PALAU

TSN E
Lebanese American University

CSC 498R: Internet of Things

Lecture 06: IoT Application Layer, Integration Patterns, REST, and
CoAp

Instructor: Haidar M. Harmanani

Fall 2017

Topics

= Two of the most promising protocols for small
devices:
— Constrained Application Protocol (CoAP)
—Message Queuing Telemetry Transport (MQTT)

Fall 2017 CSC 498R: Internet of Things

We are here!

Internet Protocol Suite e

pd

HTTP, Websockets, DNS, XMPP, MQTT, CoAp | Application layer

TLS, SSL Application Layer (Encryption)
TCP, UDP Transport

IP(V4, V&), 6LowPAN Internet Layer

Ethernet, 802.11 WIFi, 802.15.4 Link Layer

Principles: Layering, modularity, separation of concerns
Each layer focuses on a particular set of concerns and
abstracts these concerns from the layer above.

Fall 2017 CSC 498R: Internet of Things

Where are we?

TCP/IP Protocol stack loT protocol stack

HTTP CoAP

TCP, UDP UDP

IPv4, IPv6 6LoWPAN

Ethernet MAC ContikiMAC, X-MAC,
TSCH

Ethernet PHY IEEE 802.15.4 PHY,
Low-power Wifi, 4G

Fall2017 CSC 498R: Internet of Things

CoAP: Background

= GOAL: to enable web-based services in constrained
wireless networks
— 8 bit micro-controllers
—limited memory
—low-power networks

= Problem: Web solutions are hardly applicable
—Redesign web-based services for constrained networks!

Fall 2017 CSC 498R: Internet of Things

How Does the Web Work?

= Resources in the Web are:
—Managed by servers
—|Identified by URIs

— Accessed synchronously by clients through request/response
paradigms

= |s not that we call Representational State Transfer
(REST)?

Fall 2017 CSC 498R: Internet of Things

RESTful means ...

= REpresentational State Transfer is a software architectural style
for Web client-server

= Resources are represented as URL:
— "example.com/profile/johnny”

— "example.com/domain/sensor3/temp1”

= REST makes information available as resources that are
identified by URIs.

= Resources can be retrieved and manipulated using VERBS:
— GET, POST, PUT, DELETE

Fall 2017 CSC 498R: Internet of Things 7| =

CoAP provides a request/response RESTful interaction like
HTTP.

Smaller messages than HTTP and with very low overhead.
BLE nodes, for example, have limited memory and storage.
Sensors and actuators on BLE nodes are simply CoAP REST
resources.

For example, to obtain a current temperature, send a GET
request.

To turn on/off or toggle LEDs we use PUT requests.

CoAp is based on REST

Fall 2017 CSC 498R: Internet of Things

Difference Between URL and URI

URN

dmn.tld/page.htm https://dmn.tld/page.htm

ste.org/img.png ftp://ste.org/file.pdf

Fall 2017 CSC 498R: Internet of Things

Tim Berners-Lee, et. al. in rfc 3986: uniform resource
identifier (uri): generic syntax:

A Uniform Resource ldentifier (URI) is a compact sequence of
characters that identifies an abstract or physical resource.

A URI can be further classified as a locator, a name, or both. The
term “Uniform Resource Locator”’ (URL) refers to the subset of URIs
that, in addition to identifying a resource, provide a means of
locating the resource by describing its primary access mechanism (e.g.,
its network “location’).

Difference Between URL and URI

Fall 2017 CSC 498R: Internet of Things

URL Resolution

Universal Resource Name (URN)

Universal Resource Locator (UAL)
| htp/ I www.example.org I:soso I Isensors I 2id=light I

1

Scheme Authority Pot Path Query

Resource \
HTTP <—-| http:// | www.example :8080°| /sensors | ?id=light |

TCP

P
2001:dead:beef::1

Ethernet Link

CSC 498R: Internet of Things

Fall 2017

Request/Response Transaction

225C HTTP HTTP
Client Server

Mfemperature
TCP 3-way handshake
Sever | T mmmsssssssssssSesssssosss--o--- >
B
_________________________________ »
200 OK
GET /temperature application/text
25C HTTP GET /light _
HTTP 200 OK (application/xml)
Client -

_________ TCP 2-way termination -

@ mmmmmm e mc e ccccccc et e e —c—————

CSC 498R: Internet of Things

Fall 2017

Back to Our Initial Problem...

= GOAL: to enable web-based services in constrained
wireless networks
— 8 bit micro-controllers
—limited memory
—low-power networks

Problem: Web solutions are hardly applicable
[—Redesign web-based services for constrained networks!]

