
locating the resource by describing its primary access mechanism (e.g.,
its network “location”).

URL Resolution

Fall 2017 CSC 498R: Internet of Things 11

Request/Response Transaction

Fall 2017 CSC 498R: Internet of Things 12

Back to Our Initial Problem…
§ GOAL: to enable web-based services in constrained

wireless networks
� 8 bit micro-controllers
� limited memory
� low-power networks

§ Problem: Web solutions are hardly applicable
� Redesign web-based services for constrained networks!

Fall 2017 CSC 498R: Internet of Things 13

Recall the typical HTTP Interaction
§ Connection oriented and synchronous
§ TCP 3 way handshake with server
�HTTP GET /kitchen/light
�HTTP response with headers and {“setting” : “dim” }
� TCP 2 way termination

§ Too much work for simple IoT applications
§ CoAP is not a general replacement for HTTP
§ CoAP does not support all features of HTTP

Fall 2017 14CSC 498R: Internet of Things

CoAP at a Glance
§ A key IoT standard
§ Open IETF standard since June 2014
§ Application level protocol over UDP or SMS on cellular networks
§ Designed to be used with constrained nodes and lossy networks
§ Designed for M2M applications, such as home and infrastructure

monitoring
§ Built-in resource discovery and observation (“push notification”)
§ Block-wise transfer

Fall 2017 CSC 498R: Internet of Things 15

CoAP At a Glance
§ Based on web standards, easily integrates with HTTP.
� Not simply a compressed version of HTTP.

§ Some built-in reliability
§ May run over 6LoWPan
§ Use on low power, low bandwidth, lossy networks
§ DTLS for security
§ Asynchronous subscriptions and notifications over UDP
§ Built-in resource discovery

Fall 2017 CSC 498R: Internet of Things 16

CoAP At a Glance
§ RESTful for easy interfacing with HTTP

§ Peer to peer or client server and multi-cast requests

§ Low overhead and simple

§ Should fit into a single UDP packet or IEEE 802.15.4
frame

§ Uses compression techniques

Fall 2017 CSC 498R: Internet of Things 17

CoAP Protocol Stack and Interactions

C. Bormann, A. P. Castellani, Z. Shelby, "CoAP: An Application Protocol for Billions of Tiny Internet
Nodes," IEEE Internet Computing, vol. 16, no. 2, pp. 62-67, Feb. 2012, doi:10.1109/MIC.2012.29

Fall 2017 CSC 498R: Internet of Things 18

CoAP Design Requirements

Fall 2017 CSC 498R: Internet of Things 19

CoAP Versus HTTP
§ CoAP is a subset of HTTP functionality re-designed for low power

embedded devices such as sensors (for IoT and M2M), occasionally
sleeping devices
� Why sleep?

§ Why not HTTP?
� TCP overhead is too high and its flow control is not appropriate for short-

lived transactions.
� UDP has lower overhead and supports multicast
� HTTP transactions are around 10 times higher than CoAP transaction bytes

due to 6LoWPAN and CoAP header compression
� CoAP packet can be sent in single IEEE802.15.4 frame without fragmentation.
� Less bytes è lower power consumption and longer lifetime for CoAP.

Fall 2017 CSC 498R: Internet of Things 20

CoAP Versus HTTP

Fall 2017 CSC 498R: Internet of Things 21

An experimental CoAP power consumption evaluation
shows a major improvement in power savings (see
Integrating Wireless Sensor Networks with the Web by
Colitto et al.)

CoAP Messaging Basics
§ Transport
� (mainly) UDP binding

§ All CoAP messages include:
� A four-byte fixed length header followed by, depending upon the

message type:
o An optional header portion
o Payload

§ Each message includes a 16-bit message ID used to link
requests to their accompanying acknowledgements
(ACK) or error statuses where applicable.

Fall 2017 CSC 498R: Internet of Things 22

CoAP Messaging Basics
§ Message Exchange between Endpoints
� Reliable exchange through Confirmable Messages which

must be acknowledged (through ACK or Reset
Messages).Simple Stop-and-Wait retransmission with
exponential back-off.

