

CSC 498R: Internet of Things

Lecture 03: Using the Pi for the First Time Instructor: Haidar M. Harmanani Fall 2017

- Things we connect: Hardware, sensors and actuators
 - Connectivity
 Medium we use to connect things

- Platform
 - Processing and storing collected data
 - o Receive and send data via standardized interfaces or API
 - o Store the data
 - o Process the data
- Analytics - Get insights from gathered data
- User Interface

Fall 2017

What Will we Use in this Course?

Raspberry Pi 3 Model B

Fall 2017

CSC 498R: Internet of Things

Raspberry Pi 3 Model B (Pi 3)

- Introduced in February 2016
- SoC: Broadcom BCM2837 (roughly 50% faster than the Pi 2)
- CPU: 1.2 GHZ quad-core ARM Cortex A53 (ARMv8 Instruction Set)
- GPU: Broadcom VideoCore IV @ 400 MHz
- Memory: 1 GB LPDDR2-900 SDRAM
- USB ports: 4
- Network: 10/100 MBPS Ethernet, 802.11n Wireless LAN, Bluetooth 4.0

LAU LAU

Useful Tools for Modeling and Implementation

- Fritzing for hardware modeling
- PubNub for cloud solution

Fall 2017

CSC 498R: Internet of Things

	Raspberry Pi 3 Model B	Raspberry Pi 2 Model B				
Processor Chipset	Broadcom BCM2837 64 Bit Quad Core Processor 1.2GHz	Broadcom BCM2836 32 Bit Quad Core Processor 900MHz				
Processor Speed	QUAD Core @1.2 GHz	QUAD Core @900 MHz				
RAM	1GB SDRAM @ 400 MHz	1GB SDRAM @ 400 MHz				
Storage	MicroSD	MicroSD				
USB 2.0	4x USB Ports	4x USB Ports				
Max Power Draw/voltage	2.5A @ 5V	1.8A @ 5V				
GPIO	40 pin	40 pin				
Ethernet Port	Yes	Yes				
WiFi	Built in	No				
Bluetooth LE	Built in	No				

CSC 498R: Internet of Things

Raspberry Pi 3 Model B (Pi 3)

• We will:

- Use the Raspberry Pi 3 Model B (Pi 3)
- Perform communication with the embedded OS
- Perform GPIO commands
- Use a variety of sensors for Raspberry Pi
- Control hardware using the Pi • Need jumper wires and a bread board
- We are open for any other development board that you would like to use, although we will not provide it!

Pi 3 General Purpose IO (GPIO) Pins

 Physical Computing on the Raspberry Pi is done using the GPIO pins

17 GPIO pins

- most have alternated functions
- two pins for UART; two for 12C; six for SPI

All 17 pins can be GPIO

- All support interrupts
- Internal pull-ups & pull-downs for each pin
- I2C pins have onboard pull-ups
 using them for GPIO may not work

Pin#	NAME		NAME	Pin#
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1 , I ² C)	\odot	DC Power 5v	04
05	GPIO03 (SCL1 , I ² C)	$\bigcirc \bigcirc$	Ground	06
07	GPIO04 (GPIO_GCLK)	\bigcirc	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	\mathbf{O}	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	\mathbf{O}	Ground	14
15	GPIO22 (GPIO_GEN3)	\mathbf{O}	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	\mathbf{O}	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	\odot	Ground	20
21	GPIO09 (SPI_MISO)	\odot	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)	\odot	(SPI_CE0_N) GPIO08	24
25	Ground	\bigcirc	(SPI_CE1_N) GPIO07	26
27	ID_SD (I ² C ID EEPROM)	\odot	(I ² C ID EEPROM) ID_SC	28
29	GPIO05	\mathbf{O}	Ground	30
31	GPIO06	\mathbf{O}	GPIO12	32
33	GPIO13	\mathbf{O}	Ground	34
35	GPIO19	\mathbf{O}	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40

CSC 498R: Internet of Things

10 **2. LAU**

Pi 3 General Purpose IO (GPIO) Pins

Connecting a 5 V supply to any pin on the Raspberry Pi's GPIO port, or directly shorting either of the power supply pins (Pin 1 and Pin 2) to any other pin will result in damage to the Pi.