Fall 2017 CSC 498R: Internet of Things

Recall the typical HTTP Interaction

= Connection oriented and synchronous

= TCP 3 way handshake with server
—HTTP GET /kitchen/light
—HTTP response with headers and {“setting” : “dim” }
— TCP 2 way termination

* Too much work for simple loT applications
= CoAP is not a general replacement for HTTP
= CoAP does not support all features of HTTP

Fall 2017 CSC 498R: Internet of Things

CoAP at a Glance

= Akey loT standard

» Open IETF standard since June 2014

» Application level protocol over UDP or SMS on cellular networks
» Designed to be used with constrained nodes and lossy networks

» Designed for M2M applications, such as home and infrastructure
monitoring

» Built-in resource discovery and observation (“push notification”)
» Block-wise transfer

Fall 2017 CSC 498R: Internet of Things

CoAP At a Glance

= Based on web standards, easily integrates with HTTP.
— Not simply a compressed version of HTTP,

Some built-in reliability

May run over 6LoWPan

Use on low power, low bandwidth, lossy networks
DTLS for security

Asynchronous subscriptions and notifications over UDP
Built-in resource discovery

Fall 2017 CSC 498R: Internet of Things

CoAP At a Glance
= RESTful for easy interfacing with HTTP

Peer to peer or client server and multi-cast requests

Low overhead and simple

Should fit into a single UDP packet or IEEE 802.15.4
frame

Uses compression techniques

Fall 2017 CSC 498R: Internet of Things

CoAP Protocol Stack and Interactions

< REST—— >

Payload Payload
HTTP CoAP
TCP uDP
P P
Ethernet link Constrained link

(@) Internet Constrained environments (b)

Implementing the Web architecture with HTTP and the Constrained Application Protocol (CoAP). (a) HTTP
and CoAP work together across constrained and traditional Internet environments; (b) the CoAP protocol stack is similar
to, but less complex than, the HTTP protocol stack.
C. Bormann, A. P. Castellani, Z. Shelby, "CoAP: An Application Protocol for Billions of Tiny Internet
Nodes," IEEE Internet Computing, vol. 16, no. 2, pp. 62-67, Feb. 2012, doi:10.1109/MIC.2012.29

Fall 2017 CSC 498R: Internet of Things

CoAP Design Requirements

REQ7:
HTTP Mapping

REQ4:
Caching

REQ2:

REQ13: REQ14:
Constrained networks

MIME Type Manageability

Web\@«ées

CoAP

REQS:
Resource manipulation

REQ8:
Resource discovery

ubpP

u:‘\
Constrained L%\

REQ3:
Sleeping nodes

REQ1:
Limited Flash/RAM

REQ10:

UDP Transport REQ9:

REQS: REQ11: REQ12: Multicast
Sub/Notify Reliability Low latency

Fall 2017 CSC 498R: Internet of Things

CoAP Versus HTTP

» CoAP is a subset of HTTP functionality re-designed for low power
embedded devices such as sensors (for loT and M2M), occasionally

sleeping devices
— Why sleep?

= Why not HTTP?

— TCP overhead is too high and its flow control is not appropriate for short-
lived transactions.

— UDP has lower overhead and supports multicast

— HTTP transactions are around 10 times higher than CoAP transaction bytes
due to 6LoWPAN and CoAP header compression

— CoAP packet can be sent in single IEEE802.15.4 frame without fragmentation.
— Less bytes = lower power consumption and longer lifetime for CoAP.

Fall 2017 CSC 498R: Internet of Things

An experimental CoAP power. consumption evaluation
shows a major. improvement in power savings (see

Integrating Wireless Sensor Networks with the Web by
Colitto et al.)

Table 1. Comparison between CoAP and HTTP

Bytes per- Power Lifetime
transaction

154 0.744 mW 151 days
1451 1.333 mW 84 days

CoAP Versus HTTP

Fall 2017 CSC 498R: Internet of Things

CoAP Messaging Basics

= Transport
— (mainly) UDP binding

= All CoAP messages include:

— A four-byte fixed length header followed by, depending upon the
messageé type:

o An optional header portion
o Payload

= Fach message includes a 16-bit message ID used to link

requests to their accompanying acknowledgements
(ACK) or error statuses where applicable.

Fall 2017

CSC 498R: Internet of Things

CoAP Messaging Basics

= Message Exchange between Endpoints

—Reliable exchange through Confirmable Messages which
must be acknowledged (through ACK or Reset
Messages).Simple Stop-and-Wait retransmission with
exponential back-off.

—Unreliable exchange through Non-Confirmable Message

— Duplicate detection for both confirmable and non-
confirmable messages (through message ID)

Fall 2017 CSC 498R: Internet of Things 23

Direct Integration Pattern

» Some Things have full internet access.

