@ NVIDIA. GPU Teaching Kit

Memory and Data Locality

Obijective

— To learn to effectively use the CUDA memory types in a parallel
program
— Importance of memory access efficiency
— Registers, shared memory, global memory
— Scope and lifetime

@ wia s

Review: Image Blur Kernel.

// Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {
for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

int curRow = Row + blurRow;
int curCol = Col + blurCol;
// Verify we have a valid image pixel
ifCcurRow > -1 &&% curRow < h && curCol > -1 && curCol < w) {
— pixVal += in[curRow * w + curCol];
pixels++; // Keep track of number of pixels in the accumu

}

// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal / pixels);

@nvon

How about performance on a GPU

— All threads access global memory for their input matrix elements
— One memory accesses (4 bytes) per floating-point addition
— 4B/s of memory bandwidth/FLOPS

— Assume a GPU with
— Peak floating-point rate 1,600 GFLOPS with 600 GB/s DRAM bandwidth
— 41,600 = 6,400 GB/s required to achieve peak FLOPS rating
— The 600 GB/s memory bandwidth limits the execution at 150 GFLOPS

— This limits the execution rate to 9.3% (150/1600) of the peak
floating-point execution rate of the device!

— Need to drastically cut down memory accesses to get close to
the1,600 GFLOPS

@nvioia

WIDTH

=
=
=
=
—
3|
N4
O
=}
=
@

BLOCK_WIDTH

WIDTH WIDTH

__global void MatrixMulKernel (float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];
}
P[Row*Width+Col] = Pvalue;

Example — Matrix Multiplication

__global void MatrixMulKernel (float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];
}
P[Row*Width+Col] = Pvalue;

@nvon

A Toy Example: Thread to P Data Mapping

Block(0,0) Block(0,1)

\ Thr?ad(O, 1) /

Thread(0,0) —_|

Thread(1,0) — .
Thread(1,1) —] —Lﬂ—g L1ft2| 13

Block(1,0) Block(1,1)

v
P00 | Po1| Poz | Pos| BLOCK WIDTH = 2

Snvoi [Hiuos

Calculation of Py 5 and Py

0,0 (0

1,0

2,0

3,0

Y 79

Memory and Registers in the Von-Neumann Model

A 4

Memory o

t v N
Processing Unit |

A

Reg

File

A
1

Control Unit

m AnviDIA

Programmer View of CUDA Memories

Grid

Block (0, 0) Block (1, 0)

o] g | e

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

-
]

SAnviDia ILLINOIS

Declaring CUDA Variables

Variable declaration Memory Scope Lifetime
int LocalVar; register thread thread
__device__ __shared__ int SharedVar; shared block block
__device__ int GlobalVar; global grid application
__device__ __constant__ int ConstantVar; constant grid application

— __device_ _ is optional when used with __shared ,or _ constant__

— Automatic variables reside in a register
— Except per-thread arrays that reside in global memory

@nvioia

Example:
Shared Memory Variable Declaration

void blurKernel(unsigned char * in, unsigned char * out,
2nt w, int h)

shared_ float ds in[TILE WIDTH] [TILE WIDTH];

Where to Declare Variables?

global - register

constant shared

Shared Memory in CUDA

— A special type of memory whose contents are explicitly defined and

used in the kernel source code

@nvoia

One in each SM

Accessed at much higher speed (in both latency and throughput) than global

memory

Scope of access and sharing - thread blocks

Lifetime — thread block, contents will disappear after the corresponding thread
finishes terminates execution

Accessed by memory load/store instructions

A form of scratchpad memory in computer architecture

Hardware View of CUDA Memories

@nvioia

....... > Global Memory

Memory

Shared

170

Processing Unit

Register
File

A [
A

Control Unit

PC

IR

Processor (SM)

@ NVIDIA. GPU Teaching Kit

Module 4.2 — Memory and Data Locality

Obijective
— To understand the motivation and ideas for tiled parallel algorithms

— Reducing the limiting effect of memory bandwidth on parallel kernel performance
— Tiled algorithms and barrier synchronization

- [f=wea b

Global Memory Access Pattern
of the Basic Matrix Multiplication Kernel

Global Memory

Thread 1 Thread 2

<ANVIDIA J ILLINOIS

Tiling/Blocking - Basic ldea
Global Memory

Thread 1 Thread 2

Divide the global memory content into tiles

Focus the computation of threads on one or a small number
of tiles at each point in time

