
Changing How Programmers
Think about

Parallel Programming
William Gropp

www.cs.illinois.edu/~wgropp

http://www.cs.illinois.edu/~wgropp

4

Outline

• Why Parallel Programming?
• What are some ways to think about parallel

programming?
• Thinking about parallelism: Bulk Synchronous

Programming
• Why is this bad?
• How should we think about parallel programming
• Separate the Programming Model from the Execution

Model
• Rethinking Parallel Computing
• How does this change the way you should look at

parallel programming?
• Example

5

Why Parallel Programming?

• Because you need more computing
resources that you can get with one
computer
♦ The focus is on performance
♦ Traditionally compute, but may be memory,

bandwidth, resilience/reliability, etc.
• High Performance Computing

♦ Is just that – ways to get exceptional
performance from computers – includes
both parallel and sequential computing

Presenter
Presentation Notes
Question to ask: What do you use for parallel programming? MPI / OpenMP / CUDA / OpenACC / OpenCL / pthreads / other

6

What are some ways to think
about parallel programming?

• At least two easy ways:
♦Coarse grained - Divide the problem

into big tasks, run many at the same
time, coordinate when necessary.
Sometimes called “Task Parallelism”

♦Fine grained - For each “operation”,
divide across functional units such as
floating point units. Sometimes
called “Data Parallelism”

7

Example – Coarse Grained

• Set students on different problems
in a related research area
♦Or mail lots of letters – give several

people the lists, have them do
everything

♦Common tools include threads, fork,
TBB

8

Example – Fine Grained

• Send out lists of letters
♦break into steps, make everyone

write letter text, then stuff envelope,
then write address, then apply
stamp. Then collect and mail.

♦Common tools include OpenMP,
autoparallelization or vectorization

• Both coarse and fine grained
approaches are relatively easy to
think about

9

Example:
Computation on a Mesh

• Each circle is a mesh point
• Difference equation

evaluated at each point
involves the four neighbors

• The red “plus” is called the
method’s stencil

• Good numerical algorithms
form a matrix equation
Au=f; solving this requires
computing Bv, where B is a
matrix derived from A.
These evaluations involve
computations with the
neighbors on the mesh.

10

Example:
Computation on a Mesh

• Each circle is a mesh point
• Difference equation

evaluated at each point
involves the four neighbors

• The red “plus” is called the
method’s stencil

• Good numerical algorithms
form a matrix equation
Au=f; solving this requires
computing Bv, where B is a
matrix derived from A.
These evaluations involve
computations with the
neighbors on the mesh.

• Decompose mesh into
equal sized (work) pieces

11

Necessary Data Transfers

12

Necessary Data Transfers

13

Necessary Data Transfers
• Provide access to remote data through a

halo exchange

14

PseudoCode

• Iterate until done:
♦Exchange “Halo” data

• MPI_Isend/MPI_Irecv/MPI_Waitall or
MPI_Alltoallv or MPI_Neighbor_alltoall or
MPI_Put/MPI_Win_fence or …

♦Perform stencil computation on local
memory
• Can use SMP/thread/vector parallelism

for stencil computation – E.g., OpenMP
loop parallelism

15

Thinking about Parallelism

• Parallelism is hard
♦ Must achieve both correctness and

performance
♦ Note for parallelism, performance is part of

correctness.
• Correctness requires understanding

how the different parts of a parallel
program interact
♦ People are bad at this
♦ This is why we have multiple layers of

management in organizations

16

Thinking about Parallelism: Bulk
Synchronous Programming

• In HPC, refers to a style of
programming where the
computation alternates between
communication and computation
phases

• Example from the PDE simulation
♦ Iterate until done:

• Exchange data with neighbors (see mesh)
• Apply computational stencil
• Check for convergence/compute vector product

Communication

Local
computation Synchronizing

communication

17

Thinking about Parallelism: Bulk
Synchronous Programming

• Widely used in computational
science and technical computing
♦Communication phases in PDE

simulation (halo exchanges)
♦ I/O, often after a computational step,

such as a time step in a simulation
♦Checkpoints used for resilience to

failures in the parallel computer

18

Bulk Synchronous Parallelism

• What is BSP and why is BSP important?
♦ Provides a way to think about performance and

correctness of the parallel program
• Performance modeled by computation step and

communication steps separately
• Correctness also by considering computation and

communication separately
♦ Classic approach to solving hard problems – break

down into smaller, easier ones.
• BSP formally described in “A Bridging Model

for Parallel Computation,” CACM 33#8, Aug
1990, by Leslie Valiant
♦ Use in HPC is both more and less than Valiant’s BSP

Presenter
Presentation Notes
Note Valient uses “Parallelism” but we started with Programming – the difference is subtle but important

19

Why is this bad?