�Unreliable exchange through Non-Confirmable Message
�Duplicate detection for both confirmable and non-

confirmable messages (through message ID)

Fall 2017 CSC 498R: Internet of Things 23

Direct Integration Pattern
§ Some Things have full internet access.
� These Things may provide an HTTP server running over TCP/IP and can directly connect to

the internet – using, say, WiFi or Ethernet or cellular. Rasberry-Pi’s and Photon’s are examples.
These may be used to implement a Direct Integration Pattern – REST on devices.

§ Typical use cases
� The Thing is not battery powered and communicates with low latency to a local device like a

phone.

§ Example: Use a phone to communicate via WiFi (with WiFi router) to an HTTP server
on a device. Use web sockets for publish/subscribe, e.g., phone listens for doorbell
events.

CSC 498R: Internet of Things 24

Thing running an HTPP
server providing a REST
style interface.

Client

Fall 2017

Gateway Integration Pattern
§ Some Things do not have full internet access. These

Things may support only Zigbee or Bluetooth or 802.15.4.
We are not sending IP packets to these devices – they are
constrained. This is the Gateway Integration Pattern.

25

Thing providing access via
non-web protocol.

Gateway providing
full REST API

Client

Fall 2017 CSC 498R: Internet of Things

Cloud Integration Pattern
§ Some Things have access to the cloud and need powerful and

scalable cloud support. This is the Cloud Integration Pattern.

26

May	or	may	not	use	web	protocols
but	is	able	to	communicate	with
a	gateway	in	the	cloud.

Gateway	providing
full	REST	API

Client

Cloud	resource

Fall 2017 CSC 498R: Internet of Things

27

From an add from AirVantage

27Fall 2017 CSC 498R: Internet of Things

CoAP: Example 1

Client

GET/temperature,
Room A

Server

200 OK
Txt/plain
79, Fahrenheit

Fall 2017 CSC 498R: Internet of Things 28

CoAP Messaging Basics [See rfc7252]

Fall 2017 CSC 498R: Internet of Things 29

CoAP Messaging Basics

Fall 2017 CSC 498R: Internet of Things 30

CoAP Messaging Basics

Fall 2017 CSC 498R: Internet of Things 31

Piggybacking

CoAP

Fall 2017 CSC 498R: Internet of Things 32

CoAP Request/Response Layer
§ Responsible for transmission of requests and

responses
§ This is where REST-based communication occurs:
� REST requests are piggybacked on Confirmable or Non-
confirmable message.

� REST responses are piggybacked on the related
Acknowledgement message.

§ CoAP uses tokens to match request/response in
asynchronous communications.

Fall 2017 CSC 498R: Internet of Things 33

Message Header (4 bytes)

Fall 2017 CSC 498R: Internet of Things 34

CoAP Request/Response Layer

Fall 2017 CSC 498R: Internet of Things 35

4.04 Not Found

A GET Request with Separate Response

Fall 2017 CSC 498R: Internet of Things 36

A Request and a Response Carried in
Non-confirmableMessages

Fall 2017 CSC 498R: Internet of Things 37

CoAP Transaction Layer
§ Handles single message exchange between end points.
§ Four message types:
� Confirmable
o Must be acknowledged by the receiver with an ACK packet
� Non-confirmable [fire and forget]
o No ACK needed.
� Acknowledgement
o ACKs a Confirmable.
� Reset
o Indicates a Confirmable message has been received but context is missing for

processing
o This condition is usually caused when the receiving node has rebooted and has

forgotten some state that would be required to interpret the message.

Fall 2017 CSC 498R: Internet of Things 38

CoAP Reliability
§ CoAP provides reliability without using TCP as

transport protocol.

§ CoAP enables asynchronous communication
� For example, when CoAP server receives a request which it

cannot handle immediately, it first ACKs the reception of the
message and sends back the response in an off-line fashion

� The transaction layer also supports multicast and congestion
control.