CSC 498R: Internet of Things

11 LAU

Pi 3 General Purpose IO (GPIO) Pins

 You could use a cobbler connector rather than working directly with the Pi

Using the GPIO Pins

- There are two different methods to read or write these pins using Linux
 Method 1: Creating a file-type access in the file system using /sys
 - o /sys is a way the kernel provides information about (physical and virtual) devices
 - Method 2: Write/read memory addresses allocated to the GPIO peripheral of the SoC using pointers
 - o Memory locations can be found in the datasheet for the BCM2835
 - RPi.GPIO
 - Comes with Raspbian
 - o RPIO
 - Supports PWM & servos
 - WiringPi-python
 - o Quick2Wire
 - The best way to access the GPIOs?
 http://codeandlife.com/2012/07/03/benchmarking-raspberry-pi-gpio-speed/
- More about the GPIO later!

CSC 498R: Internet of Things

PIR Motion Sensor

LED

DHT22 sensor

HC-SRO4 ultrasonic sensor

Camera Modules

PIR Motion Sensor

Sense HAT

Fall 2017

CSC 498R: Internet of Things

14

Getting Started

- What do you need?
 - Suitable Power Adapter
 - o 5.1 volts, 2.5 Amps output
 - Keyboard with a mouse or Track Pad
 - Can use a usb or wireless
 - $\circ\,$ Specialized wireless keyboards are recommended if power consumption is an issue
 - Display, Pi 3 compatible
 - o A regular display would do
 - $\,\circ\,$ Touch screen or a display for raspberry would be nice
 - Micro SD Card with SD Adapter loaded with the operating system

CSC 498R: Internet of Things

NOOBS

- New Out Of the Box Software
- Easy to download, install, and set up
- When you first boot up NOOBS, you'll get a selection of OSes to choose from
- Which operating systems are available depends on which model of Raspberry Pi you are using
- <u>Raspbian</u>, <u>OSMC</u>, <u>OpenELEC</u>, <u>Windows IoT Core</u>, and <u>RISC</u> <u>OS</u>.

CSC 498R: Internet of Things

17

Raspbian

- The Raspberry Pi itself doesn't come with an operating system
- Raspbian is the "official" operating system of the Raspberry Pi
 - A version of Linux built specifically for the Raspberry Pi
 - Comes packed with all the software you'll need
 - LibreOffice, a web browser, email program, and some tools to teach programming to kids and adults alike, and a special version of Minecraft

OSMC

- OSMC (Open Source Media Center) is media center software based on Kodi (formerly XBMC)
- Easy set up and use.
- If you're new to media centers or you're trying to set one up for non-techy people, OSMC is the one you want to use.

CSC 498R: Internet of Things

19

Windows 10 IoT [God forbids!]

- Windows 10 IoT is a special version of Windows built for the Raspberry Pi
 Meant as a development platform for coders and programmers to prototype internet connected devices using the Raspberry Pi and Windows 10.
- Only compatible with Windows 10
- Cannot do anything with it unless you have another computer with Windows 10 installed.
- You can't control or do anything on the Pi by itself.
- For that, you'll need to download and install Visual Studio on your Windows PC
- Once you do, you can program and control your Raspberry Pi from Visual Studio in Windows 10.
- This means you can trigger blinking lights, connect to push buttons, control motors, and countless other things.

