GPU Teaching Kit
<ANVIDIA. 5

CUDA Parallelism Model

Obijective

— To gain deeper understanding of multi-dimensional grid kernel
configurations through a real-world use case

@nvoin

RGB Color Image Representation

— Each pixel in an image is an RGB value :
— The format of an image’s row is

(rgb)(rgb)...(rgb)
— RGB ranges are not distributed uniform|y =====ss=aazzx

— Many different color spaces, here we showthe — |
constants to convert to AdobeRGB color space |
— The vertical axis (y value) and horizontal axis (x value) show
the fraction of the pixel intensity that should be allocated to G
and B. The remaining fraction (1-y—x) of the pixel intensity that -
should be assigned to R
— The triangle contains all the representable colors in this color
space

@nvioia [/ Bupos

RGB to Grayscale Conversion

A grayscale digital image is an image in which the value of
each pixel carries only intensity information.

Color Calculating Formula

— For each pixel (r g b) at (I, J) do:
grayPixel[l,J] = 0.21*r + 0.71*g + 0.07"b
— This is just a dot product <[r,g,b],[0.21,0.71,0.07]> with the
constants being specific to input RGB space

@nvoia

RGB to Grayscale Conversion Code

#define CHANNELS 3 // we have 3 channels corresponding to RGB
/7 The input image is encoded as unsigned characters [0, 255]

__global__ void colorConvert(unsigned char * grayImage,
unsigned char * rgbImage,

int width, int height) {
threadIdx.x + blockIdx.x * blockDim.x;
threadIdx.y + blockIdx.y * blockDim.y;

int x
int y

if (x < width & y < height) {

}
}

@ wia Lo

RGB to Grayscale Conversion Code

#define CHANNELS 3 /" we have 3 channels corresponding to RGB
/7 The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * graylImage,
unsigned char * rgbImage,
int width, int height) {
threadIdx.x + blockIdx.x * blockDim.x;
threadldx.y + blockIdx.y * blockDim.y;

int x
int y

if (x < width &% y < height) {
/7 get 1D coordinate for the grayscale image
int grayOffset = y*width + x;
/7 one can think of the RGB image having
/7 CHANNEL times columns than the gray scale image
int rgbOffset = grayOffset*CHANNELS;
unsigned char r rgbImage[rgbOffset 1; /7 red value for pixel
unsigned char g = rgbImage[rgbOffset + 1]1; ./ green value for pixel
unsigned char b = rgbImage[rgbOffset + 2]; ./ blue value for pixel

}
}

@nvoia

RGB to Grayscale Conversion Code

#define CHANNELS 3 ./ we have 3 channels corresponding to RGB
/7 The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,
unsigned char * rgbImage,
int width, int height) {
threadIdx.x + blockIdx.x * blockDim.x;
threadIdx.y + blockIdx.y * blockDim.y;

int x
int y

if (x < width & y < height) {
/7 get 1D coordinate for the grayscale image
int grayOffset = y*width + x;
/7 one can think of the RGB image having
/7 CHANNEL times columns than the gray scale image
int rgbOffset = grayOffset*CHANNELS;
unsigned char r rgbImage[rgbOffset 1; /7 red value for pixel
unsigned char g = rgbImage[rgbOffset + 2]; // green value for pixel
unsigned char b = rgbImage[rgbOffset + 3]; // blue value for pixel
/7 perform the rescaling and store 1t
/7 We multiply by floating point constants
grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;
3
3

= i

GPU Teaching Kit
<ANVIDIA. =

CUDA Parallelism Model

Obijective

— To learn a 2D kernel with more complex computation and memory
access patterns

@nvoin

Image Blurring

<ANnVIDIA

Blurring Box

Pixels
processed
by a
thread
block

@moe /I

Image Blur as a 2D Kernel

__global__
void blurKernel(unsigned char * in, unsigned char * out,
int w, int h)
{
int Col = blockIdx.x * blockDim.x + threadIdx.x;
int Row = blockIdx.y * blockDim.y + threadIdx.y;

1f (Col < w && Row < h) {
// Rest of our kernel
}

B @ @@ .

__global__

void blurKernel(unsigned char * in, unsigned char * out, int w, int h) {
int Col = blockIdx.x * blockDim.x + threadIdx.x;
int Row = blockIdx.y * blockDim.y + threadIdx.y;

if (Col < w &% Row < h) {
int pixVal = 0;
int pixels = 0;

// Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {
for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

int curRow = Row + blurRow;

int curCol Col + blurCol;

// Verify we have a valid image pixel

if(curRow > -1 && curRow < h & & curCol > -1 && curCol < w) {
pixVal += in[curRow * w + curCol];
pixels++; // Keep track of number of pixels in the

accumulated total
}
}
}

// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal / pixels);

Snvoi [Hiuos

GPUT hing Kit
<ANVIDIA. g oK

CUDA Parallelism Model

Obijective

— To learn how a CUDA kernel utilizes hardware execution resources
— Assigning thread blocks to execution resources
— Capacity constrains of execution resources
— Zero-overhead thread scheduling

