
Accelerated Computing

GPU Teaching Kit

Tiled Matrix Multiplication

Module 4.3 - Memory Model and Locality

2

Objective
– To understand the design of a tiled parallel algorithm for matrix

multiplication
– Loading a tile
– Phased execution
– Barrier Synchronization

3

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

BL
O
C
K
_W
ID
TH
E

W
ID
TH

W
ID
TH

Row

Col

Matrix Multiplication
– Data access pattern

– Each thread - a row of M and a
column of N

– Each thread block – a strip of M and a
strip of N

4

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

BL
O
C
K
_W
ID
TH
E

W
ID
TH

W
ID
TH

Row

Col

Tiled Matrix Multiplication
– Break up the execution of each

thread into phases

– so that the data accesses by the

thread block in each phase are

focused on one tile of M and one

tile of N

– The tile is of BLOCK_SIZE

elements in each dimension

5

Loading a Tile
– All threads in a block participate

– Each thread loads one M element and one N element in tiled code

5

6

Phase 0 Load for Block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory

7

Phase 0 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory

8

Phase 0 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory

9

Phase 1 Load for Block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1

Shared Memory

Shared Memory

10

Phase 1 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1

Shared Memory

Shared Memory

11

Phase 1 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1

Shared Memory

Shared Memory

12

Execution Phases of Toy Example

13

Execution Phases of Toy Example (cont.)

Shared memory allows each value to be accessed by multiple
threads

14

Barrier Synchronization
– Synchronize all threads in a block

– __syncthreads()

– All threads in the same block must reach the __syncthreads() before
any of the them can move on

– Best used to coordinate the phased execution tiled algorithms
– To ensure that all elements of a tile are loaded at the beginning of a phase
– To ensure that all elements of a tile are consumed at the end of a phase

Accelerated Computing

GPU Teaching Kit

Tiled Matrix Multiplication Kernel

Module 4.4 - Memory and Data Locality

16

Objective
– To learn to write a tiled matrix-multiplication kernel

– Loading and using tiles for matrix multiplication
– Barrier synchronization, shared memory
– Resource Considerations
– Assume that Width is a multiple of tile size for simplicity

2

17

M

N

P

TILE_WIDTH

WIDTHWIDTH

TI
LE
_W
ID
TH
E

W
ID
TH

W
ID
TH

Row

Col

Loading Input Tile 0 of M (Phase 0)
– Have each thread load an M

element and an N element at the

same relative position as its P

element.

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
2D indexing for accessing Tile 0:

M[Row][tx]
N[ty][Col]

18

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

BL
O
C
K
_W
ID
TH
E

W
ID
TH

W
ID
TH

Row

Col

Loading Input Tile 0 of N (Phase 0)
– Have each thread load an M

element and an N element at the

same relative position as its P

element.

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
2D indexing for accessing Tile 0:

M[Row][tx]
N[ty][Col]

19

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

BL
O
C
K
_W
ID
TH
E

W
ID
TH

W
ID
TH

Row

Col

Loading Input Tile 1 of M (Phase 1)

2D indexing for accessing Tile 1:
M[Row][1*TILE_WIDTH + tx]
N[1*TILE*WIDTH + ty][Col]

20

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

BL
O
C
K
_W
ID
TH
E

W
ID
TH

W
ID
TH

Row

Col

Loading Input Tile 1 of N (Phase 1)

2D indexing for accessing Tile 1:
M[Row][1*TILE_WIDTH + tx]
N[1*TILE*WIDTH + ty][Col]

21

M[Row][p*TILE_WIDTH+tx]
M[Row*Width + p*TILE_WIDTH + tx]

N[p*TILE_WIDTH+ty][Col]
N[(p*TILE_WIDTH+ty)*Width + Col]

where p is the sequence number of the current phase

M and N are dynamically allocated - use 1D indexing

22

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{
__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory
ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];
__synchthreads();

}
P[Row*Width+Col] = Pvalue;

}

23

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{
__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory
ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];
__synchthreads();

}
P[Row*Width+Col] = Pvalue;

}

24

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{
__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory
ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];
__synchthreads();

}
P[Row*Width+Col] = Pvalue;

}

25

Tile (Thread Block) Size Considerations
– Each thread block should have many threads

– TILE_WIDTH of 16 gives 16*16 = 256 threads
– TILE_WIDTH of 32 gives 32*32 = 1024 threads

– For 16, in each phase, each block performs 2*256 = 512 float

loads from global memory for 256 * (2*16) = 8,192 mul/add

operations. (16 floating-point operations for each memory load)

– For 32, in each phase, each block performs 2*1024 = 2048 float

loads from global memory for 1024 * (2*32) = 65,536 mul/add

operations. (32 floating-point operation for each memory load)

25

26

Shared Memory and Threading
– For an SM with 16KB shared memory

– Shared memory size is implementation dependent!
– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared

memory.
– For 16KB shared memory, one can potentially have up to 8 thread blocks

executing
– This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)