Other OSes

- OpenELEC
 - Open Embedded Linux Entertainment Center)
 - Built for one thing: playing media
- RISC OS
 - Not Linux, it is an operating system all its own
 - Rather weird

CSC 498R: Internet of Things

Fall 2017

CSC 498R: Internet of Things

Sense HAT

- We will mostly use Sense Hat
 Add-on board for Raspberry Pi
 - Made especially for the Astro Pi mission
 - Launched to the International Space Station in December 2015
- Pros:

Fall 2017

- Variety of sensors.
- Easy to use, just plug them.
- Good enough to start or for prototyping.
- Cons:
 Not flexible and scalable

CSC 498R: Internet of Things

- Has an 8×8 RGB LED matrix, a five-button joystick
- Includes the following sensors:
 - Gyroscope
 - Accelerometer
 - Magnetometer
 - Temperature
 - Barometric pressure
 - Humidity

Sense HAT: Gyroscope

A very tiny gyroscope is built into the Yaw Sense HAT Axis The pitch, roll, and yaw values are Pitch Axis returned as angles between 0 and 360 degrees. Allows your program to react to Roll changes in orientation Axis Can also read the gyroscope's X, Y, and Z axis values in radians per second

Fall 2017

CSC 498R: Internet of Things

LAU

25

Sense HAT: Temperature Sensor

- Measure hot and cold
- Built into the Sense HAT and reports the temperature as a number in Celsius
- Care should be taken as the temperature sensor may be measuring some heat coming from the Raspberry Pi itself

Sense HAT: Barometric Pressure Sensor

- A pressure sensor measures the force exerted by tiny molecules of the air we breathe.
- The Sense HAT has an air pressure sensor built in and will report air pressure to you in millibars in your code.

CSC 498R: Internet of Things

Sense HAT: Humidity Sensor

- A humidity sensor measures the amount of water vapor in the air
- One of the main properties of air is that the hotter it is, the more water vapor can be suspended within it
- Relative humidity is a ratio, usually a percentage, between the actual amount of suspended water vapor to the maximum amount that could be suspended for the current temperature.
- If there was 100% relative humidity, it would mean that the air is totally saturated with water vapor and cannot hold anymore.
- The Sense HAT has a humidity sensor that will report relative humidity as a percentage to you in your code
 - Uses data from the temperature sensor to give you the correct value
 - The sensor will be good enough to detect the water vapor in human breath

28 23 LAU

Sense HAT: 8×8 RGB LED Matrix Display

- Designed to be the only real form of visual output that the Astro Pis have up on the International Space Station
- Was not allowed to plug the HDMI or composite outputs of the Raspberry Pi into anything on the ISS
- Consists of 64 LEDs arranged in an eight-by-eight grid, and each individual LED has a red, green, and blue component that you can control in code.
- For a single LED you can specify how much red, green, and blue you want, using numbers between 0 and 255
- Using various combinations of red, green, and blue for each LED, you can create any color or shade that you want
- It should allow you to create a basic display or status monitor, or even play animations showing what your program is doing.

CSC 498R: Internet of Things

29

Sense HAT: Mini 5-button Joystick

- Made up of five buttons for up, down, left, right, and center
- Combine this with the LED matrix and you have the ability to create games
- Mapped to the four keyboard cursor keys, with the joystick middle-click being mapped to the Return key

Sense HAT

- Python provides a module to control the Raspberry Pi HAT <u>https://github.com/RPi-Distro/python-sense-hat</u>
- Install
 - sudo apt-get update
 - sudo apt-get install sense-hat
 - sudo reboot
- Usage

```
from sense_hat import SenseHat
sense = SenseHat()
sense.show_message("Welcome to CSC498R")
```

```
Fall 2017
```

CSC 498R: Internet of Things

```
31 LAU
```

			=	🗎 trink	ket.io		Ċ			0	1
IIII F	taspberry Pi Cuba Feuilles d'exS	- 2013-2014 UCB C	S252 ACORN eAd	counts Acunt Summary	UoT Finance	home - join.utoronto.ca	EE582	LAU Stuff 🗸	Travel v archive.	ics.uer-wisc	consin/ >>
	Stanford Network Prot	3 (Devices &	4 (Network P	2 (Building B	Sense HAT [Worksheet	HAT	- Astro Pi	Guide to Astr	New Se	ense +
🧿 t	rinket						\star Plans	🎓 Lean	n 🛛 🛛 Help	Sign Up	Log In 🔿

Code the Sense HAT in Your Browser!