• Not really bad, but has limitations
♦ Implicit assumption: work can be evenly

partitioned, or at least evenly enough
• But how easy is it to accurately predict

performance of some code or even the difference
in performance in code running on different data?

• Try it yourself – What is the performance of your
implementation of matrix-matrix multiply for a
dense matrix (or your favorite example)?

• Don’t forget to apply this to every part of the
computer – even if multicore, heterogeneous,
such as mixed CPU/GPU systems

• There are many other sources of performance
irregularity – its hard to precisely predict
performance

Presenter
Presentation Notes
Question to ask: How large will systems get in 2015 in terms of cores: 500,000 1,000,000 5,000,000, more

20

Why is this bad?

• Cost of “Synchronous”
♦Background: Systems are getting

very large
• Top systems have tens of thousands of

nodes and order 1 million cores:
− Tianhe-2 (China) 16,000 nodes
− Blue Waters (Illinois) 25,000 nodes
− Sequoia (LLNL) 98,304 nodes, >1M cores

♦ Just getting all of these nodes to
agree takes time
• O(10usecs) or about 20,000 cycles of

time)

Presenter
Presentation Notes
Add pictures

21

Barriers and Synchronizing
Communications

• Barrier:
♦ Every thread (process) must enter before

any can exit
• Many implementations, both in

hardware and software
♦ Where communication is pairwise, Barrier

can be implemented in O(log p) time. Note
Log2(106) ≈ 20
• But each step is communication, which takes 1us

or more

• Barriers rarely required in applications
(see “functionally irrelevant barriers”)

http://link.springer.com/chapter/10.1007/978-3-540-87475-1_36

22

Barriers and Synchronizing
Communications

• A communication operation that
has the property that all must
enter before any exits is called a
“synchronizing” communication
♦Barrier is the simplest synchronizing

communication
♦Summing up a value contributed from

all processes and providing the result
to all is another example
• Occurs in vector or dot products

important in many HPC computations

23

Synchronizing
Communication

• Other communication patterns are
more weakly synchronizing
♦Recall the halo exchange example
♦While not synchronizing across all

processes, still creates dependencies
• Processes can’t proceed until their

neighbors communicate
• Some programming implementations will

synchronize more strongly than required
by the data dependencies in the
algorithm

Presenter
Presentation Notes
Note this is our first hint that the programming model (or system) may influence the way we write the code and the performance that we can achieve

24

So What Does Go Wrong?

• What if one core (out of a million) is delayed?

• Everyone has to wait at the next synchronizing
communication

Apparent Time for Communication

Time

Actual time for
communication

25

And It Can Get Worse

• What if while waiting, another core is
delayed?
♦ “Characterizing the Influence of System

Noise on Large-Scale Applications by
Simulation,” Torsten Hoefler, Timo
Schneider, Andrew Lumsdaine
• Best Paper, SC10

♦ Becomes more likely as scale increases –
the probability that no core is delayed is
(1-f)p, where f is the probability that a core
is delayed, and p is the number of cores
• ≈ 1 – pf + …

• The delays can cascade

26

Many Sources of Delays

• Dynamic frequency scaling (power/temperature)
• Adaptive routing (network contention/resilience)
• Deep memory hierarchies (performance, power,

cost)
• Dynamic assignment of work to different cores,

processing elements, chips (CPU, GPU, …)
• Runtime services (respond to events both

external (network) and internal (gradual
underflow)

• OS services (including I/O,
heartbeat, support of runtime)

• etc.

27

Summary so Far

• BSP (in its general form) provides an
effective way to reason about parallel
programs in HPC
♦ Addresses both performance and

correctness
• Formal models of performance in wide use, from

Hockney’s original Tc=a+rn to LogP any beyond
• Increasing number of tools for evaluating

correctness of communication patterns

• But increasingly poor fit to real
systems, especially (but not only) at
extreme scale

28

How should we think about
parallel programming?

