
Accelerated Computing

GPU Teaching Kit

Color-to-Grayscale Image Processing Example

CUDA Parallelism Model

GPU Teaching Kit

2

Objective
– To gain deeper understanding of multi-dimensional grid kernel

configurations through a real-world use case

2

3

RGB Color Image Representation

– Each pixel in an image is an RGB value
– The format of an image’s row is

(r g b) (r g b) … (r g b)
– RGB ranges are not distributed uniformly
– Many different color spaces, here we show the

constants to convert to AdobeRGB color space
– The vertical axis (y value) and horizontal axis (x value) show

the fraction of the pixel intensity that should be allocated to G
and B. The remaining fraction (1-y–x) of the pixel intensity that
should be assigned to R

– The triangle contains all the representable colors in this color
space

4

RGB to Grayscale Conversion

A grayscale digital image is an image in which the value of
each pixel carries only intensity information.

5

Color Calculating Formula

– For each pixel (r g b) at (I, J) do:
grayPixel[I,J] = 0.21*r + 0.71*g + 0.07*b

– This is just a dot product <[r,g,b],[0.21,0.71,0.07]> with the
constants being specific to input RGB space

0.21
0.71

0.07

6

RGB to Grayscale Conversion Code
#define CHANNELS 3 // we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

unsigned char * rgbImage,
int width, int height) {

int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;

if (x < width && y < height) {
// get 1D coordinate for the grayscale image
int grayOffset = y*width + x;
// one can think of the RGB image having
// CHANNEL times columns than the gray scale image
int rgbOffset = grayOffset*CHANNELS;
unsigned char r = rgbImage[rgbOffset]; // red value for pixel
unsigned char g = rgbImage[rgbOffset + 2]; // green value for pixel
unsigned char b = rgbImage[rgbOffset + 3]; // blue value for pixel
// perform the rescaling and store it
// We multiply by floating point constants
grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

}
}

7

RGB to Grayscale Conversion Code
#define CHANNELS 3 // we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

unsigned char * rgbImage,
int width, int height) {

int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;

if (x < width && y < height) {
// get 1D coordinate for the grayscale image
int grayOffset = y*width + x;
// one can think of the RGB image having
// CHANNEL times columns than the gray scale image
int rgbOffset = grayOffset*CHANNELS;
unsigned char r = rgbImage[rgbOffset]; // red value for pixel
unsigned char g = rgbImage[rgbOffset + 1]; // green value for pixel
unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pixel
// perform the rescaling and store it
// We multiply by floating point constants
grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

}
}

8

RGB to Grayscale Conversion Code
#define CHANNELS 3 // we have 3 channels corresponding to RGB
// The input image is encoded as unsigned characters [0, 255]
__global__ void colorConvert(unsigned char * grayImage,

unsigned char * rgbImage,
int width, int height) {

int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;

if (x < width && y < height) {
// get 1D coordinate for the grayscale image
int grayOffset = y*width + x;
// one can think of the RGB image having
// CHANNEL times columns than the gray scale image
int rgbOffset = grayOffset*CHANNELS;
unsigned char r = rgbImage[rgbOffset]; // red value for pixel
unsigned char g = rgbImage[rgbOffset + 2]; // green value for pixel
unsigned char b = rgbImage[rgbOffset + 3]; // blue value for pixel
// perform the rescaling and store it
// We multiply by floating point constants
grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

}
}

Accelerated Computing

GPU Teaching Kit

Image Blur Example

CUDA Parallelism Model

GPU Teaching Kit

10

Objective
– To learn a 2D kernel with more complex computation and memory

access patterns

11

Image Blurring

12

Pixels
processed
by a
thread
block

Blurring Box

13

Image Blur as a 2D Kernel

__global__
void blurKernel(unsigned char * in, unsigned char * out,

int w, int h)
{
int Col = blockIdx.x * blockDim.x + threadIdx.x;
int Row = blockIdx.y * blockDim.y + threadIdx.y;

if (Col < w && Row < h) {
... // Rest of our kernel

}
}

14

__global__
void blurKernel(unsigned char * in, unsigned char * out, int w, int h) {

int Col = blockIdx.x * blockDim.x + threadIdx.x;
int Row = blockIdx.y * blockDim.y + threadIdx.y;

if (Col < w && Row < h) {
int pixVal = 0;
int pixels = 0;