New from Trinket and the Raspberry Pi Foundation: Explore Your World with Sensors and Python

https://trinket.io/sense-hat

CSC 498R: Internet of Things


```
sense.get_temperature(): Return the temperature in Celsius.
sense.get_pressure(): Return the pressure in millibars.
sense.get_humidity(): Return the humidity as a percentage.
```

CSC 498R: Internet of Things

Interacting with the Sense HAT

```
from sense_hat import SenseHat
sense = SenseHat()
while True:
    t = sense.get_temperature()
    p = sense.get_pressure()
    h = sense.get_humidity()
    t = round(t, 1)
    p = round(p, 1)
    h = round(h, 1)

    msg = "Temperature: {0}, Pressure: {1}, Humidity: {2}".format(t,p,h)
    sense.show_message(msg, scroll_speed=0.05)
```

Reference

https://www.raspberrypi.org/learning/getting-startedwith-the-sense-hat/worksheet/

CSC 498R: Internet of Things

Powering the Raspberry Pi

What do We Need?

- Raspberry Pi 3
- Micro SD card (preloaded w/ Raspbian)
- Micro USB power supply
- HDMI Cable
- Wires
- Breadboard
- LED
- Resistors
- PIR sensor
- DHT22 sensor

What do We Need?

- Jumper wires female/male and male/male are useful to connect various components to the Pi 3.
- Prototyping board keeps things tidy!
- This is the minimum for prototyping
- Some sensors such as camera

Starting Raspbian

- Username: pi
- Password: raspberry
- pi@raspberrypi ~\$ startx

A first circuit

- Our goal is to get familiar with simple sensors, wires and the board connectivity.
- Important facts:
 - We'll use the 5.1V pin as input voltage for all sensors and accessories in this course.
 - Next to the 5V pin is the ground pin we will connect to all our sensors too.
 - Don't connect directly these two pins together.
 - It would damage the board

CSC 498R: Internet of Things

41 Contraction University

Wi-Fi Configuration

Menu > Preference > WiFi Configuration

Remote Connect Pi

- By default, the Raspberry Pi hostname is raspberrypi.
- Getting your Pi's IP address
 -pi@raspberrypi ~\$ hostname -i
- ✤ You'll need the IP address when you connect the Pi from your computer!!!
- You can remote connect to your Pi using ssh

SSH into your Rasp Pi

SSH to Pi from your laptop (Terminal on Mac/Linux, PuTTY on Windows):

Use your Pi's IP!

> If SSH-ing fails, try: \$ sudo raspi-config on your Pi

Get Started w/ PubNub Python SDK

Fall 2017

CSC 498R: Internet of Things

LAU

45

Four Easy Steps

- Update the System's package list
- -~\$ sudo apt-get update
- Upgrade the installed packages to the latest versions
 -~\$ sudo apt-get upgrade
- Install python and pip
 - -~\$ sudo apt-get install python-dev
 - -~\$ sudo apt-get install python-pip
- Install pubnub libs
 - -~\$ sudo pip install pubnub

Test it: Hello World w/ PubNub

Hello World, PubNub

import sys
from pubnub import Pubnub

Initiate Pubnub State - Get your own keys at admin.pubnub.com pubnub = Pubnub(publish_key='pub-c-156a6d5f-22bd-4a13-848d-b5b4d4b36695', subscribe_key='sub-c-f762fb78-2724-11e4-a4df-02ee2ddab7fe')

channel = 'hello-pi'

```
username = 'Your name'
message = 'Hello World from Pi!'
```

data = {
 'username': username,
 'message': message

} # Aeur

Asynchronous usage def callback(m): print(m)

pubnub.publish(channel, data, callback=callback, error=callback)

