
Accelerated Computing

GPU Teaching Kit

CUDA Memories

Memory and Data Locality

2

Objective
– To learn to effectively use the CUDA memory types in a parallel

program
– Importance of memory access efficiency
– Registers, shared memory, global memory
– Scope and lifetime

2

3

// Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {

for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

int curRow = Row + blurRow;
int curCol = Col + blurCol;
// Verify we have a valid image pixel
if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {

pixVal += in[curRow * w + curCol];
pixels++; // Keep track of number of pixels in the accumulated total

}
}

}

// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal / pixels);

Review: Image Blur Kernel.

4

How about performance on a GPU
– All threads access global memory for their input matrix elements

– One memory accesses (4 bytes) per floating-point addition
– 4B/s of memory bandwidth/FLOPS

– Assume a GPU with
– Peak floating-point rate 1,600 GFLOPS with 600 GB/s DRAM bandwidth
– 4*1,600 = 6,400 GB/s required to achieve peak FLOPS rating
– The 600 GB/s memory bandwidth limits the execution at 150 GFLOPS

– This limits the execution rate to 9.3% (150/1600) of the peak
floating-point execution rate of the device!

– Need to drastically cut down memory accesses to get close to
the1,600 GFLOPS

5

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

BL
O
C
K
_W
ID
TH
E

W
ID
TH

W
ID
TH

Row

Col

Example – Matrix Multiplication

6

A Basic Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {

Pvalue += M[Row*Width+k]*N[k*Width+Col];
}
P[Row*Width+Col] = Pvalue;

}

}

7

Example – Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {

Pvalue += M[Row*Width+k]*N[k*Width+Col];
}
P[Row*Width+Col] = Pvalue;

}

}

8

A Toy Example: Thread to P Data Mapping

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

Block(0,0) Block(0,1)

Block(1,1)Block(1,0)

BLOCK_WIDTH = 2
Thread(0,0)

Thread(1,0)

Thread(0,1)

Thread(1,1)

9

Calculation of P0,0 and P0,1

P0,1M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2

P0,0

M1,3 P1,0

N3,0 N3,1

N2,1

N1,1

N0,1N0,0

N1,0

N2,0

P1,1

P0,1

10

Memory and Registers in the Von-Neumann Model

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

11

Programmer View of CUDA Memories

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

12

Declaring CUDA Variables

– __device__ is optional when used with __shared__, or __constant__
– Automatic variables reside in a register

– Except per-thread arrays that reside in global memory

Variable declaration Memory Scope Lifetime

int LocalVar; register thread thread

__device__ __shared__ int SharedVar; shared block block

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

13

Example:
Shared Memory Variable Declaration

void blurKernel(unsigned char * in, unsigned char * out,
int w, int h)
{

__shared__ float ds_in[TILE_WIDTH][TILE_WIDTH];

…
}

14

Where to Declare Variables?

Can host
access it?

Outside of
any Function In the kernel

global
constant

register
shared

15

Shared Memory in CUDA
– A special type of memory whose contents are explicitly defined and

used in the kernel source code
– One in each SM
– Accessed at much higher speed (in both latency and throughput) than global

memory
– Scope of access and sharing - thread blocks
– Lifetime – thread block, contents will disappear after the corresponding thread

finishes terminates execution
– Accessed by memory load/store instructions
– A form of scratchpad memory in computer architecture

16

Global Memory

Processing Unit

I/O

ALU

Processor (SM)

Shared
Memory Register

File

Control Unit

PC IR

Hardware View of CUDA Memories

Accelerated Computing

GPU Teaching Kit

Tiled Parallel Algorithms

Module 4.2 – Memory and Data Locality

18

Objective
– To understand the motivation and ideas for tiled parallel algorithms

– Reducing the limiting effect of memory bandwidth on parallel kernel performance
– Tiled algorithms and barrier synchronization

19

Global Memory Access Pattern
of the Basic Matrix Multiplication Kernel

Thread 1 Thread 2
…

Global Memory

20

Tiling/Blocking - Basic Idea

Thread 1 Thread 2

…

Global Memory

On-chip Memory

Divide the global memory content into tiles

Focus the computation of threads on one or a small number
of tiles at each point in time

21

Tiling/Blocking - Basic Idea

Thread 1 Thread 2

…

Global Memory

On-chip Memory

22

Basic Concept of Tiling
– In a congested traffic system, significant reduction of vehicles

can greatly improve the delay seen by all vehicles
– Carpooling for commuters
– Tiling for global memory accesses

– drivers = threads accessing their memory data operands
– cars = memory access requests

22

23

Some Computations are More Challenging to Tile

– Some carpools may be easier than others
– Car pool participants need to have similar work schedule
– Some vehicles may be more suitable for carpooling

– Similar challenges exist in tiling

24

Carpools need synchronization.
– Good: when people have similar schedule

24

Worker A

Worker B
Time

sleep

sleep work

work

dinner

dinner

25

Carpools need synchronization.
– Bad: when people have very different schedule

25

Worker A

Worker B
time

sleep

sleep work

work

dinner

party

26

Same with Tiling
– Good: when threads have similar access timing

– Bad: when threads have very different timing
26

Thread 1

Thread 2
Time

Thread 1

Thread 2
Time

…

27

Barrier Synchronization for Tiling

28

Outline of Tiling Technique
– Identify a tile of global memory contents that are accessed by

multiple threads
– Load the tile from global memory into on-chip memory
– Use barrier synchronization to make sure that all threads are ready

to start the phase
– Have the multiple threads to access their data from the on-chip

memory
– Use barrier synchronization to make sure that all threads have

completed the current phase
– Move on to the next tile

28

Accelerated Computing

GPU Teaching Kit

Tiled Matrix Multiplication

Memory Model and Locality

30

Objective
– To understand the design of a tiled parallel algorithm for matrix

multiplication
– Loading a tile
– Phased execution
– Barrier Synchronization

31

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

BL
O
C
K
_W
ID
TH
E

W
ID
TH

W
ID
TH

Row

Col

Matrix Multiplication
– Data access pattern

– Each thread - a row of M and a
column of N

– Each thread block – a strip of M and a
strip of N

32

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

BL
O
C
K
_W
ID
TH
E

W
ID
TH

W
ID
TH

Row

Col

Tiled Matrix Multiplication
– Break up the execution of each

thread into phases
– so that the data accesses by the

thread block in each phase are
focused on one tile of M and one
tile of N

– The tile is of BLOCK_SIZE
elements in each dimension

33

Loading a Tile
– All threads in a block participate

– Each thread loads one M element and one N element in tiled code

33

34

Phase 0 Load for Block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory

35

Phase 0 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory

36

Phase 0 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory

37

Phase 1 Load for Block (0,0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1

Shared Memory

Shared Memory

38

Phase 1 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1

Shared Memory

Shared Memory

39

Phase 1 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,3M0,2

M1,2 M1,3

N2,1N2,0

N3,0 N3,1

Shared Memory

Shared Memory

40

Execution Phases of Toy Example

41

Execution Phases of Toy Example (cont.)

Shared memory allows each value to be accessed by multiple
threads

42

Barrier Synchronization
– Synchronize all threads in a block

– __syncthreads()

– All threads in the same block must reach the __syncthreads() before
any of the them can move on

– Best used to coordinate the phased execution tiled algorithms
– To ensure that all elements of a tile are loaded at the beginning of a phase
– To ensure that all elements of a tile are consumed at the end of a phase

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