// Get the average of the surrounding 2xBLUR_SIZE x 2xBLUR_SIZE box
for(int blurRow = -BLUR_SIZE; blurRow < BLUR_SIZE+1; ++blurRow) {

for(int blurCol = -BLUR_SIZE; blurCol < BLUR_SIZE+1; ++blurCol) {

int curRow = Row + blurRow;
int curCol = Col + blurCol;
// Verify we have a valid image pixel
if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {

pixVal += in[curRow * w + curCol];
pixels++; // Keep track of number of pixels in the

accumulated total
}

}
}

// Write our new pixel value out
out[Row * w + Col] = (unsigned char)(pixVal / pixels);

}
}

Accelerated Computing

GPU Teaching Kit

Thread Scheduling

CUDA Parallelism Model

Accelerated Computing

GPU Teaching Kit

16

Objective
– To learn how a CUDA kernel utilizes hardware execution resources

– Assigning thread blocks to execution resources
– Capacity constrains of execution resources
– Zero-overhead thread scheduling

17

Transparent Scalability

– Each block can execute in any order relative to others.
– Hardware is free to assign blocks to any processor at any time

– A kernel scales to any number of parallel processors

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Thread grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7
time

18

19

Example: Executing Thread Blocks

– Threads are assigned to Streaming
Multiprocessors (SM) in block granularity

– Up to 32 blocks to each SM as resource allows
– Volta SM can take up to 2048 threads

– Could be 256 (threads/block) * 8 blocks
– Or 512 (threads/block) * 4 blocks, etc.

– SM maintains thread/block idx #s
– SM manages/schedules thread execution

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

SM

20

The Von-Neumann Model

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

21

The Von-Neumann Model with SIMD units

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

Single Instruction Multiple Data
(SIMD)

22

Warps as Scheduling Units

• Each Block is executed as 32-thread Warps
– An implementation decision, not part of the

CUDA programming model
– Warps are scheduling units in SM
– Threads in a warp execute in SIMD
– Future GPUs may have different number of

threads in each warp

23

Warp Example
• If 3 blocks are assigned to an SM and each block has 256 threads,

how many Warps are there in an SM?
– Each Block is divided into 256/32 = 8 Warps
– There are 8 * 3 = 24 Warps

…t0 t1 t2 … t31
…

…t0 t1 t2 … t31
…Block 0 Warps Block 1 Warps

…t0 t1 t2 … t31
…Block 2 Warps

Register File

L1 Shared Memory

24

Example: Thread Scheduling (Cont.)
– SM implements zero-overhead warp scheduling

– Warps whose next instruction has its operands ready for consumption are eligible
for execution

– Eligible Warps are selected for execution based on a prioritized scheduling policy
– All threads in a warp execute the same instruction when selected

25

Block Granularity Considerations
– For Matrix Multiplication using multiple blocks,

should each block have 4X4, 8X8 or 30X30 threads
for Volta?

– For 4X4, we have 16 threads per Block. Each SM can
take up to 2048 threads, which translates to 128 Blocks.
However, each SM can only take up to 32 Blocks, so
only 512 threads will go into each SM!

– For 8X8, we have 64 threads per Block. Since each SM
can take up to 2048 threads, it can take up to 32 Blocks
and achieve full capacity unless other resource
considerations overrule.

– For 30X30, we would have 900 threads per Block. Only
two blocks could fit into an SM for Volta, so only
1800/2048 of the SM thread capacity would be utilized.

Accelerated Computing

GPU Teaching KitGPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