Hello World w/ PubNub

Import & init (hello.py)

import sys

from pubnub import Pubnub

```
pubnub = Pubnub(publish_key='pub-c-123...',
subscribe_key='sub-c-456...')
```


pubnub.publish(channel, data, callback=callback, error=callback)

Subscribe all other messages coming to the channel

def _callback(message, channel):
 print(message)

def _error(message): print(message)

pubnub.subscribe(channels='hello-pi', callback=_callback, error=_error)

Hello World w/ PubNub

- Run your program
 -~\$ sudo python hello.py
- Subscribing data you are publishing
 <u>http://pubnub.github.io/workshop-raspberrypi/web/hello.html</u>

Debug Console

- http://pubnub.com/console/
 - channel: hello-pi
 - pub key: demo
 - sub key: demo

Blinking LED

- Raspberry Pi 3
- 1 LED (1.9 3.2V)
- 1 Resistor (200Ω)
- I Breadboard
- 2 M-to-F jumper wires, 2 colors

General Purpose Input Output (GPIO)

- The Raspberry Pi has 40 pins which can be used to control and monitor the outside world
- The Pi can:
 - Control LEDs, turning them on or off, or motors, or many other things
 - Can detect the pressing of a switch, change in temperature, or light etc.

General Purpose Input Output (GPIO)

- The GPIO pins provide a physical interface between the Raspberry Pi and the outside world
 - Of the 40 pins, 26 are GPIO pins and the others are power or ground pins (plus two ID EEPROM pins)

GPIO Pin Numbering

Refer to the pins using the GPIO numbering scheme

Fall 2017

CSC 498R: Internet of Things

GPIO Pin Numbering

Raspberry Pi 3 GPIO Pins

- The output can be anything, from turning on an LED to sending a signal or data to another device.
- Inputs could be anything from a simple button to a sensor or a signal from another computer or device.
- Over the network, the Raspberry Pi can control devices that are attached to it from almost anywhere, and those devices can send data back to the network
- Connectivity and control of physical devices over the internet is the basis of the Internet Of Things (IoT) lab

Some Circuit Theory

- A Light Emitting Diode (LED) is a type of Output Component. When current flows through the LED, it emits light
- A diode is a component that only lets current flow through it in one direction through it
- LEDs should be protected using resistors by reducing the amount of energy that reaches the LED

 Without the resistor, the LED could burn out

LEDs

Fall 2017

CSC 498R: Internet of Things

Negative LEDs

CSC 498R: Internet of Things

4-Band Resistor Color Code

Learn more at: https://learn.adafruit.com/multimeters/resistance

Graphical Resistor Calculator G+1 584

This JavaScript-based web app comes from my **JavaScript Bible** books (dating back to the very first edition with a few upgrades a long time ago). Although I have removed other book examples from this web site, this page remains the most popular destination within dannyg.com — presumably as a resource for students of electricity/electronics and my fellow radio geeks. Enjoy!

Illustration Copyright 1996 Danny Goodman (AE9F). All Rights Reserved. Graphical Resistor Calculator at: http://www.dannyg.com/examples/res2/resistor.htm

Fall 2017

CSC 498R: Internet of Things

71 2. LAU

Breadboard

• An electronics breadboard is a fundamental tool to build circuits. It is solderless, and great tool for prototyping.

Breadboard

Fall 2017

CSC 498R: Internet of Things

73

Experiment 1: Turning LED on

• What do we need?