Fall 2017 CSC 498R: Internet of Things 39

Option Format

Fall 2017 CSC 498R: Internet of Things 40

Dealing with Packet Loss

§ Stop and Wait approach
§ Repeat a request after a time-out in case ACK (or RST) is not coming

back

Fall 2017 CSC 498R: Internet of Things 41

Back-Off Details
§ Initial time-out set to
� Rand [ACK_TIMEOUT, ACK_TIMEOUT * ACK_RANDOM_FACTOR]

§ When time-out expires and the transmission counter is less than
MAX_RETRANSMIT
� retransmit
� Increase transmission counter
� double the time-out value

§ The procedure is repeated until
� A ACK is received
� A RST message is received
� the transmission counter exceeds MAX_RETRANSMIT
� the total attempt duration exceeds MAX_TRANSMIT_WAIT (93s)

Fall 2017 CSC 498R: Internet of Things 42

COAP Observation
§ PROBLEM:
� REST paradigm is often ``PULL” type, that is, data is

obtained by issuing an explicit request
� Information/data in WSN is often periodic/triggered (e.g.,

get me a temperature sample every 2 seconds or get me a
warning if temperature goes below 5°C)

§ SOLUTION
�Use Observation on COAP resources

Fall 2017 CSC 498R: Internet of Things 43

CoAP Efficiency
§ Recall that CoAP design goals is to have small message

overhead and limited fragmentation.
§ CoAP uses compact fixed-length 4-byte binary header followed

by compact binary options.
§ Typical request with all encapsulation has a 10-20 byte header.
§ CoAP implements an observation relationship whereby an

``observer” client registers itself using a modified GET to the
server.

§ When resource (object) changes state, server notifies the
observer.

Fall 2017 CSC 498R: Internet of Things 44

Observation

Fall 2017 CSC 498R: Internet of Things 45

client makes a request to
server with the OBSERVE
option in the header set to
0

This indicates a registration
request (value must be 0).

CoAP Resource Discovery
§ Not the same as service discovery. Service discovery is at a lower level. We don’t even

know if services are available or how they communicate.
§ We might register a printer, for example, with a discovery service and find it later on

the fly.
§ With resource discovery, we know we are looking for web resources.
§ Links are returned. HATEOAS.
§ Links may include a rel attribute.
§ A well known resource is used to discover other resources.
§ Perform a GET on the well known resource. Returned content is a list

of links with REL attributes.
• Resource directories may be used to register services. Registrations are simply POSTs

with links. PUTs are used for updates. GETs for discovery.

CS
C

49
8R

: I
nt

er
ne

t o
f T

hi
ng

s

46
Fall 2017

Getting Started with CoAP
§ Open source implementations:
� Java CoAP LibraryCalifornium
� C CoAP LibraryErbium
� libCoAPC Library
� jCoAPJava Library
� OpenCoAPC Library
� TinyOS and Contiki include CoAP support

§ Firefox has a CoAPplugin called Copper
§ Wireshark has CoAP plugin

Fall 2017 CSC 498R: Internet of Things 47

Internet Protocol Suite

HTTP, Websockets, DNS, XMPP, MQTT, CoAp Application layer

TLS, SSL Application Layer (Encryption)
TCP, UDP Transport
IP(V4, V6), 6LowPAN Internet Layer
Ethernet, 802.11 WiFi, 802.15.4 Link Layer

Principles: Layering, modularity, separation of concerns
Each layer focuses on a particular set of concerns and
abstracts these concerns from the layer above.

Fall 2017 CSC 498R: Internet of Things 48

We are still here!

Background: Publish/Subscribe
§ Achieved by publish/subscribe paradigm
� Idea: Entities can publish data under certain names
� Entities can subscribe to updates of such named data

§ Conceptually: Implemented by a software bus
� Software bus stores subscriptions, published data; names used as filters; subscribers notified

when values of named data changes

Software bus

Publisher 1 Publisher 2

Subscriber 1 Subscriber 2 Subscriber 3

− Variations
− Topic-based P/S –

inflexible
− Content-based P/S –

use general
predicates over
named data

Source: Holger Karl, Andreas Willig, Protocols and Architectures for Wireless Sensor Networks, Protocols and Architectures for Wireless Sensor Networks, chapter 12, Wiley, 2005
. Fall 2017 CSC 498R: Internet of Things 49

