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Memory and Data Locality

Obijective

— To learn to effectively use the CUDA memory types in a parallel
program
— Importance of memory access efficiency
— Registers, shared memory, global memory
— Scope and lifetime
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Review: Image Blur Kernel.

// Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {
for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

int curRow = Row + blurRow;
int curCol = Col + blurCol;
// Verify we have a valid image pixel
ifCcurRow > -1 &&% curRow < h && curCol > -1 && curCol < w) {
— pixVal += in[curRow * w + curCol];
pixels++; // Keep track of number of pixels in the accumu

}

// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal / pixels);

@nvon

How about performance on a GPU

— All threads access global memory for their input matrix elements
— One memory accesses (4 bytes) per floating-point addition
— 4B/s of memory bandwidth/FLOPS

— Assume a GPU with
— Peak floating-point rate 1,600 GFLOPS with 600 GB/s DRAM bandwidth
— 41,600 = 6,400 GB/s required to achieve peak FLOPS rating
— The 600 GB/s memory bandwidth limits the execution at 150 GFLOPS

— This limits the execution rate to 9.3% (150/1600) of the peak
floating-point execution rate of the device!

— Need to drastically cut down memory accesses to get close to
the1,600 GFLOPS

@nvioia



WIDTH

=
=
=
=
—
3|
N4
O
=}
=
@

BLOCK_WIDTH

WIDTH WIDTH

__global  void MatrixMulKernel (float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];
}
P[Row*Width+Col] = Pvalue;



Example — Matrix Multiplication

__global  void MatrixMulKernel (float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];
}
P[Row*Width+Col] = Pvalue;

@nvon

A Toy Example: Thread to P Data Mapping
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Programmer View of CUDA Memories
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Declaring CUDA Variables

Variable declaration Memory Scope Lifetime
int LocalVar; register thread thread
__device__ __shared__ int SharedVar; shared block block
__device__ int GlobalVar; global grid application
__device__ __constant__ int ConstantVar; constant grid application

— __device_ _ is optional when used with __shared ,or _ constant__

— Automatic variables reside in a register
— Except per-thread arrays that reside in global memory

@nvioia



Example:
Shared Memory Variable Declaration

void blurKernel(unsigned char * in, unsigned char * out,
2nt w, int h)

shared_ float ds in[TILE WIDTH] [TILE WIDTH];

Where to Declare Variables?

global - register

constant shared




Shared Memory in CUDA

— A special type of memory whose contents are explicitly defined and

used in the kernel source code

@nvoia

One in each SM

Accessed at much higher speed (in both latency and throughput) than global

memory

Scope of access and sharing - thread blocks

Lifetime — thread block, contents will disappear after the corresponding thread
finishes terminates execution

Accessed by memory load/store instructions

A form of scratchpad memory in computer architecture

Hardware View of CUDA Memories

@nvioia
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Module 4.2 — Memory and Data Locality

Obijective
— To understand the motivation and ideas for tiled parallel algorithms

— Reducing the limiting effect of memory bandwidth on parallel kernel performance
— Tiled algorithms and barrier synchronization
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Global Memory Access Pattern
of the Basic Matrix Multiplication Kernel

Global Memory

Thread 1 Thread 2
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Tiling/Blocking - Basic ldea
Global Memory

Thread 1 Thread 2

Divide the global memory content into tiles

Focus the computation of threads on one or a small number
of tiles at each point in time




Tiling/Blocking - Basic Idea
Global Memory

On-chip Memory

Thread 2

@nvioia [/ Bupos

Basic Concept of Tiling

— In a congested traffic system, significant reduction of vehicles
can greatly improve the delay seen by all vehicles

— Carpooling for commuters

— Tiling for global memory accesses
— drivers = threads accessing their memory data operands
— cars = memory access requests

@nion



Some Computations are More Challenging to Tile

— Some carpools may be easier than others
— Car pool participants need to have similar work schedule
— Some vehicles may be more suitable for carpooling

— Similar challenges exist in tiling

@nvon

Carpools need synchronization.