Turning LED on

LAU کیکا کاریکا کارکا Lebanese American University

Turning LED on

CSC 498R: Internet of Things

78

Observations

- Circuit is always on
 Interesting but useless
- Can program the LED to turn on and off by using a GPIO pin
 - GPIO pins can be switched on and off
- Write some code that can control the behavior of the LED while making some subtle structural changes to the circuit

80 **2 LAU**

Programming the LED

- Remove the female-to-male jumper lead from the 3.3
 V pin
- Connect the female-to-male jumper lead to GP4
 Any other GPIO pin can do

CSC 498R: Internet of Things

Programming the LED

Programming LED Using RPi

Import the GPIO and time libraries import RPi.GPIO as GPIO import time # Set the pin designation type. # In this case, we use BCM- the GPIO number- rather than the pin number itself. GPIO.setmode (GPIO.BCM) # So that you don't need to manage non-descriptive numbers, # set "LIGHT" to 4 so that our code can easily reference the correct pin. ITGHT = 4# Because GPIO pins can act as either digital inputs or outputs, # we need to designate which way we want to use a given pin. # This allows us to use functions in the GPIO library in order to properly send and receive signals. GPI0.setup(LIGHT,GPI0.OUT) # Cause the light to blink until the keyboatrd is pressed, and print a message each time. # To blink the light, we call GPIO.output and pass as parameters the pin number (LIGHT) and the state we want. # True sets the pin to HIGH (sending a signal), False sets it to LOW. # To achieve a blink, we set the pin to High, wait for a fraction of a second, then set it to Low. # Adding keyboard interrupt with try and except so that program terminates when user presses Ctrl+C. try: while True: GPI0.output(LIGHT,True) time.sleep(0.5) GPIO.output(LIGHT.False) time.sleep(0.5) print("blink") except KeyboardInterrupt: https://pypi.python.org/pypi/RPi.GPIO GPIO.cleanup()

CSC 498R: Internet of Things

84 **كەللەل**

Programming LED Using GPI0zero

GPIOzero is another easy to use Raspberry PI Python

CSC 498R: Internet of Things

https://gpiozero.readthedocs.io/en/stable/

LAU

85

Import the gpiozero and time libraries Iteration 1 from gpiozero import LED from time import sleep # set "LIGHT" to 4 so that our code can easily reference the correct pin. red_led = LED(4) # Cause the light to blink and print a message each time. # Adding keyboard interrupt with try and except so that program terminates when user presses Ctrl+C. try: while True: red_led.on() sleep(0.5) red_led.off() sleep(1) print("blink") except KeyboardInterrupt: print("Bye") Fall 2017 86 CSC 498R: Internet of Things

Fall 2017

```
from gpiozero import LED
                                                                        Iteration 2
from time import sleep
red_led = LED(17)
# You may modify your code by adding the following function calls
red_led.blink(0.1, 0.2)
                                       # red_led.blink(on_time, off_time, n, background=True)
red_led.blink(0.2, 0.1, 5)
                                       # default: (1, 1, Infinite time, True)
red_led.toggle()
                                       # No need to keep track of whether the LED is on or off
sleep(1)
print(red_led.is_lit)
                                       # Check if LED is on or off
red_led.toggle()
sleep(1)
print(red_led.is_lit)
```

```
Fall 2017
```

CSC 498R: Internet of Things

87 255 LAU

Example 2: Controlling Buttons

```
from gpiozero importButton
```

```
btn = Button(4)
```

```
while True:
    btn.wait_for_press()
    print('You pressed me')
    btn.wait_for_release()
    print('You released me')
```


Example 3: Combing LEDs and Buttons

LAU

89

Fall 2017

CSC 498R: Internet of Things


```
from gpiozero import Button, LED
from time import time, sleep
from random import randint
led = LED(17)
btn = Button(4)
led.on()
btn.wait_for_press()
led.off()
while True:
    led.on()
    btn.wait_for_press()
    led.off()
```

```
Iteration 1
```