— These Things may provide an HTTP server running over TCP/IP_and can directly connect to
the internet - usmg, say, WiFi or Ethernet or cellular. Rasberry-Pi's and Photon's'are examples.
These may be used to implement a Direct Integration Pattern — REST on devices.

" Tyﬁical use cases

he Thing is not battery powered and communicates with low latency to a local device like a
phone.

* Example: Use a phone to communicate via WiFi (with WiFi router) to an HTTP server
on a device. Use web sockets for publish/subscribe, e.g., phone listens for doorbell
events.

Thing running an HTPP
server providing a REST
style interface.

Client

Fall 2017 CSC 498R: Internet of Things

Gateway Integration Pattern

= Some Things do not have full internet access. These
Things may support only Zigbee or Bluetooth or 802.15.4.
We are not sending IP packets to these devices — they are
constrained. This is the Gateway Integration Pattern.

Gateway providin,

Thing providing access via
full REST AP 9p g

non-web protocol.

Client

Fall 2017 CSC 498R: Internet of Things

Cloud Integration Pattern

= Some Things have access to the cloud and need powerful and
scalable cloud support. This is the Cloud Integration Pattern.

Cloud resource

-

May or may not use web protocols
but is able to communicate with
a gateway in the cloud.

Gateway providing
full REST API

CSC 498R: Internet of Things

From an add from AirVantage

M QTT AirVantage

/ M2M Cloud

RaspberryPi
CoAP

6LoWPAN S

Fall 2017 CSC 498R: Internet of Things

CoAP: Example 1

200 OK
Txt/plain
79, Fahrenheit

GET/temperature,
Room A

CSC 498R: Internet of Things

Fall 2017

Fall 2017

CoAP Messaging Basics [See rfc7252]

. Message 1D
Client / Server Client Server

CSC 498R: Internet of Things

CoAP Messaging Basics

CoAP Client 1 CoAP Client 2

NON("GET /temp", -
MID=0x101, Token=0x21)

NON("Content", i
MID=0x92ab, Token=0x21, :
I|79 FII) E

T R E

CSC 498R: Internet of Things

CoAP Messaging Basics

[CoAPClient1 | [coapciientz | | CoAPClient1 | | CoAP Client 2

—

CON("GET /temp",

"B Gl 08 Tl (u2) MID=0x101, Token=0x21)

' CON("GET /temp",

-

ACK(MID=0x101) ACK(MID=0x101, "Content",

| Token=0x21, "79 F")

4 ____& B

time passes...

CON("Content",
MID=0x92ab, Token=0x21,
"79 F")

Piggybacking

ACK(MID=0x92ab)

U /| ISR | S,

Fall 2017 CSC 498R: Internet of Things

CoAP

Internet Protocol Suite (TCP/IP) IP Smart Objects Protocol Suite | — |
pplication
Pl * HTTP/FTPISMTP/ Application > Requests/Responses } ConP
Layer etc. Layer Messages
| uDP |
- T M .
TCPIUDP e uDP

* IPv4/Pv6 * 6LoOWPAN

» 802.3 - Ethernet /
802.11 — Wireless
LAN

* IEEE 802.15.4e

Fall 2017 CSC 498R: Internet of Things

CoAP Request/Response Layer

= Responsible for transmission of requests and
responses

» This is where REST-based communication occurs:

—REST requests are piggybacked on Confirmable or Non-
confirmable message.

—REST responses are piggybacked on the related
Acknowledgement message.

= CoAP uses tokens to match request/response in
asynchronous communications.

Fall 2017 CSC 498R: Internet of Things

Message Header (4 bytes)

0 1 2 3
012345678901234567890123456789°01

s S S S R S S
|ver| T | TKL | Code | Message ID
S T ST S S T ST S S ST ST ST S ST ST S S S ST &
| Token (if any, TKL bytes)

ottt etototototototototeotototototototototototot ot ot ot ottt et et
| Options (if any) ...
T S T T S S T TS S ST ST ST S ST ST T S S SRS
[11 111111 Payload (if any) ...
S S S S S ST ST T Y ST S ST S S

Fall 2017 CSC 498R: Internet of Things

CoAP Request/Response Layer

Client MessageIDServer Client Server
| /
| CON [0xbc90]

I | I
Token | CON [0xbc91]

| GET /tempe

| (Token (0

|
| GET /temperature | 4.04 Not Found
| (Token 0x72) |

ACK [0xbc90
2.05 Contep

|
|
|
| (Token 0x72)
| "Not found"
|
|

Fall 2017 CSC 498R: Internet of Things 35

A GET Request with Separate Response

Client Server
CON [0x7al0]

|
| GET /temperature
| (Token 0x73)

. Time Passes

4
|

|

I

|

| CON [0x23bb]
| 2.05 Content
|

|

|

|

|

.

|

(Token 0x73)
"22.5 C"

Fall 2017 CSC 498R: Internet of Things 36

A Request and a Response Carried in
Non-confirmableMessages

Client Server
| |
| NON [0x7all]
| GET /temperature
| (Token 0x74)

NON [0x23bc]

2.05 Content

(Token 0x74)
"22.5 C"

Fall 2017 CSC 498R: Internet of Things

CoAP Transaction Layer

= Handles single message exchange between end points.