Tiling/Blocking - Basic Idea
Global Memory

On-chip Memory

Thread 2

@nvioia [/ Bupos

Basic Concept of Tiling

— In a congested traffic system, significant reduction of vehicles
can greatly improve the delay seen by all vehicles

— Carpooling for commuters

— Tiling for global memory accesses
— drivers = threads accessing their memory data operands
— cars = memory access requests

@nion

Some Computations are More Challenging to Tile

— Some carpools may be easier than others
— Car pool participants need to have similar work schedule
— Some vehicles may be more suitable for carpooling

— Similar challenges exist in tiling

@nvon

Carpools need synchronization.

— Good: when people have similar schedule

Worker A sleep work dinner
Time
Worker B sleep work dinner

@nvioia

Carpools need synchronization.

— Bad: when people have very different schedule

Worker A party sleep work
time —
Worker B sleep work dinner

Same with Tiling

— Good: when threads have similar access timing

Thread 1

Thread 2

Thread 1

Thread 2

— Bad: when threads have very different timing

AnviDIA [[LLINOIS

Barrier Synchronization for Tiling

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread N-3

Thread N-2
Thread N-1

Outline of Tiling Technique

— ldentify a tile of global memory contents that are accessed by
multiple threads

— Load the tile from global memory into on-chip memory

— Use barrier synchronization to make sure that all threads are ready
to start the phase

— Have the multiple threads to access their data from the on-chip
memory

— Use barrier synchronization to make sure that all threads have
completed the current phase

— Move on to the next tile

@nvioia

@ NVIDIA. GPU Teaching Kit

Memory Model and Locality

Obijective

— To understand the design of a tiled parallel algorithm for matrix
multiplication
— Loading a tile
— Phased execution
— Barrier Synchronization

@ wia s

Data access pattern

— Each thread - a row of M and a
column of N

— Each thread block — a strip of M and a
strip of N

BLOCK_WIDTHE

BLOCK_WIDTH

WIDTH WIDTH

— Break up the execution of each
thread into phases

— so that the data accesses by the
thread block in each phase are

focused on one tile of M and one
tile of N

— The tile is of BLOCK_SIZE
elements in each dimension

BLOCK_WIDTHE

BLOCK_WIDTH

WIDTH

Col

Loading a Tile

— All threads in a block participate
— Each thread loads one M element and one N element in tiled code

Phase 0 Load for Block (0,0)

N N NI R]
0,0 'NO;T 0,2 '0,3 s 0,1 Shared Mernory
N ;‘;4 4 :‘IIA a ;‘lIA ~ | |
1,0 : 7 —_T - 1
NZ,O N2,1 NZ,Z N2,3
N3 0 N31 N3,2 N3i3
Shared Memory
) A\ | IR .
Mo,o g1 22 Vg-3 'Iiau,u ﬂo,1 P0,0 P0,1 Po,z P0,3
Nh,o -IV\1 2 ."}‘. 8 11 P1'0 P1,1 P1‘2- P1 3
Ma,o[Mo 1|M; 2[My 5 P2.o|P2,10P2,2|Pas
Py o|P3]Ps,|P

M3,0 M3,1IM3,2_M3I3 3,0]" 3,1 3,2_ 3i3

- SAnVIDIA ILLINOIS

Phase 0 Use for Block (0,0) (iteration 0)

No.o|No, No.2|No.3 No,o| Mo, Shared Memory
Nio[Ni1NiaNis Nio Ny s
N2,o|N2,1IN22 [Ny 3
N3o[N3 N3 5N 5

- Shared Memory
Mg 0{Mo,1]Mo,2|Mg 3 ‘Mﬁﬁz%A Po,2|Po,3
Miol MM ML Mo o1 21.11P12 (P13
My 0|My,1IM2 2| Mg 3 Ipz,o P21P2,2|P23
Ms oM oIMs 5[M3 5 [P20/Psi0Ps2|Ps s

[@rvoa [Buos [

Phase 0 Use for Block (0,0) (iteration 1)

