GPU Teaching Kit
<ANVIDIA. =

Introduction to CUDA C

Obijective

— To learn about CUDA threads, the main mechanism for exploiting of
data parallelism
— Hierarchical thread organization
— Launching parallel execution
— Thread index to data index mapping

@ wia s

Data Parallelism - Vector Addition Example

)

vector A

vector B

vector C

Bl

@nvon

CUDA Execution Model

— Heterogeneous host (CPU) + device (GPU) application C program
— Serial parts in host C code
— Parallel parts in device SPMD kernel code

Serial Code (host) 5

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host) ;

Parallel Kernel (device)
KernelB<<< nBIk, nTid >>>(args);

@nvoin) B

From Natural Language to Electrons

Natural Language (e.g, English)
Algorithm
High-Level Language (C/C++...)
Instruction Set Architecture
Microarchitecture
Circuits
Electrons

Compilerf—

©Yale Patt and Sanjay Patel, From bits and bytes to gates and beyond

@nvoia

A program at the ISA level

— A program is a set of instructions stored in memory that can be read,
interpreted, and executed by the hardware.
— Both CPUs and GPUs are designed based on (different) instruction sets

— Program instructions operate on data stored in memory and/or
registers.

@nvioia

A Thread as a Von-Neumann Processor

A thread is a “virtualized” or
“abstracted”
Von-Neumann Processor

Memory .
_____ > A 1/0

4 v N
Processing Unit

Reg
File
A
v

Control Unit

@nvoia

Arrays of Parallel Threads

A CUDA kernel is executed by a grid (array) of threads
— All threads in a grid run the same kernel code (Single Program Multiple Data)

— Each thread has indexes that it uses to compute memory addresses and make
control decisions

threadldx.x;

C[i] = A[i] + B[i];

= i

Thread Blocks: Scalable Cooperation

Thread Block 0 Thread Block 1 Thread Block N-1

i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x +

threadldx.x; threadldx.x; threadldx.x;
C[i] = A[i] + BIi]; C[i] = A[i] + BIi]; C[i] = A[i] + BIi];

— Divide thread array into multiple blocks

— Threads within a block cooperate via shared memory, atomic operations and
barrier synchronization

— Threads in different blocks do not interact

.=

blockldx and threadldx

« Each thread uses indices to decide what data to work
on
— blockldx: 1D, 2D, or 3D (CUDA 4.0)
— threadldx: 1D, 2D, or 3D

« Simplifies memory

. . a
addressing when processi Block (0, | Block (O,
multidimensional data

_ Block (1, / Block (1,
— Image processing 0 1
— Solving PDEs on volumes
BlO
B 1,0,0 1,0,1 1,0,2 1,0,3

Thread Thread Thread Thread

(0,0,0) (0,0,1) (0,0,2) (0,0,3)
Thread Thread Thread Thread
(0,1,0) 0,1,1) 0,1,2) (0,1,3)

m _ NVIDIA

wvos f |

GPUT hing Kit
<ANVIDIA. LU A

Introduction to the CUDA Toolkit

Obijective

— To become familiar with some valuable tools and resources from the
CUDA Toolkit
— Compiler flags
— Debuggers
— Profilers

12 _ NVIDIA [[LLINOIS

GPU Programming Languages

NI CIELEalskd MATLAB, Mathematica, LabVIEW
SUOGLES PyCUDA, Numba

Zsicild CUDA Fortran, OpenACC
o4 CUDA C, OpenACC
LB d CUDA C++, Thrust

& 44 Hybridizer

@nvoia

CUDA-C
Applications
: : Compiler Programmin
Libraries Omp1 S S
Directives Languages
Easy to use Easy to use Most Performance
Most Performance Portable code Most Flexibility

Snvoin [I

NVCC Compiler

— NVIDIA provides a CUDA-C compiler

— nvcece

— NVCC compiles device code then forwards code on to the host
compiler (e.g. g++)
— Can be used to compile & link host only applications