= Four message types:
— Confirmable
o Must be acknowledged by the receiver with an ACK packet
— Non-confirmable [fire and forget]
o No ACK needed.
— Acknowledgement
o ACKs a Confirmable.
— Reset

o Indicates a Confirmable message has been received but context is missing for
processing

o This condition is usuaII%/ caused when the receiving node has rebooted and has
forgotten some state that would be required to interpret the message.

Fall 2017 CSC 498R: Internet of Things

CoAP Reliability

= CoAP provides reliability without using TCP as
transport protocol.

= CoAP enables asynchronous communication

—For example, when CoAP server receives a request which it
cannot handle immediately, it first ACKs the reception of the
message and sends back the response in an off-line fashion

—The transaction layer also supports multicast and congestion
control.

Fall 2017 CSC 498R: Internet of Things

Option Format

Option Delta 2 0-2 bytes
?extended) Y
o e e +
Z Option Length 2 0-2 bytes
extended
o e e +
Option Value 0 or more bytes
e +

Fall 2017 CSC 498R: Internet of Things

Dealing with Packet Loss

CON [0g1a] GET /humidity

|)

CON [0x1a] GET /humidity

timeout

P -
ACK [0x1a] 2.05 Content "<humidity>..."

<

= Stop and Wait approach
» Repeat a request after a time-out in case ACK (or RST) is not coming

back

Fall 2017 CSC 498R: Internet of Things

Back-Off Details

= |nitial time-out set to
— Rand [ACK_TIMEOUT, ACK_TIMEOUT * ACK_RANDOM_FACTOR]

* When time-out expires and the transmission counter is less than
MAX_RETRANSMIT
— retransmit
— Increase transmission counter
— double the time-out value

» The procedure is repeated until
— A ACK is received
— A RST message is received
— the transmission counter exceeds MAX_RETRANSMIT
— the total attempt duration exceeds MAX_TRANSMIT_WAIT (93s)

Fall 2017 CSC 498R: Internet of Things

COAP Observation

= PROBLEM:

—REST paradigm is often "PULL" type, that is, data is
obtained by issuing an explicit request

—Information/data in WSN is often periodic/triggered (e.g.,
get me a temperature sample every 2 seconds or get me a
warning if temperature goes below 5°C)

= SOLUTION

— Use Observation on COAP resources

Fall 2017 CSC 498R: Internet of Things

CoAP Efficiency

= Recall that CoAP desig?n goals is to have small message
overhead and limited fragmentation.

= CoAP uses compact fixed-length 4-byte binary header followed
by compact binary options.

= Typical request with all encapsulation has a 10-20 byte header.

= CoAP implements an observation relationship whereby an

“observer” client registers itself using a modified GET to the
server.

= When resource (object) changes state, server notifies the
observer.

Fall 2017 CSC 498R: Internet of Things

Observation

client makes a request to chignt e
server with the OBSERVE | oken: oxia €T Registration
option in the header set to } [ohaerve: regtioter]

o

the current state

I
2.05 Content
oken: |.._4"——+—— Notification of
Observe: 12
B ‘9 TCel |

This indicates a registration
request (value must be O).

I
2.05 Content
: 0x4 Notification upon
1|
Cememmcmcc—c e ———— +
I
2.05 Content
Token: Oxda Notification upon
Observe: 60 | a state change
Payloadr 237 1
O +

|

|

|

|

|

|

|

%
([obsexver 44 | | a state change
| ayloads 8
|

|

|

|

|

|

|

I

Fall 2017 CSC 498R: Internet of Things

CoAP Resource Discovery

= Not the same as service discovery. Service discovery is at a lower level. We don't even
know if services are available or how they communicate.

* We might register a printer, for example, with a discovery service and find it later on
the fly.

» With resource discovery, we know we are looking for web resources.

= Links are returned. HATEOAS.

= Links may include a rel attribute.

= A well known resource is used to discover other resources.

* Perform a GET on the well known resource. Returned content is a list
of links with REL attributes.

» Resource directories may be used to register services. Registrations are simply POSTs
with links. PUTs are used for updates. GETs for discovery.