– The next TILE_WIDTH 32 would lead to 2*32*32*4 Byte= 8K Byte shared
memory usage per thread block, allowing 2 thread blocks active at the same time
– However, in a GPU where the thread count is limited to 1536 threads per SM,

the number of blocks per SM is reduced to one!
– Each __syncthread() can reduce the number of active threads for a

block
– More thread blocks can be advantageous

26

Accelerated Computing

GPU Teaching Kit

Handling Arbitrary Matrix Sizes in Tiled Algorithms

Module 4.5 - Memory and Data Locality

28

Objective
– To learn to handle arbitrary matrix sizes in tiled matrix multiplication

– Boundary condition checking
– Regularizing tile contents
– Rectangular matrices

29

Handling Matrix of Arbitrary Size
• The tiled matrix multiplication kernel we presented so far can

handle only square matrices whose dimensions (Width) are

multiples of the tile width (TILE_WIDTH)

• However, real applications need to handle arbitrary sized matrices.
• One could pad (add elements to) the rows and columns into multiples

of the tile size, but would have significant space and data transfer time
overhead.

• We will take a different approach.

30

Phase 1 Loads for Block (0,0) for a 3x3 Example

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory

Threads (1,0) and (1,1) need special
treatment in loading N tile

Threads (0,1) and (1,1) need
special treatment in loading M tile

31

Phase 1 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory

32

Phase 1 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory

All Threads need special
treatment. None of them should

introduce invalidate contributions
to their P elements.

33

Phase 0 Loads for Block (1,1) for a 3x3 Example

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M2,1M2,0

N0,2

N1,2

Shared Memory

Shared Memory

Threads (0,1) and (1,1) need special
treatment in loading N tile

Threads (1,0) and (1,1) need
special treatment in loading M tile

34

Major Cases in Toy Example

– Threads that do not calculate valid P elements but still need to

participate in loading the input tiles

– Phase 0 of Block(1,1), Thread(1,0), assigned to calculate non-existent P[3,2] but
need to participate in loading tile element N[1,2]

– Threads that calculate valid P elements may attempt to load non-
existing input elements when loading input tiles

– Phase 0 of Block(0,0), Thread(1,0), assigned to calculate valid P[1,0] but
attempts to load non-existing N[3,0]

35

A “Simple” Solution
– When a thread is to load any input element, test if it is in the valid index

range
– If valid, proceed to load

– Else, do not load, just write a 0

– Rationale: a 0 value will ensure that that the multiply-add step does not
affect the final value of the output element

– The condition tested for loading input elements is different from the test
for calculating output P element

– A thread that does not calculate valid P element can still participate in loading input tile
elements

36

Phase 1 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

0M0,2

M1,2 0

N2,1N2,0

0 0
Shared Memory

Shared Memory

37

Boundary Condition for Input M Tile
– Each thread loads

– M[Row][p*TILE_WIDTH+tx]
– M[Row*Width + p*TILE_WIDTH+tx]

– Need to test
– (Row < Width) && (p*TILE_WIDTH+tx < Width)

– If true, load M element

– Else , load 0

A

TILE_WIDTHTILE_WIDTH

38

Boundary Condition for Input N Tile
– Each thread loads

– N[p*TILE_WIDTH+ty][Col]
– N[(p*TILE_WIDTH+ty)*Width+ Col]

– Need to test
– (p*TILE_WIDTH+ty < Width) && (Col< Width)

– If true, load N element

– Else , load 0

B

TI
LE
_W
ID
TH

TI
LE
_W
ID
TH

39

Loading Elements – with boundary check
– 8 for (int p = 0; p < (Width-1) / TILE_WIDTH + 1; ++p) {

–
– ++ if(Row < Width && t * TILE_WIDTH+tx < Width) {

– 9 ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];
– ++ } else {

– ++ ds_M[ty][tx] = 0.0;

– ++ }
– ++ if (p*TILE_WIDTH+ty < Width && Col < Width) {

– 10 ds_N[ty][tx] = N[(p*TILE_WIDTH + ty) * Width + Col];
– ++ } else {

– ++ ds_N[ty][tx] = 0.0;

– ++ }
– 11 __syncthreads();
–

40

Inner Product – Before and After
– ++ if(Row < Width && Col < Width) {
– 12 for (int i = 0; i < TILE_WIDTH; ++i) {
– 13 Pvalue += ds_M[ty][i] * ds_N[i][tx];

– }
– 14 __syncthreads();

– 15 } /* end of outer for loop */

– ++ if (Row < Width && Col < Width)
– 16 P[Row*Width + Col] = Pvalue;

– } /* end of kernel */

41

Some Important Points
– For each thread the conditions are different for

– Loading M element
– Loading N element
– Calculating and storing output elements

– The effect of control divergence should be small for large matrices

42

Handling General Rectangular Matrices
– In general, the matrix multiplication is defined in terms of rectangular

matrices
– A j x k M matrix multiplied with a k x l N matrix results in a j x l P matrix

– We have presented square matrix multiplication, a special case

– The kernel function needs to be generalized to handle general
rectangular matrices

– The Width argument is replaced by three arguments: j, k, l
– When Width is used to refer to the height of M or height of P, replace it with j
– When Width is used to refer to the width of M or height of N, replace it with k
– When Width is used to refer to the width of N or width of P, replace it with l

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under

the Creative Commons Attribution-NonCommercial 4.0 International License.