Message Queue Telemetry Transport
(MQQT)
§ A light-weight, open and scalable protocol for the

Internet of Things
�An ISO standard publish-subscribe-based messaging

protocol for use on top of the TCP/IP protocol
�Designed for connections with remote locations where a

"small code footprint" is required or the network bandwidth
is limited

�A variation of the main protocol aimed at embedded
devices on non-TCP/IP networks, such as ZigBee

Fall 2017 CSC 498R: Internet of Things 50

MQTT Pub/Sub Protocol
§ MQ Telemetry Transport (MQTT) is a lightweight broker-based

publish/subscribe messaging protocol.
§ MQTT is designed to be open, simple, lightweight and easy to

implement.
� These characteristics make MQTT ideal for use in constrained environments,

for example in IoT.
o Where the network is expensive, has low bandwidth or is unreliable
o When run on an embedded device with limited processor or memory resources;

§ A small transport overhead (the fixed-length header is just 2 bytes),
and protocol exchanges minimized to reduce network traffic

§ MQTT was developed by Andy Stanford-Clark of IBM, and Arlen
Nipper of Cirrus Link Solutions.

Source: MQTT V3.1 Protocol Specification, IBM, http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.htmlFall 2017 CSC 498R: Internet of Things 51

MQTT
§ It supports publish/subscribe message pattern to provide one-to-many

message distribution and decoupling of applications
§ A messaging transport that is agnostic to the content of the payload
§ The use of TCP/IP to provide basic network connectivity
§ Three qualities of service for message delivery:
� "At most once", where messages are delivered according to the best efforts of the

underlying TCP/IP network. Message loss or duplication can occur.
o This level could be used, for example, with ambient sensor data where it does not matter if an individual

reading is lost as the next one will be published soon after.
� "At least once", where messages are assured to arrive but duplicates may occur.
� "Exactly once", where message are assured to arrive exactly once. This level could

be used, for example, with billing systems where duplicate or lost messages could
lead to incorrect charges being applied.

Source: MQTT V3.1 Protocol Specification, IBM, http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.htmlFall 2017 CSC 498R: Internet of Things 52

MQTT Message Format
§ The message header for each MQTT command message contains a fixed header.
§ Some messages also require a variable header and a payload.
§ The format for each part of the message header:

Source: MQTT V3.1 Protocol Specification, IBM, http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html

— DUP: Duplicate delivery
— QoS: Quality of Service
— RETAIN: RETAIN flag

—This flag is only used on PUBLISH messages. When a client sends a
PUBLISH to a server, if the Retain flag is set (1), the server should hold on
to the message after it has been delivered to the current subscribers.
—This allows new subscribers to instantly receive data with the retained,
or Last Known Good, value.

Fall 2017 CSC 498R: Internet of Things 53

Fall 2017 CSC 498R: Internet of Things 54

Fall 2017 CSC 498R: Internet of Things 55

Fall 2017 CSC 498R: Internet of Things 56

Sensor Readings with pub/sub
Decoupled in space and time.
The clients do not need each other’s
IP address and port (space) and
They do not need to be running at
the same time (time).

The broker’s IP and port must be
known by clients.

Namespace hierarchy used for
topic filtering.

It may be the case that a published
message is never consumed by any
subscriber.From

Fall 2017 CSC 498R: Internet of Things 57

Actuators too!

In the picture, replace the laptop with an
actuator, subscribing to a command topic,
say, device3/commands. Replace the sensor
with a browser ending commands to
device3/commands.

actuator

subscribe

commands
browser

publish

If my toaster is a command subscriber,
I can control it over the web!

Fall 2017 CSC 498R: Internet of Things 58

From: Enterprise Integration Patterns Book
Hohpe and Woolf

Fall 2017 CSC 498R: Internet of Things 59

MQTT
§ Message Queuing Telemetry Transport (old acronym)

since the 1990’s
� “Telemetry” is from the Greek remote measure

§ Created by Andy Stanford-Clark (IBM) and Alan Nipper -
now part of OASIS

§ Version 3.1 released royalty free in 2010 (IBM)
§ Originally built for oil pipeline monitoring over satellite

connections.
§ Satellites appropriate because pipelines are remote

Fall 2017 CSC 498R: Internet of Things 60

MQTT
§ Built for a proprietary embedded system now shifting to

IoT
§ You can send anything as a message, up to 256 MB.
§ Built for unreliable networks
§ Enterprise scale implementations down to hobby

projects
§ Decouples readers and writers
§ Message have a topic, quality of service and retain status

associated with them.