Fall 2017

Getting Started with CoAP

= Open source implementations:
— Java CoAP LibraryCalifornium
— C CoAP LibraryErbium
— libCoAPC Library
— jCoAPJava Library
— OpenCoAPC Library
— TinyOS and Contiki include CoAP support

= Firefox has a CoAPplugin called Copper
= Wireshark has CoAP plugin

Fall 2017 CSC 498R: Internet of Things

We are still here!

Internet Protocol Suite e

e

HTTP, Websockets, DNS, XMPP, MQTT, CoAp | Application layer

TLS, SSL Application Layer (Encryption)
TCP, UDP Transport

IP(V4, V&), 6LowPAN Internet Layer

Ethernet, 802.11 WIFi, 802.15.4 Link Layer

Principles: Layering, modularity, separation of concerns
Each layer focuses on a particular set of concerns and
abstracts these concerns from the layer above.

Fall2017 CSC 498R: Internet of Things

Background: Publish/Subscribe

= Achieved by publish/subscribe paradigm

— ldea: Entities can publish data under certain names
— Entities can subscribe to updates of such named data

» Conceptually: Implemented by a software bus

— Software bus stores subscriptions, published data; names used as filters; subscribers notified
when values of named data changes

/.’...

— Topic-based P/S - N\ /.
inflexible
— Content-based P/S — < > Software bus >
use general :
predicates over / 1 H N
named data Subscriber | | | Subscriber 2 | | Subscriber 3 |

Fall 2017 CSC 498R: Internet of Things

Message Queue Telemetry Transport
(MQQT)

= A light-weight, open and scalable protocol for the

Internet of Things

—An ISO standard publish-subscribe-based messaging
protocol for use on top of the TCP/IP protocol

— Designed for connections with remote locations where a
"small code footprint" is required or the network bandwidth
is limited

— A variation of the main protocol aimed at embedded
devices on non-TCP/IP networks, such as ZigBee

Fall 2017 CSC 498R: Internet of Things

MQTT Pub/Sub Protocol

= MQ Telemetry Transport (MQTT) is a lightweight broker-based
publish/subscribe messaging protocol.

= MQTT is designed to be open, simple, lightweight and easy to

implement.
— These characteristics make MQTT ideal for use in constrained environments,
for example in loT.
o Where the network is expensive, has low bandwidth or is unreliable
o When run on an embedded device with limited processor or memory resources;

= A small transport overhead (the fixed-length header is just 2 bytes),
and protocol exchanges minimized to reduce network traffic

= MQTT was developed by Andy Stanford-Clark of IBM, and Arlen
Nipper of Cirrus Link Solutions.

Fall 2017 CSC498R: Internet of Things

MQTT

» |t supports publish/subscribe message pattern to provide one-to-many
message distribution and decoupling of applications

* A messaging transport that is agnostic to the content of the payload
» The use of TCP/IP to provide basic network connectivity

» Three qualities of service for message delivery:
— "At most once", where messages are delivered according to the best efforts of the
underlying TCP/IP network. Message loss or duplication can occur.

o This level could be used, for example, with ambient sensor data where it does not matter if an individual
reading is lost as the next one will be published soon after.

— "At least once", where messages are assured to arrive but duplicates may occur.
— "Exactly once", where message are assured to arrive exactly once. This level could
be used, for example, with billing systems where duplicate or lost messages coul

lead to incorrect charges being applied.

Fall 2017 CSC 498R: Internet of Things

MQTT Message Format

* The message header for each MQTT command message contains a fixed header.

= Some messages also require a variable header and a payload.
* The format for each part of the message header:

bit 7 | 6] 5] 4 3 2 | 1 0
byte 1 Message Type DUP flag QoS level RETAIN
byte 2 Remaining Length

— DUP: Duplicate delivery

— QoS: Quality of Service

— RETAIN: RETAIN flag
—This flag is only used on PUBLISH messages. When a client sends a
PUBLISH to a server, if the Retain flag is set (1), the server should hold on
to the message after it has been delivered to the current subscribers.
—This allows new subscribers to instantly receive data with the retained,
or Last Known Good, value.

Fall 2017 CSC 498R: Internet of Things

Example: Connect a device using MQTT

:% AWS loT
EL +H= = H=

®
° O O
p = = > QD
+HX =-> =
Billions of devices can publish Messages are transmitted and received using AWS loT enables devices to communicate
and subscribe to messages the MQTT protocol which minimizes the code with AWS services and each other

footprint on the device and reduces network
bandwidth requirements

Fall 2017 CSC 498R: Internet of Things

Example: Analyze chemicals in a sample with a mass spectrometer

AWS loT

©)

o
INTERMITTENT RESTAPIs
CONNECTION
Connected mass spectrometer The spectrometer goes offline when its Technicians can use mobile apps to set new
reports its state and readings cycle completes, but its last-reported desired states (e g. pause the cycle), or query
throughout a multi-hour cycle state persists in AWS loT the last reported state of the spectrometer

Fall 2017 CSC 498R: Internet of Things

Example: Authenticate connections between sensors, a device and an application

An array of temperature
sensors transmit data

2 The connection to AWS loT
AWS loT is authenticated
g i (@)

Q Only authenticated users
The connection to the

4 can control the fan

fan is authenticated

5 The fan receives a
command and turns on

If the sensors agree the temperature is
above a threshold they turn on the fan

3

Fall 2017 CSC 498R: Internet of Things

Sensor Readings with pub/sub

Decoupled in space and time.