Transparent Scalability

Device

Thread grid

tim

— Each block can execute in any order relative to others.
— Hardware is free to assign blocks to any processor at any time
— A kernel scales to any number of parallel processors

Snvoa /B

[NON) ~ haidar — ssh root@vlsi.byblos.lau.edu.lb — 141x46

[vlsi:/usr/local/cuda/extras/demo_suite # ./deviceQuery

./deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device @: "GeForce GTX TITAN X"
CUDA Driver Version / Runtime Version
CUDA Capability Major/Minor version number:
Total amount of global memory:
(24) Multiprocessors, (128) CUDA Cores/MP:
GPU Max Clock rate:
Memory Clock rate:
Memory Bus Width:
L2 Cache Size:
Maximum Texture Dimension Size (x,y,z)
Maximum Layered 1D Texture Size, (num) layers
Maximum Layered 2D Texture Size, (num) layers
Total amount of constant memory:
Total amount of shared memory per block:
Total number of registers available per block:
Warp size:
Maximum number of threads per multiprocessor:
Maximum number of threads per block:
Max dimension size of a thread block (x,y,z):
Max dimension size of a grid size (x,y,2):
Maximum memory pitch:
Texture alignment:
Concurrent copy and kernel execution:
Run time limit on kernels:
Integrated GPU sharing Host Memory:
Support host page-locked memory mapping:
Alignment requirement for Surfaces:
Device has ECC support:
Device supports Unified Addressing (UVA):
Device supports Compute Preemption:
Supports Cooperative Kernel Launch:
Supports MultiDevice Co-op Kernel Launch:
Device PCI Domain ID / Bus ID / location ID:
Compute Mode:

10.1 / 10.1

5.2

12212 MBytes (12804685824 bytes)
3072 CUDA Cores

1076 MHz (1.08 GHz)

3505 Mhz

384-bit

3145728 bytes

1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
1D=(16384), 2048 layers
2D=(16384, 16384), 2048 layers
65536 bytes

49152 bytes

65536

32

2048

1024

(1024, 1024, 64)
(2147483647, 65535, 65535)

2147483647 bytes
512 bytes

Yes with 2 copy engine(s)
Yes

No

Yes

Yes

Disabled

Yes

No

No

No

e/ 3/80

< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.1, CUDA Runtime Version = 10.1, NumDevs = 1, Device® = GeForce GTX TITAN X

Result = PASS
vlsi:/usr/local/cuda/extras/demo_suite # ||

@nvioia

Example: Executing Thread Blocks

— Threads are assigned to Streaming
Multiprocessors (SM) in block granularity
— Up to 32 blocks to each SM as resource allows
— Volta SM can take up to 2048 threads
— Could be 256 (threads/block) * 8 blocks
— Or 512 (threads/block) * 4 blocks, etc.

— SM maintains thread/block idx #s
— SM manages/schedules thread execution

@nvon

The Von-Neumann Model

A 4

Memory
_____ , /0

1 v N

Processing Unit
Reg
File
@

Control Unit

A

@nvioia

The Von-Neumann Model with SIMD units

\ 4

Memory <
£ >|
! t v R
Processing Unit
Reg
File

I

170

Control Unit

Single Instruction Multiple Data
(SIMD)

@nvoia

Warps as Scheduling Units

« Each Block is executed as 32-thread Warps

— An implementation decision, not part of the
CUDA programming model

— Warps are scheduling units in SM
— Threads in a warp execute in SIMD

— Future GPUs may have different number of
threads in each warp

@ wia LN

Warp Example

« If 3 blocks are assigned to an SM and each block has 256 threads,
how many Warps are there in an SM?
— Each Block is divided into 256/32 = 8 Warps
— There are 8 * 3 = 24 Warps

™~ Block 0 Warps — Block 1 Warps — Block 2 Warps

1‘ 1‘

Example: Thread Scheduling (Cont.)

— SM implements zero-overhead warp scheduling

— Warps whose next instruction has its operands ready for consumption are eligible
for execution
— Eligible Warps are selected for execution based on a prioritized scheduling policy

— All threads in a warp execute the same instruction when selected

@nvioia

Block Granularity Considerations

— For Matrix Multiplication using multiple blocks,
should each block have 4X4, 8X8 or 30X30 threads
for Volta?

— For 4X4, we have 16 threads per Block. Each SM can
take up to 2048 threads, which translates to 128 Blocks.
However, each SM can only take up to 32 Blocks, so
only 512 threads will go into each SM!

— For 8X8, we have 64 threads per Block. Since each SM
can take up to 2048 threads, it can take up to 32 Blocks
and achieve full capacity unless other resource
considerations overrule.

— For 30X30, we would have 900 threads per Block. Only
two blocks could fit into an SM for Volta, so only
1800/2048 of the SM thread capacity would be utilized.

ANVIDIA

@ NVIDIA GPU Teaching Kit
ILLINOIS