Fall 2017 CSC 498R: Internet of Things 61

MQTT
§ MQTT Runs over TCP or TLS.
§ May use Websockets from within a browser.
§ MQTT–SN uses UDP packets or serial communication rather than TCP
§ MQTT-SN may run over Bluetooth Low Energy (BLE).
§ Open, industry agnostic, no polling. What does it mean to be open?
§ Hierarchical topic namespace and subscriptions with wildcards. MQTT-SN has simpler

topics.
§ As soon as you subscribe you may receive the most recently published message. One

message per topic may be retained by the broker.
§ This feature provides for devices that transmit messages only on occasion. A newly

connected subscriber does not need to wait. Instead, it receives the most recent
message.

Fall 2017 CSC 498R: Internet of Things 62

MQTT Last Will and Testament
§ Publishing clients may connect with a last will and testament

message.
§ If publishing client has no data to send, it sends ping requests to the

broker to inform the broker that it is still alive.
§ If a publisher disconnects in a faulty manner (the broker will miss the

ping requests), the broker tells all subscribers the last will and
testament. This is for an ungraceful disconnect. How could this
happen? Battery failure, network down, out of reach, etc.

§ In the case of graceful disconnect, the publisher sends a
DISCONNECT message to the broker – the broker will discard the
LWT message.

Fall 2017 CSC 498R: Internet of Things 63

MQTT Clients
§ A client may publish or subscribe or do both.
§ An MQTT client is any device from a micro controller up to a full

fledged server, that has an MQTT library running and is
connecting to an MQTT broker over any kind of network. (from
HiveMQ MQTT Essentials)

§ A client is any device that has a TCP/IP stack and speaks MQTT.
MQTT-SN does not require TCP.

§ Client libraries widely available (Android, Arduino, iOS, Java,
Javascript, etc.)

§ No client is connected directly to any other client

Fall 2017 CSC 498R: Internet of Things 64

MQTT Broker
§ The broker is primarily responsible for receiving all

messages, filtering them, decide who is interested in it
and then sending the message to all subscribed clients.
(From HiveMQ MQTT Essentials)

§ May authenticate and authorize clients.
§ Maintains sessions and missed messages
§ Maintains a hierarchical namespace for topics and allows

subscribers (but not publishers) to use wildcards (+ and
#).

Fall 2017 CSC 498R: Internet of Things 65

Topics are organized into a
Hierarchical namespace

Suppose a client publishes to mm6House/Kitchen/Sensor/Temperature
Another client might subscribe to:

mm6House/Kitchen/Sensor/Temperature
Or, using a single level wildcard (+)

mm6House/Kitchen/+/Temperature // All children of Kitchen that
// have a child called

Temperature
Or, using a multi level wildcard (#)

mm6House/Kitchen/# // Goes deep
•The # must be the last character.
•To see every message, subscribe to #

Fall 2017 CSC 498R: Internet of Things 66

MQTT Qualities of Service (QoS)
§ QoS defines how hard the two parties will work to ensure that messages

arrive.
§ Qualities of service: once and only once, at least once, at most once – fire and

forget. These qualities of service exist between the client and a broker. More
quality implies more resources.

§ From publishing client to broker, use the QoS in the message sent by the
publishing client.

§ From broker to subscribing client, use the QoS established by the client’s
original subscription. A QoS may be downgraded if the subscribing client has
a lower QoS than a publishing client.

§ If a client has a subscription and the client disconnects, if the subscription is
durable it will be available on reconnect.

Fall 2017 CSC 498R: Internet of Things 67

MQTT Qualities of service (QoS 0)

§ From HiveMQ
� QoS 0 implies at most once
� Fire and forget. No acknowledgement from the broker. No client

storage or redelivery. Still uses TCP below the scenes.
� Use QoS 0 when you have a stable connection and do not mind losing

an occasional packet. You are more interested in performance than
reliability.

