
Accelerated Computing

GPU Teaching Kit

Tiled Matrix Multiplication

Module 4.3 - Memory Model and Locality

2

Objective
– To understand the design of a tiled parallel algorithm for matrix 

multiplication
– Loading a tile
– Phased execution
– Barrier Synchronization
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Matrix Multiplication
– Data access pattern

– Each thread - a row of M and a 
column of N

– Each thread block – a strip of M and a 
strip of N
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Tiled Matrix Multiplication
– Break up the execution of each 

thread into phases 

– so that the data accesses by the 

thread block in each phase are 

focused on one tile of M and one 

tile of N

– The tile is of BLOCK_SIZE 

elements in each dimension
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Loading a Tile
– All threads in a block participate

– Each thread loads one M element and one N element in tiled code
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Phase 0 Load for Block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory
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Phase 0 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1
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M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory
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Phase 0 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1
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P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory



9

Phase 1 Load for Block (0,0)
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P1,0

P0,2 P0,3

P1,1
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N3,0 N3,1

Shared Memory

Shared Memory
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Phase 1 Use for Block (0,0) (iteration 0)
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Phase 1 Use for Block (0,0) (iteration 1)
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12

Execution Phases of Toy Example
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Execution Phases of Toy Example (cont.)

Shared memory allows each value to be accessed by multiple 
threads 
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Barrier Synchronization
– Synchronize all threads in a block

– __syncthreads()

– All threads in the same block must reach the __syncthreads() before 
any of the them can move on

– Best used to coordinate the phased execution tiled algorithms
– To ensure that all elements of a tile are loaded at the beginning of a phase
– To ensure that all elements of a tile are consumed at the end of a phase
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Objective
– To learn to write a tiled matrix-multiplication kernel

– Loading and using tiles for matrix multiplication
– Barrier synchronization, shared memory
– Resource Considerations
– Assume that Width is a multiple of tile size for simplicity

2
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Loading Input Tile 0 of M (Phase 0) 
– Have each thread load an M 

element and an N element at the 

same relative position as its P 

element.

int Row = by * blockDim.y + ty;
int Col =   bx * blockDim.x + tx;
2D indexing for accessing Tile 0:

M[Row][tx]
N[ty][Col]
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Loading Input Tile 0 of N (Phase 0) 
– Have each thread load an M 

element and an N element at the 

same relative position as its P 

element.

int Row = by * blockDim.y + ty;
int Col =   bx * blockDim.x + tx;
2D indexing for accessing Tile 0:

M[Row][tx]
N[ty][Col]
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Loading Input Tile 1 of M (Phase 1) 

2D indexing for accessing Tile 1:
M[Row][1*TILE_WIDTH + tx]
N[1*TILE*WIDTH + ty][Col]
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Loading Input Tile 1 of N (Phase 1)

2D indexing for accessing Tile 1:
M[Row][1*TILE_WIDTH + tx]
N[1*TILE*WIDTH + ty][Col]
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M[Row][p*TILE_WIDTH+tx]
M[Row*Width + p*TILE_WIDTH + tx]

N[p*TILE_WIDTH+ty][Col]
N[(p*TILE_WIDTH+ty)*Width + Col]

where p is the sequence number of the current phase

M and N are dynamically allocated - use 1D indexing
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Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{
__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x;  int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory
ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];
__synchthreads();

}
P[Row*Width+Col] = Pvalue;

}
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Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{
__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x;  int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory
ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];
__synchthreads();

}
P[Row*Width+Col] = Pvalue;

}
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Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{
__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x;  int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory
ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];
__synchthreads();

}
P[Row*Width+Col] = Pvalue;

}
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Tile (Thread Block) Size Considerations
– Each thread block should have many threads

– TILE_WIDTH of 16 gives 16*16 = 256 threads
– TILE_WIDTH of 32 gives 32*32 = 1024 threads

– For 16, in each phase, each block performs 2*256 = 512 float 

loads from global memory for 256 * (2*16) = 8,192 mul/add 

operations. (16 floating-point operations for each memory load)

– For 32, in each phase, each block performs 2*1024 = 2048 float 

loads from global memory for 1024 * (2*32) = 65,536 mul/add 

operations. (32 floating-point operation for each memory load)
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Shared Memory and Threading
– For an SM with 16KB shared memory

– Shared memory size is implementation dependent!
– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared 

memory. 
– For 16KB shared memory, one can potentially have up to 8 thread blocks 

executing
– This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)

– The next TILE_WIDTH 32 would lead to 2*32*32*4 Byte= 8K Byte shared 
memory usage per thread block, allowing 2 thread blocks active at the same time 
– However, in a GPU where the thread count is limited to 1536 threads per SM, 

the number of blocks per SM is reduced to one!
– Each __syncthread() can reduce the number of active threads for a 

block
– More thread blocks can be advantageous
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Objective
– To learn to handle arbitrary matrix sizes in tiled matrix multiplication

– Boundary condition checking
– Regularizing tile contents
– Rectangular matrices
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Handling Matrix of Arbitrary Size
• The tiled matrix multiplication kernel we presented so far can 

handle only square matrices whose dimensions (Width) are 

multiples of the tile width (TILE_WIDTH)

• However, real applications need to handle arbitrary sized matrices.
• One could pad (add elements to) the rows and columns into multiples 

of the tile size, but would have significant space and data transfer time 
overhead.