92 25 LAU

```
Iteration 2
```

```
from gpiozero import Button, LED
from time import time, sleep
from random import randint
led = LED(17)
btn = Button(4)
led.on()
btn.wait_for_press()
led.off()
while True:
    sleep(randint(1,10))
    led.on()
    btn.wait_for_press()
    led.off()
```

```
Fall 2017
```

CSC 498R: Internet of Things

```
from gpiozero import Button, LED
from time import time, sleep
from random import randint
led = LED(17)
btn = Button(4)
led.on()
btn.wait_for_press()
led.off()
while True:
    sleep(randint(1,10))
    led.on() start = time()
    btn.wait_for_press()
    led.off()
    end = time()
```

Iteration 3


```
from gpiozero import Button, LED
from time import time, sleep
from random import randint
led = LED(17)
btn = Button(4)
while True:
    sleep(randint(1,10))
    led.on()
    start = time()
    btn.wait_for_press()
    end = time()
    led.off()
    print(end - start)
```

Fall 2017

CSC 498R: Internet of Things

Iteration 4

Check for Understanding

 Which of these python programs would result in a LED (pin 17) which changes state whenever a Button (pin 4) is pressed.

```
from gpiozero import LED, Button
led = LED(17)
btn = Button(4)
while True:
btn.wait_for_press()
led.toggle()
```

```
from gpioz@ro import Button
led = LED(17)
btn = Button(4)
while True:
    btn.wait_for_press()
    led.toggle()
```

```
from gpiozero import LED, Button
led = LED(17)
btn = Button(4)
while True:
    btn.wait_for_press()
    led.on()
```

```
from gpiozero import LED, Button
led = LED(17)
btn = Button(4)
while True:
    btn.wait_for_press()
    led.toggle()
```

CSC 498R: Internet of Things

96

Example 4: Using the Camera

Fall 2017

CSC 498R: Internet of Things

http://picamera.readthedocs.io/en/release-1.13/for.html?highlight=camera

CSC 498R: Internet of Things

98 **21 LAU**

97

Using the Camera

import picamera
from time import sleep

Fall 2017

CSC 498R: Internet of Things

To Probe Further ...

Quick Reaction Game

https://www.raspberrypi.org/learning/python-quick-reaction-game/

CSC 498R: Internet of Things

To Probe Further ...

GPIO Music Box

https://www.raspberrypi.org/learning/gpio-music-box/worksheet/

Fall 2017

CSC 498R: Internet of Things

101 LAU

GPIOzero API Devices

- Input Devices
- Button
- Line Sensor
- Motion Sensor
- Light Sensor
- Distance Sensor
- DigitalInputDevice
- SmoothedInputDevice
- GPIODevice

Output Devices

- LED
- PWMLED
- RGBLED
- Buzzer
- Motor
- Servo
- AngularServo
- DigitalOutputDevice
- PWMOutputDevice

Some Useful GPIOzero API Devices

- Boards and Accessories
 - LEDBoard
 - LEDBarGraph
 - ButtonBoard
 - TrafficLights

CSC 498R: Internet of Things

103

Lab 1

- Using GPIOzero, experiment with the frequency of the LED flashes, what's the fastest you can make it flash? Can you make it flash randomly?
- Can you create short (dot) flashes and long (dash) flashes, giving you the basics of Morse code, with this can you broadcast a message?
- Can you add extra LEDs to your breadboard and control them with other GPIO pins?
- With multiple LEDs could you create a simple light sequence in code, this could be something functional like a traffic light sequence or something fun like some blinky disco lights