• Need a more formal way to think about
programming
♦ Must be based on the realities of real

systems
♦ Not the system that we wish we could build

(see PRAM)
• Not talking about a programming model

♦ Rather, first need to think about what an
extreme scale parallel system can do

♦ System – the hardware and the software
together

29

Separate the Programming
Model from the Execution Model

• What is an execution model?
♦ It’s how you think about how you can use a

parallel computer to solve a problem
• Why talk about this?

♦ The execution model can influence what
solutions you consider (see the Whorfian
hypothesis in linguistics)

♦ After decades where many computer
scientists only worked with one execution
model, we are now seeing new models and
their impact on programming and
algorithms

Presenter
Presentation Notes
An abstraction about how the system works
Note for a while the Whorfian hypothesis was supposedly discredited, but in the wiki description at least, the experiment that discredited it tried to prove a negative – only showed that the Whorfian hypothesis wasn’t universal, not that it never applied.

30

Examples of Execution
Models

• Von Neumann machine:
♦ Program counter
♦ Arithmetic Logic Unit
♦ Addressable Memory

• Classic Vector machine:
♦ Add “vectors” – apply the same operation to

a group of data with a single instruction
• Arbitrary length (CDC Star 100), 64 words (Cray),

2 words (SSE)

• GPUs with collections of threads
(Warps)

Presenter
Presentation Notes
Note that these are purposely vague – its how you think about it

31

Programming Models and
Systems

• In past, often a tight connection between the execution
model and the programming approach
♦ Fortran: FORmula TRANslation to von Neumann machine
♦ C: e.g., “register”, ++ operator match PDP-11 capabilities,

needs
• Over time, execution models and reality changed but

programming models rarely reflected those changes
♦ Rely on compiler to “hide” those changes from the user –

e.g., auto-vectorization for SSE(n)
• Consequence: Mismatch between users’ expectation and

system abilities.
♦ Can’t fully exploit system because user’s mental model of

execution does not match real hardware
♦ Decades of compiler research have shown this problem is

extremely hard – can’t expect system to do everything for
you.

32

Programming Models and
Systems

• Programming Model: an abstraction of a
way to write a program
♦ Many levels

• Procedural or imperative?
• Single address space with threads?
• Vectors as basic units of programming?

♦ Programming model often expressed with
pseudo code

• Programming System: (My
terminology)
♦ An API that implements parts or all of one

or more programming models, enabling the
precise specification of a program

33

Why the Distinction?

• In parallel computing,
♦ Message passing is a programming model

• Abstraction: A program consists of processes that
communication by sending messages. See “Communicating
Sequential Processes”, CACM 21#8, 1978, by C.A.R. Hoare.

♦ The Message Passing Interface (MPI) is a programming
system

• Implements message passing and other parallel programming
models, including:

• Bulk Synchronous Programming
• One-sided communication
• Shared-memory (between processes)

♦ CUDA/OpenACC/OpenCL are systems implementing
a “GPU Programming Model”

• Execution model involves teams, threads, synchronization
primitives, different types of memory and operations

34

The Devil Is in the Details

• There is no unique execution model
♦ What level of detail do you need to design and

implement your program?
• Don’t forget – you decided to use parallelism because

you could not get the performance you need without it

• Getting what you need already?
♦ Great! It ain’t broke

• But if you need more performance of any
type (scalability, total time to solution, user
productivity)
♦ Rethink your model of computation and the

programming models and systems that you use

35

Rethinking Parallel
Computing

• Changing the execution model
♦ No assumption of performance regularity – but not

unpredictable, just imprecise
• Predictable within limits and most of the time

♦ Any synchronization cost amplifies irregularity – don’t
include synchronizing communication as a desirable
operation

♦ Memory operations are always costly, so moving operation
to data may be more efficient

• Some hardware designs provide direct support for this, not
just software emulation

♦ Important to represent key hardware operations, which go
beyond simple single ALU

• Remote update (RDMA)
• Remote operation (compare and swap)
• Execute short code sequence (Active Messages, parcels)

36

How does this change the way you should
look at parallel programming?