• We will take a different approach.

30

Phase 1 Loads for Block (0,0) for a 3x3 Example 

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory

Threads (1,0) and (1,1) need special 
treatment in loading N tile 

Threads (0,1) and (1,1) need 
special treatment in loading M tile
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Phase 1 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory
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Phase 1 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory

All Threads need special 
treatment. None of them should 

introduce invalidate contributions 
to their P elements.
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Phase 0 Loads for Block (1,1) for a 3x3 Example 

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M2,1M2,0

N0,2

N1,2

Shared Memory

Shared Memory

Threads (0,1) and (1,1) need special 
treatment in loading N tile 

Threads (1,0) and (1,1) need 
special treatment in loading M tile
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Major Cases in Toy Example

– Threads that do not calculate valid P elements but still need to 

participate in loading the input tiles

– Phase 0 of Block(1,1), Thread(1,0), assigned to calculate non-existent P[3,2] but 
need to participate in loading tile element N[1,2] 

– Threads that calculate valid P elements may attempt to load non-
existing input elements when loading input tiles

– Phase 0 of Block(0,0), Thread(1,0), assigned to calculate valid P[1,0] but 
attempts to load non-existing N[3,0]
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A “Simple” Solution
– When a thread is to load any input element, test if it is in the valid index 

range
– If valid, proceed to load

– Else, do not load, just write a 0

– Rationale: a 0 value will ensure that that the multiply-add step does not 
affect the final value of the output element

– The condition tested for loading input elements is different from the test 
for calculating output P element

– A thread that does not calculate valid P element can still participate in loading input tile 
elements
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Phase 1 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

0M0,2

M1,2 0

N2,1N2,0

0 0
Shared Memory

Shared Memory
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Boundary Condition for Input M Tile
– Each thread loads

– M[Row][p*TILE_WIDTH+tx]
– M[Row*Width + p*TILE_WIDTH+tx]

– Need to test
– (Row < Width) && (p*TILE_WIDTH+tx < Width)

– If true, load M element

– Else , load 0

A

TILE_WIDTHTILE_WIDTH
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Boundary Condition for Input N Tile
– Each thread loads

– N[p*TILE_WIDTH+ty][Col]
– N[(p*TILE_WIDTH+ty)*Width+ Col]

– Need to test
– (p*TILE_WIDTH+ty < Width) && (Col< Width)

– If true, load N element

– Else , load 0

B
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TH
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TH
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Loading Elements – with boundary check
– 8    for (int p = 0; p < (Width-1) / TILE_WIDTH + 1; ++p) {

–
– ++       if(Row < Width && t * TILE_WIDTH+tx < Width) {

– 9               ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];
– ++       } else {

– ++             ds_M[ty][tx] = 0.0;

– ++       }
– ++       if (p*TILE_WIDTH+ty < Width && Col < Width) {

– 10             ds_N[ty][tx] = N[(p*TILE_WIDTH + ty) * Width + Col];
– ++       } else {

– ++             ds_N[ty][tx] = 0.0;

– ++       }
– 11      __syncthreads();
–

40

Inner Product – Before and After
– ++    if(Row < Width && Col < Width) {
– 12     for (int i = 0; i < TILE_WIDTH; ++i) {
– 13            Pvalue += ds_M[ty][i] * ds_N[i][tx];

– }
– 14     __syncthreads();

– 15   } /* end of outer for loop */

– ++   if (Row < Width && Col < Width) 
– 16         P[Row*Width + Col] = Pvalue;

– } /* end of kernel */
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Some Important Points
– For each thread the conditions are different for 

– Loading M element
– Loading N element
– Calculating and storing output elements

– The effect of control divergence should be small for large matrices
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Handling General Rectangular Matrices
– In general, the matrix multiplication is defined in terms of rectangular 

matrices
– A j x k M matrix multiplied with a k x l N matrix results in a j x l P matrix

– We have presented square matrix multiplication, a special case

– The kernel function needs to be generalized to handle general 
rectangular matrices

– The Width argument is replaced by three arguments: j, k, l
– When Width is used to refer to the height of M or height of P, replace it with j
– When Width is used to refer to the width of M or height of N, replace it with k
– When Width is used to refer to the width of N or width of P, replace it with l
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