CSC 498R: Internet of Things

104 **25 LAU**

Raspberry Pi Hardware

Fall 2017

CSC 498R: Internet of Things

push button or switch

Individual Sensors

Sense HAT

CSC 498R: Internet of Things

106 LAU

105 **2. LAU**

Controlling the Pi from the Internet

Fall 2017

CSC 498R: Internet of Things

Making it IoT: Remote-Controlled LED

107

Making it IoT: Remote-Controlled LED

Subscribing data from a web client

pubnub = Pubnub(publish_key='demo', subscribe_key='demo')
channel = 'disco'

button.addEventListener('click', publish);

https://github.com/pubnub/workshop-raspberrypi/blob/master/web/disco.html

https://github.com/pubnub/workshop-raspberrypi/blob/master/projectspython/remote-led/remote-led.py

https://www.pubnub.com/docs/web-javascript/data-streams-publish-and-subscribe

CSC 498R: Internet of Things

110 **LAU**

Sample IoT Projects

Hardware

- Pyroelectric IR Motion sensor
- Combinations of sensors and LED
- DHT22 Temperature & Humidity sensor

PIR Motion Sensor

- It detects motions by measuring changes in IR radiation when an object moves around it.
- <u>https://github.com/pubnub/workshop-</u> raspberrypi/tree/master/projects-python/motion <u>sensor</u>
- <u>http://pubnub.github.io/workshop-raspberrypi/web/motion.html</u>

PIR Motion Sensor w/ LED

Combination of the PIR motion sensor with a LED as a visual indicator

https://github.com/pubnub/workshopraspberrypi/tree/master/projects-python/motion-led

http://pubnub.github.io/workshopraspberrypi/web/motion.html

•••

Pin 7 (GP10 4)

Data Visualization with Temperature Sensor

 It uses a capacitive humidity sensor and a thermistor to measure the surrounding air, and spits out a digital signal on the data pin.

raspberrypi/tree/master/projects-python/dht22

https://github.com/pubnub/workshop-

http://pubnub.github.io/workshopraspberrypi/web/temperature.html

DHT22 Sensor

DHT22 Sensor

Download & Install Adafruit DHT library:

~\$ git clone

https://github.com/adafruit/Adafruit_Python_DHT.git

- ~\$ cd Adafruit Python DHT
- \sim \$ sudo python setup.py install

https://github.com/pubnub/eon-chart

D LAU

Ultrasonic RangeFinder

 The HC-SR04 ultrasonic sensor uses sonar signals to determine distance to an object

Ultrasonic RangeFinder

<u>https://github.com/pubnub/workshop-</u>
 <u>raspberrypi/blob/master/projects-python/range-finder/</u>

<u>http://pubnub.github.io/workshop-</u> <u>raspberrypi/web/range.html</u>

Ultrasonic RangeFinder

لف المت المن المعالم ا Lebanese Amerikan University

Recall: Course Project

- Any novel idea
 - Discover what other projects exist, get some inspiration, find out the pitfalls.
 - Generate Ideas of what you would like to achieve, then shortlist which are the best.
 - Design & Build starting small, get the basics right first before tackling the most challenging aspects.
 - Test & Improve your project, be prepared to fail, learn and iterate.
 - Share what you're doing, ask for help where needed, inspire others to tackle their own projects
- Extra credit for new and interesting ideas

126 **2.1 LAU**

Project Themes

Music

- <u>https://www.raspberrypi.org/learning/gpio-music-box/worksheet/</u>
- Nature
- https://www.raspberrypi.org/?s=Nature
- Robotics

 <u>https://www.raspberrypi.org/?s=robotics</u>
- Space

 https://www.raspberrypi.org/education/programmes/astro-pi/
- Seasonal Holidays

 <u>https://www.raspberrypi.org/blog/holidays-with-pi/</u>
- Game
 - https://www.raspberrypi.org/learning/hamster-party-cam/worksheet/
 - <u>https://www.raspberrypi.org/resources/learn/</u>

Fall 2017

CSC 498R: Internet of Things

127

Credits

- Creative Commons Attributions
- LED circuit: Wikimedia
- PIR Sensor: Wikimedia / Oomlout
- Ultrasonic: Wikimedia / Georg Wiora (Dr. Schorsch)
- GPIO Pins: RaspberryPi-Spy.co.uk
- Raspberry Pi Foundation resources
- Also, great public domain images from Pixabay!