No,0|No,1]No,2|No,3 No,o|No,1l shared Memory
Ny o[y [Ny oI ol
Ny o|N2 1INz 2Ny 3
N3 oIN3 4IN5 5N
EE— Shared Memory]]
Mo .0|Mo,1]Mo 2[Mg 3 Mo o %-ﬁm Po.2|Po3
MiolMiIMi oM sl My o] M ot21.1]P12|P1 3]
Ma,o0[Mg, 1[Ma o[M; 5 [P20 (P2t P22 [Pass
Ms o[M3 o [Ms M, [PsoPs|Pss Pyl

AnviDIA

wvos f |

Phase 1 Load for Block (0,0)

No,o N0,1 No,z N0,3
N1,0 N1,1 N1,2_ N1|3

A A N1 | NI
NZ,O I‘{.’)]1 I‘h") I‘h": lN?}n 1 Shared Memory
N3 o[NG 2 153 1NN,

B Shared Memory

Mo,o M0,1 Mo,z 'V-\ﬁ- ' 0,3 Po,o I301 Po,z I30 3
M1,o M1,1 '\/\1,2_M~1-a-i P1,0 Py 1 P1,2_ P1|3
Mz,o M2,1 Mz,z M2,3 Pz,o P21 Pz,z Pz 3
M3,0 M3,1 M3,2_M3i3 P3.0 P31 P3,2 P3i3

@nvon

Phase 1 Use for Block (0,0) (iteration 0)

No,o|No,1INo.2[No 3

Ny o|Ny 4 N1,2_ N1i3

Na,o|Na,1[N2,2|Na 3 NEO N_“ Shared Memory

B Shared Memory 1T 1

Mo, oMo, 1Moo [Mo s Mo 2e-0120,11Po,2 | Po,3

M1 oM 4 M1,2_M1 3] MM~ o+ 1 P1,2_ P1|3

Ma,o[My, 1Mo s [M; 5 1P2o|P2,1|P22|Pas

Ms o|Ms 4 M3,2_M3I3 |P3,0 P; 4 P3,z_ P3i3

AnviDIA

wvos f |

Phase 1 Use for Block (0,0) (iteration 1)

Execution Phases of Toy Example
Phase 0 Phase 1

thread, PValue,, += PValue,, +=
MdSO,O*NdSO,O + MdSO,O*NdSO,O +
MdsO,l *Ndsl,O MdSO,l *Ndsl,O

thread, PValue, | += PValue, ; +=
MdSO,O*NdSO,l + MdSO,O*NdSOJ +
MdSO,l *NdSLl MdSO,l *Ndsljl

thread, PValue, , += PValue, ; +=
Mdsl,O*NdSO,O + Mdsl,O*NdSO,O +
Mdsl,l*NdSl,O Mdsl,l*Ndsl,O

thread, PValue, | += PValue, ; +=
Mds, ¢*Nds, ; + Mds, ¢*Nds, ; +
Mdsl,l*Ndsl,l Mdsl,l*Ndsl,l

time

= i

Execution Phases of Toy Example (cont.)

thread PValue, o += PValue,, +=
AV1Q *NdSO,O + MdSO’O*NdSO)O +
d SO,I *Ndsl,O MdSO,l *NdSI,O
threadojl PVa lueo’l += Pvalueo,l +=
‘m' NdS())l + MdSO’O*NdSOJ +
MdSO,l*Ndsl,l MdSO,l*Ndsl,l
threadLO PValueLO 4= PV&IUCLO +=
MdSI,O*NdSO,O + MdSI,O*NdSO,O +
Mdsl,l*Ndsl,O Mdsl,l*Ndsl,O
threadu Pvaluel,l += Pvaluel,l +=
Mds, ¢*Nds, ; + Mds; (*Nds, ; +
Mdsl,l*NdSU Mdsl,l*Ndsl,l
time >
Shared memory allows each value to be accessed by multiple
threads

@nvoia

Barrier Synchronization

— Synchronize all threads in a block
— __syncthreads()

— All threads in the same block must reach the __ syncthreads() before
any of the them can move on

— Best used to coordinate the phased execution tiled algorithms
— To ensure that all elements of a tile are loaded at the beginning of a phase
— To ensure that all elements of a tile are consumed at the end of a phase

Snvoi [Hiuos

@ NVIDIA. GPU Teaching Kit