The clients do not need each other’s

IP address and port (space) and
e Q They do not need to be running at

the same time (time).

v’ oS
'.‘ publish: “21°C" % o laptop
o a4 — The broker’s IP and port must be
& known by clients.
temperature MQTT-Broker % D J
sensor

Namespace hierarchy used for
subscribeto o publish to mobile device topic ﬁ'lter"ng

topic: “temperature’ topic: “temperature”

It may be the case that a published
message is never consumed by any

From HIVEMQ subscriber.

ENTERPRISE MQTT BROKER

Fall 2017 CSC 498R: Internet of Things

Actuators too!

u‘ﬁd\he Q
2\
i u‘ﬁx\/
"‘ publish: “21°C* A laptop
4 '

HiveMQ s"bffr/bs
pUbIlSh Subscrlbe temperature MQTT-Broker % D
sensor
comm and s :::izczitb:n:;erature“ 9 f:;:ltis!:‘t;?npe(ature‘ moheee
browser actuator
In the picture, replace the laptop with an
actuator, subscribing to a command topic,
¢ . A subscrib say, device3/commands. Replace the sensor
If my to“Ste'{’ sa com;:vxan bf“ scriver, with a browser ending commands to
| can control it over the web! device3/commands.

Fall 2017 CSC 498R: Internet of Things

From: Enterprise Integration Patterns Book
Hohpe and Woolf

— ! —
Address Subscriber
Changed

¢, —am—— %, —

Publisher Address Address Subscriber
Changed Changed
1%
Publish-Subscribe Address Subscriber
Channel Changed

Fall 2017 CSC 498R: Internet of Things

MQTT

= Message Queuing Telemetry Transport (old acronym)

since the 1990's
— "Telemetry” is from the Greek remote measure

» Created by Andy Stanford-Clark (IBM) and Alan Nipper -
now part of OASIS

= Version 3.1 released royalty free in 2010 (IBM)

= Originally built for oil pipeline monitoring over satellite
connections.

= Satellites appropriate because pipelines are remote

Fall 2017 CSC 498R: Internet of Things 60 | ==

MQTT

= Built for a proprietary embedded system now shifting to
loT

= You can send anything as a message, up to 256 MB.
= Built for unreliable networks

= Enterprise scale implementations down to hobby
projects

= Decouples readers and writers

= Message have a topic, quality of service and retain status
associated with them.

Fall 2017 CSC 498R: Internet of Things

MQTT

= MQTT Runs over TCP or TLS.

= May use Websockets from within a browser.

= MQTT-SN uses UDP packets or serial communication rather than TCP
* MQTT-SN may run over Bluetooth Low Energy (BLE).

= Open, industry agnostic, no polling. What does it mean to be open?

* Hierarchical topic namespace and subscriptions with wildcards. MQTT-SN has simpler
topics.

* Assoon as you subscribe you may receive the most recently published message. One
message per topic may be retained by the broker.

» This feature provides for devices that transmit messages only on occasion. A newly
connected subscriber does not need to wait. Instead, it receives the most recent
message.

Fall 2017 CSC 498R: Internet of Things

MQTT Last Will and Testament

= Publishing clients may connect with a last will and testament
message.

» |f publishing client has no data to send, it sends ping requests to the
broker to inform the broker that it is still alive.

» |f a publisher disconnects in a faulty manner (the broker will miss the
ping requests), the broker tells all subscribers the last will and
testament. This is for an ungraceful disconnect. How could this
happen? Battery failure, network down, out of reach, etc.

» |n the case of graceful disconnect, the publisher sends a
DISCONNECT message to the broker — the broker will discard the
LWT message.

Fall 2017 CSC 498R: Internet of Things

MQTT Clients

= A client may publish or subscribe or do both.

= An MQTT client is any device from a micro controller up to a full
fledged server, that has an MQTT library running and is

connecting to an MQTT broker over any kind ot network. (from
HiveMQ MQTT Essentials)

= A client is any device that has a TCP/IP stack and speaks MQTT.
MQTT-SN does not require TCP.