• More dynamic. Plan for performance irregularity
♦ But still exploit as much regularity as possible to minimize

the overhead)
• Recognize communication takes time, which is not

precisely predictable
♦ Communication between cache and memory or between

two nodes in a parallel system
• Think about the execution model

♦ Your abstraction of how a parallel machine works
♦ Include the hardware-supported features that you need for

performance
• Finally, use a programming system that lets you

express the elements you need from the execution
model.

37

Example: The Mesh
Computation

• Rethinking: Performance not perfectly
predictable, so must not assume that a perfect
data distribution gives a perfect work
distribution
♦ One solution: “over decompose” mesh into more

pieces that there are processes or threads; use a
combination of a priori and dynamic scheduling to
adapt

• Rethinking: Communication dependencies
introduce delays
♦ Many solutions: Use one-sided communication; use

non-blocking communication; use multi-step
algorithms; use over decomposition to give greater
flexibility to comm schedule, …

38

Take Away

• Be aware of the capabilities of a parallel
system
♦ Not just what a particular programming model

provides
• Think about the realities of execution on your

parallel computer
♦ Use as simple an abstraction as possible but no

simpler
• Find a programming system with which you

can efficiently express your algorithm
♦ Don’t be confused by statements that a particular

programming system only implements a single
programming model or only works with a single
execution model

39

Further Investigation

• Programming systems and tools
that support a more dynamic form
of computing:
♦Charm++ and Adaptive MPI
♦DAQUE, used in the MAGMA and

PLASMA numerical libraries
♦Many thread-based tools, such as

TBB; “guided” scheduling in OpenMP
♦Don’t forget to explore the full

capabilities of MPI-3

40

Further Investigation

• Research systems
♦EARTH and EARTH Threaded-C

http://www.capsl.udel.edu/earth.sht
ml

♦XPRESS, HPX and ParalleX
https://www.xstackwiki.com/index.ph
p/XPRESS (and see other X-Stack
projects)

https://www.xstackwiki.com/index.php/XPRESS
https://www.xstackwiki.com/index.php/XPRESS

41

Further Investigation

• Algorithms
♦Nonblocking reductions in Conjugate

Gradient
♦Multistep methods (reduce, not

eliminate synchronizing collectives)
♦Data-centric graph algorithms (move

computation to data, rather than
remote access of data)

42

Further Investigation

• Many more; the preceding is just a
small sampling

• Search for “execution model
parallel computing”

• Meet with others using parallel
programming
♦We recommend SC13, November 17-

22, in Denver!

Presenter
Presentation Notes
Question to ask: In your field, is the use of parallel programming in HPC increasing, decreasing, or the same?

• Questions about this webcast? learning@acm.org

• ACM Learning Webinars:
 http://learning.acm.org/multimedia.cfm

• ACM Learning Center: http://learning.acm.org

• ACM SIGHPC: http://www.sighpc.org/

ACM: The Learning Continues…

mailto:learning@acm.org
http://learning.acm.org/multimedia.cfm
http://learning.acm.org/
http://learning.acm.org/
http://www.sighpc.org/
http://www.sighpc.org/
http://www.sighpc.org/
http://www.sighpc.org/

	Changing How Programmers Think about �Parallel Programming
	Outline
	Why Parallel Programming?
	What are some ways to think about parallel programming?
	Example – Coarse Grained
	Example – Fine Grained
	Example: �Computation on a Mesh
	Example: �Computation on a Mesh
	Necessary Data Transfers
	Necessary Data Transfers
	Necessary Data Transfers
	PseudoCode
	Thinking about Parallelism
	Thinking about Parallelism: Bulk Synchronous Programming
	Thinking about Parallelism: Bulk Synchronous Programming
	Bulk Synchronous Parallelism
	Why is this bad?
	Why is this bad?
	Barriers and Synchronizing Communications
	Barriers and Synchronizing Communications
	Synchronizing Communication
	So What Does Go Wrong?
	And It Can Get Worse
	Many Sources of Delays
	Summary so Far
	How should we think about parallel programming?
	Separate the Programming Model from the Execution Model
	Examples of Execution Models
	Programming Models and Systems
	Programming Models and Systems
	Why the Distinction?
	The Devil Is in the Details
	Rethinking Parallel Computing
	How does this change the way you should look at parallel programming?
	Example: The Mesh Computation
	Take Away
	Further Investigation
	Further Investigation
	Further Investigation
	Further Investigation
	ACM: The Learning Continues…