@nvoia

Example 1: Hello World

#include <cstdio>

int main () {
printf ("Hello World!\n");

return 0;

Instructions:
. Build and run the hello world code

. Modify Makefile to use nvcc
instead of g++
. Rebuild and run

CUDA Example 1: Hello World
#include <cstdio>

__global void mykernel (void) {

}

int main (void) {
mykernel<<<l,1>>>();
printf ("Hello World!\n");

return 0;

Instructions:
1. Add kernel and kernel launch to

main.cc
2. Try to build

@nvoia

CUDA Example 1: Build Considerations

— Build failed

— nvcc only parses .cu files for CUDA
— Fixes:

— Rename main.cc to main.cu

OR

— nvecc —x cu
— Treat all input files as .cu files

Instructions:

1. Rename main.cc to main.cu
2. Rebuild and Run

@nvioia

Hello World! with Device Code

#include <cstdio>

__global void mykernel (void) {
}

int main (void) {
mykernel<<<l,1>>>();
printf ("Hello World!\n");
return 0;

}
Output:
$ nvcc main.cu

$./a.out
Hello World!

— mykernel (does nothing, somewhat anticlimactic!)
... [@wea / mu/

Developer Tools - Debuggers

Nsight CUDA
Systems CUDA-GDB MEMCHECK

https://developer.nvidia.com/debugging-solutions

@nion

Compiler Flags

— Remember there are two compilers being used
— NVCC: Device code
— Host Compiler: C/C++ code
— NVCC supports some host compiler flags
— If flag is unsupported, use —Xcompiler to forward to host
— e.g. —Xcompiler —-fopenmp
— Debugging Flags
— -0: Include host debugging symbols
— -G: Include device debugging symbols
— -lineinfo: Include line information with symbols

@nvon

CUDA-MEMCHECK

— Memory debugging tool
— No recompilation necessary
%> cuda-memcheck ./exe
— Can detect the following errors
— Memory leaks
— Memory errors (OOB, misaligned access, illegal instruction, etc)
— Race conditions
— lllegal Barriers
— Uninitialized Memory
— For line numbers use the following compiler flags:
— -Xcompiler -rdynamic -lineinfo

http://docs.nvidia.com/cuda/cuda-memcheck

@nvioia

Example 2: CUDA-MEMCHECK

Instructions:
1. Build & Run Example 2
Output should be the numbers 0-9
Do you get the correct results?
. Run with cuda-memcheck

%> cuda-memcheck ./a.out

. Add nvcc flags “-Xcompiler -rdynamic -
lineinfo”

. Rebuild & Run with cuda-memcheck

. Fix the illegal write

http://docs.nvidia.com/cuda/cuda-memcheck

@nvoia

CUDA-GDB

— cuda-gdb is an extension of GDB
— Provides seamless debugging of CUDA and CPU code

— Works on Linux and Macintosh

— For a Windows debugger use NVIDIA Nsight Eclipse Edition or Visual Studio
Edition

http://docs.nvidia.com/cuda/cuda-gdb

@nvioia

Example 3: cuda-gdb

Instructions:

1. Run exercise 3 in cuda-gdb
%> cuda-gdb --args ./a.out
2. Run a few cuda-gdb commands:

(cuda-gdb) b main //set break point at main

cuda-gdb
cuda-gdb
cuda-gdb

() r //run application

() 1 //print line context

() b foo //break at kernel foo

(cuda-gdb) c //continue

(cuda-gdb) cuda thread //print current thread

(cuda-gdb) cuda thread 10 //switch to thread 10

(cuda-gdb) cuda block //print current block

(cuda-gdb) cuda block 1 //switch to block 1
(cuda-gdb) d //delete all break points
(cuda-gdb) set cuda memcheck on //turn on cuda memcheck