= Client libraries widely available (Android, Arduino, iOS, Java,
Javascript, etc.)

= No client is connected directly to any other client

Fall 2017 CSC 498R: Internet of Things

MQTT Broker

= The broker is primarily responsible for receiving all
messages, filtering them, decide who is interested in it

and then sending the message to all subscribed clients.
(From HiveMQ MQTT Essentials)

= May authenticate and authorize clients.
= Maintains sessions and missed messages

= Maintains a hierarchical namesgyace for topics and allows

subscribers (but not publishers) to use wildcards (+ and
#).

Fall 2017 CSC 498R: Internet of Things

Topics are organized into a
Hierarchical namespace

Suppose a client publishes to mmeHouse/Kitchen/Sensor/Temperature
Another client might subscribe to:
mmeHouse/Kitchen/Sensor/ Temperature
Or, using a single level wildcard (+)
mmeoeHouse/Kitchen/+/Temperature /7 All children of Kitchen that

// have a child called
Temperature

Or, using a multi level wildcard (#)

mmeHouse/Kitchen/# // Goes deep
“The # must be the last character.
*To see every message, subscribe to #

Fall2017 CSC 498R: Internet of Things

MQTT Qualities of Service (QoS)

= QoS defines how hard the two parties will work to ensure that messages
arrive.

» Qualities of service: once and only once, at least once, at most once — fire and
forget. These qualities of service exist between the client and a broker. More
quality implies more resources.

» From publishing client to broker, use the QoS in the message sent by the
publishing client.

» From broker to subscribing client, use the QoS established by the client’s
original subscription. A QoS ma{ be downgraded if the subscribing client has
a lower QoS than a publishing client.

» |f a client has a subscription and the client disconnects, if the subscription is
durable it will be available on reconnect.

Fall 2017 CSC 498R: Internet of Things

MQTT Qualities of service (QoS 0)

@ € PUBLISH QoS0
—

MQTT Client MQTT Broker

= From HiveMQ
— QoS 0 implies at most once

— Fire and forget. No acknowled%_ement from the broker. No client
storage or redelivery. Still uses TCP below the scenes.

— Use QoS 0 when you have a stable connection and do not mind losing
anl.og.clasmnal packet. You are more interested in performance than
rellaoility.

Fall 2017 CSC 498R: Internet of Things

MQTT Qualities of service (QoS 1)

€ PUBLISH QoS 1
—_

& PUBACK %
—

MQTT Client MQTT Broker

= From HiveMQ
— QoS 1 implies at least once

— Client will perform retries if no acknowledgement from the
broker.
— Use QoS 1 when you cannot lose an occasional message and can

tolerate duplicaté messages arriving at the broker. And you do
not want the performance hit associated with QoS 2.

Fall 2017 CSC 498R: Internet of Things

MQTT Qualities of service (QoS 2)

& PUBLISH QoS 2

—’
@ PUBREC PUBREC = publish received
‘— K
& PUBREL % PUBREL = publish released
—’ _ .
& PUBCOMP PUBCOMP = publish complete
MQTT Client MQTT Broker

* From HiveMQ
= QoS 2 implies exactly once
» Client will save and retry and server will discard duplicates.

= Use this if it is critical that every message be received once and you do not mind the
drop in performance.

* QoS 1 and QoS 2 messages will also be queued for offline subscribers - until they
become available again. This happens only for clients requesting persistent
connections when subscribing.

Fall 2017 CSC 498R: Internet of Things

MQTT From OASIS

= MQTT is being used in sensors communicating to a
broker via satellite links, Supervisory Control and Data
Acquisition (SCADA), over occasional dial-up connections
with healthcare providers (medical devices), and in a
range of home automation and small device scenarios.
MQTT is also ideal for mobile applications because of its
small size, minimized data packets, and efficient
distribution of information to one or many receivers
(subscribers).

Fall 2017 CSC 498R: Internet of Things

MQTT from Oracle (a drone
application)

Master Drone successfully connected

[Drone #2] successfully connected

[Drone #1] successfully connected

[Drone #2] subscribed to the java-magazine-mqtt/drones/altitude topic

[Drone #1] subscribed to the java-magazine-mqtt/drones/altitude topic

Master Drone subscribed to the javal-magazine-mqtt/drones/altitude topic

Message '[Drone #1] is listening.' published to topic 'java-magazine-mqtt/drones/altitude’
Message '*Master Drone* is listening.' published to topic 'java-magazine-mqtt/drones/altitude’
Message '[Drone #2] is listening.' published to topic 'java-magazine-mqtt/drones/altitude’
[Drone #2] received java-magazine-mqtt/drones/altitude: [Drone #2] is listening.

[Drone #2] received java-magazine-mqtt/drones/altitude: *Master Drone* is listening.