Fall 2017 CSC 498R: Internet of Things 68

MQTT Qualities of service (QoS 1)

§ From HiveMQ
� QoS 1 implies at least once
� Client will perform retries if no acknowledgement from the

broker.
� Use QoS 1 when you cannot lose an occasional message and can

tolerate duplicate messages arriving at the broker. And you do
not want the performance hit associated with QoS 2.

Fall 2017 CSC 498R: Internet of Things 69

MQTT Qualities of service (QoS 2)

§ From HiveMQ
§ QoS 2 implies exactly once
§ Client will save and retry and server will discard duplicates.
§ Use this if it is critical that every message be received once and you do not mind the

drop in performance.
§ QoS 1 and QoS 2 messages will also be queued for offline subscribers - until they

become available again. This happens only for clients requesting persistent
connections when subscribing.

PUBREC	=	publish	received
PUBREL	=	publish	released
PUBCOMP	=	publish	complete

Fall 2017 CSC 498R: Internet of Things 70

MQTT From OASIS

§ MQTT is being used in sensors communicating to a
broker via satellite links, Supervisory Control and Data
Acquisition (SCADA), over occasional dial-up connections
with healthcare providers (medical devices), and in a
range of home automation and small device scenarios.
MQTT is also ideal for mobile applications because of its
small size, minimized data packets, and efficient
distribution of information to one or many receivers
(subscribers).

Fall 2017 CSC 498R: Internet of Things 71

MQTT from Oracle (a drone
application)

MQTT

MD

#1 #2

Fall 2017 CSC 498R: Internet of Things 72

MQTT From IBM

§ The IBM Bluemix Internet of Things (IoT) service
provides a simple but powerful capability to
interconnect different kinds of devices and
applications all over the world. What makes this
possible? The secret behind the Bluemix IoT service is
MQTT, the Message Queue Telemetry Transport.

Fall 2017 CSC 498R: Internet of Things 73

MQTT From AWS

§ The AWS IoT message broker is a publish/subscribe broker service
that enables the sending and receiving of messages to and from
AWS IoT. When communicating with AWS IoT, a client sends a
message addressed to a topic like Sensor/temp/room1. The
message broker, in turn, sends the message to all clients that have
registered to receive messages for that topic. The act of sending the
message is referred to as publishing.

§ MQTT is a widely adopted lightweight messaging protocol designed
for constrained devices. For more information, see MQTT.

§ Although the AWS IoT message broker implementation is based on
MQTT version 3.1.1, it deviates from the specification as follows:
(several deviations from the standard are listed.)

Fall 2017 CSC 498R: Internet of Things 74

MQTT From Microsoft Azure

IoT Hub enables devices to communicate with the IoT
Hub device endpoints using the MQTT
v3.1.1 protocol on port 8883 or MQTT v3.1.1 over
WebSocket protocol on port 443. IoT Hub requires
all device communication to be secured using
TLS/SSL (hence, IoT Hub doesn’t support non-secure
connections over port 1883).
Microsoft lists several deviations from the standard
as well.

Fall 2017 CSC 498R: Internet of Things 75

Building Facebook Messenger
One of the problems we experienced was long latency when sending a message. The
method we were using to send was reliable but slow, and there were limitations on how
much we could improve it. With just a few weeks until launch, we ended up building a
new mechanism that maintains a persistent connection to our servers. To do this
without killing battery life, we used a protocol called MQTT that we had experimented
with in Beluga. MQTT is specifically designed for applications like sending telemetry data
to and from space probes, so it is designed to use bandwidth and batteries sparingly. By
maintaining an MQTT connection and routing messages through our chat pipeline, we
were able to often achieve phone-to-phone delivery in the hundreds of milliseconds,
rather than multiple seconds.

From	Facebook

Fall 2017 CSC 498R: Internet of Things 76

The future?
§ Ask Alexa to subscribe to kitchen/oven/temperature

and kitchen/oven/timer

Fall 2017 CSC 498R: Internet of Things 77