— Good: when people have similar schedule

Worker A sleep work dinner
Time
Worker B sleep work dinner

@nvioia



Carpools need synchronization.

— Bad: when people have very different schedule

Worker A party sleep work
time —
Worker B sleep work dinner

Same with Tiling

— Good: when threads have similar access timing

Thread 1

Thread 2

Thread 1

Thread 2

— Bad: when threads have very different timing

AnviDIA [ [LLINOIS




Barrier Synchronization for Tiling

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread N-3

Thread N-2
Thread N-1

Outline of Tiling Technique

— ldentify a tile of global memory contents that are accessed by
multiple threads

— Load the tile from global memory into on-chip memory

— Use barrier synchronization to make sure that all threads are ready
to start the phase

— Have the multiple threads to access their data from the on-chip
memory

— Use barrier synchronization to make sure that all threads have
completed the current phase

— Move on to the next tile

@nvioia
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Memory Model and Locality

Obijective

— To understand the design of a tiled parallel algorithm for matrix
multiplication
— Loading a tile
— Phased execution
— Barrier Synchronization

@ wia s




Data access pattern

— Each thread - a row of M and a
column of N

— Each thread block — a strip of M and a
strip of N

BLOCK_WIDTHE

BLOCK_WIDTH

WIDTH WIDTH

— Break up the execution of each
thread into phases

— so that the data accesses by the
thread block in each phase are

focused on one tile of M and one
tile of N

— The tile is of BLOCK_SIZE
elements in each dimension
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Loading a Tile

— All threads in a block participate
— Each thread loads one M element and one N element in tiled code

Phase 0 Load for Block (0,0)
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Phase 0 Use for Block (0,0) (iteration 0)
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Phase 0 Use for Block (0,0) (iteration 1)
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Phase 1 Load for Block (0,0)
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Phase 1 Use for Block (0,0) (iteration 0)
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Phase 1 Use for Block (0,0) (iteration 1)

Execution Phases of Toy Example
Phase 0 Phase 1

thread, PValue,, += PValue,, +=
MdSO,O*NdSO,O + MdSO,O*NdSO,O +
MdsO,l *Ndsl,O MdSO,l *Ndsl,O

thread, PValue, | += PValue, ; +=
MdSO,O*NdSO,l + MdSO,O*NdSOJ +
MdSO,l *NdSLl MdSO,l *Ndsljl

thread, PValue, , += PValue, ; +=
Mdsl,O*NdSO,O + Mdsl,O*NdSO,O +
Mdsl,l*NdSl,O Mdsl,l*Ndsl,O

thread, PValue, | += PValue, ; +=
Mds, ¢*Nds, ; + Mds, ¢*Nds, ; +
Mdsl,l*Ndsl,l Mdsl,l*Ndsl,l

time

= i



Execution Phases of Toy Example (cont.)

thread PValue, o += PValue,, +=
AV1Q *NdSO,O + MdSO’O*NdSO)O +
d SO,I *Ndsl,O MdSO,l *NdSI,O
threadojl PVa lueo’l += Pvalueo,l +=
‘m' NdS())l + MdSO’O*NdSOJ +
MdSO,l*Ndsl,l MdSO,l*Ndsl,l
threadLO PValueLO 4= PV&IUCLO +=
MdSI,O*NdSO,O + MdSI,O*NdSO,O +
Mdsl,l*Ndsl,O Mdsl,l*Ndsl,O
threadu Pvaluel,l += Pvaluel,l +=
Mds, ¢*Nds, ; + Mds; (*Nds, ; +
Mdsl,l*NdSU Mdsl,l*Ndsl,l
time >
Shared memory allows each value to be accessed by multiple
threads

@nvoia

Barrier Synchronization

— Synchronize all threads in a block
— __syncthreads()

— All threads in the same block must reach the __ syncthreads() before
any of the them can move on

— Best used to coordinate the phased execution tiled algorithms
— To ensure that all elements of a tile are loaded at the beginning of a phase
— To ensure that all elements of a tile are consumed at the end of a phase
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