[Drone #2] received java-magazine-mqtt/drones/altitude: [Drone #1] is listening.

Master Drone received java-magazine-mqtt/drones/altitude: [Drone #2] is listening.

[Drone #1] received java-magazine-mqtt/drones/altitude: [Drone #2] is listening.

Master Drone received java-magazine-mqtt/drones/altitude: *Master Drone* is listening.

[Drone #1] received java-magazine-mqtt/drones/altitude: *Master Drone* is listening.

Master Drone received java-magazine-mqtt/drones/altitude: [Drone #1] is listening.

[Drone #1] received java-magazine-mqtt/drones/altitude: [Drone #1] is listening.

[Drone #1] received java-magazine-mqtt/drones/altitude: COMMAND:GET_ALTITUDE:[Drone #1]

Message 'COMMAND:GET_ALTITUDE:[Drone #1]' published to topic 'java-magazine-mgtt/drones/altitude’
[Drone #2] received java-magazine-mqtt/drones/altitude: COMMAND:GET_ALTITUDE:[Drone #1]

[Drone #1] altitude: 3746 feet

Master Drone received java-magazine-mqtt/drones/altitude: COMMAND:GET_ALTITUDE:[Drone #1]
Message 'COMMAND:GET_ALTITUDE:[Drone #2]' published to topic 'java-magazine-mqtt/drones/altitude’
[Drone #2] received java-magazine-mqtt/drones/altitude: COMMAND:GET_ALTITUDE:[Drone #2]

[Drone #1] received java-magazine-mqtt/drones/altitude: COMMAND:GET_ALTITUDE:[Drone #2]

[Drone #2] altitude: 4224 feet

Master Drone received java-magazine-mqtt/drones/altitude: COMMAND:GET_ALTITUDE:[Drone #2]
Message 'COMMAND:GET_ALTITUDE:[Drone #1]' published to topic 'java-magazine-mqtt/drones/altitude’
[Drone #1] received java-magazine-mqtt/drones/altitude: COMMAND:GET_ALTITUDE:[Drone #1]

[Drone #2] received java-magazine-mqtt/drones/altitude: COMMAND:GET_ALTITUDE:[Drone #1]

[Drone #1] altitude: 433 feet

Master Drone received java-magazine-mqtt/drones/altitude: COMMAND:GET_ALTITUDE:[Drone #1]

Fall 2017 CSC 498R: Internet of Things

MQTT From IBM

» The IBM Bluemix Internet of Things (loT) service
provides a simple but powerful capability to
interconnect different kinds of devices and
applications all over the world. What makes this
possible? The secret behind the Bluemix |oT service is
MQTT, the Message Queue Telemetry Transport.

Fall 2017 CSC 498R: Internet of Things

MQTT From AWS

= The AWS loT message broker is a publish/subscribe broker service
that enables the sending and receiving of messages to and from
AWS loT. When communicating with AWS loT, a client sends a
message addressed to a topic like Sensor/temp/room1. The
message broker, in turn, sends the message to all clients that have
registered to receive messages for that topic. The act of sending the
message is referred to as publishing.

= MQTT is a widely adopted lightweight messaging protocol designed
for constrained devices. For more information, see MQOTT.

= Although the AWS loT message broker implementation is based on
MQTT version 3.1.1, it deviates from the specification as follows:
(several deviations from the standard are listed.)

Fall 2017 CSC 498R: Internet of Things

0T Hub enables devices to communicate with the loT
Hub device endpoints using the

protocol on port 8883 or MQTT v3.1.1 over
WebSocket protocol on port 443. loT Hub requires
all device communication to be secured using
TLS/SSL (hence, loT Hub doesn’t support non-secure

connections over port 1883).
Microsoft lists several deviations from the standard
as well.

MQTT From Microsoft Azure

Fall 2017 CSC 498R: Internet of Things

Building Facebook Messenger

One of the problems we experienced was long latency when sending a message. The
method we were using to send was reliable but slow, and there were limitations on how
much we could improve it. With just a few weeks until launch, we ended up building a
new mechanism that maintains a persistent connection to our servers. To do this
without killing battery life, we used a protocol called MQTT that we had experimented
with in Beluga. MQTT is specifically designed for applications like sending telemetry data
to and from space probes, so it is designed to use bandwidth and batteries sparingly. By
maintaining an MQTT connection and routing messages through our chat pipeline, we
were able to often achieve phone-to-phone delivery in the hundreds of milliseconds,
rather than multiple seconds.

From Facebook

Fall 2017 CSC 498R: Internet of Things

The future?

= Ask Alexa to subscribe to kitchen/oven/temperature
and kitchen/oven/timer

Fall 2017 CSC 498R: Internet of Things