(cuda-gdb) r //run from the beginning

3. Fix Bug

http://docs.nvidia.com/cuda/cuda-gdb

@nvon

Developer Tools - Profilers

NVPROF

https://developer.nvidia.com/performance-analysis-tools

NVPROF

Command Line Profiler

— Compute time in each kernel

— Compute memory transfer time

— Collect metrics and events

— Support complex process hierarchy's

— Collect profiles for NVIDIA Visual Profiler
— No need to recompile

@nvoia

Example 4: nvprof

Instructions:
. Collect profile information for the matrix add example
%> nvprof ./a.out
. How much faster is add_v2 than add_v1?
. View available metrics
%> nvprof --query-metrics
. View global load/store efficiency

%> nvprof --metrics gld_efficiency,gst_efficiency ./a.out
. Store a timeline to load in NVVP

%> nvprof -o profile.timeline ./a.out
. Store analysis metrics to load in NVVP

%> nvprof -o profile.metrics --analysis-metrics ./a.out

@noin

NVIDIA’s Visual Profiler (NVVP)

. .
Timeline
[=] [0] Tesla K40c
=/ Context MPS (CUDA)
¥ Memcpy (toD) (1] (1T [[T} [1]
L 7 MemCpy (DtoH) I I I | | I
B compute float const__|
P
¥ 100.0% Stepto .. B
[+ Streams
.
Guided
Syst i
ystem Analysis

Stall Reasons

@ Perform Latency Analys |

@nvon

Example 4: NVVP

Instructions:
1. Import nvprof profile into NVVP
Launch nvvp
Click File/ Import/ Nvprof/ Next/ Single process/ Next / Browse
Select profile.timeline
Add Metrics to timeline
Click on 2" Browse

Select profile.metrics
Click Finish

2. Explore Timeline
Control + mouse drag in timeline to zoom in
Control + mouse drag in measure bar (on top) to measure time

@nvioia

Example 4: NVVP

Instructions:
1. Click on a kernel
2. On Analysis tab click on the unguided analysis

[Analysis 83 [Details| B Console [Settings

E®

2. Click Analyze All
Explore metrics and properties
What differences do you see between the two
kernels?

Note:

If kernel order is non-deterministic you can only load the timeline or the metrics
but not both.

If you load just metrics the timeline looks odd but metrics are correct.

@nvoia

Example 4: NVVP

Let’'s now generate the same data within NVVP

1. Click File / New Session / Browse
Select Example 4/a.out
Click Next / Finish

[Analysis 83 - [Details | & Console | [Settings

.}“1

2. Click on a kernel
Select Unguided Analysis
Click Analyze All

@nvioia

NVTX

— Our current tools only profile API calls on the host
— What if we want to understand better what the host is doing?
— The NVTX library allows us to annotate profiles with ranges
— Add: #include <nvToolsExt.h>
— Link with: -InvToolsExt
— Mark the start of a range
— nvtxRangePushA(“description”);
— Mark the end of a range
— nvtxRangePop();

— Ranges are allowed to overlap

http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/

NVTX Profile

% NVIDIA Visual Profiler
File View Run Help

IRE | g-[Ra@&(F K I[EE &

© thewsession &3

=l Process "a.out" (27465)
[=I Thread 2935871360

‘ 711.5ms 712 ms 712.5ms 713 ms 713.5 ms 714 ms 714.5ms 71

* Runtime APl | cudaStreamSynchronize [] cudaStreamSynchronize
" Driver API
- Warkers and Ranges
" profiling Overhead
[=I [0] Tesla K40m
[=| Context 1 (CUDA)
-7 MemCpy (HtoD) Memcpy Hto... Memcpy Hto...
W MemCpy (DtoH) Memcpy Dto... Memcpy Dto...
kernel(float¥*, int, int
[=] Compute ()

kernel(float¥*, int, int)

kernel(float*
kernel(float¥*, int, int)

-7 100.0% kernel(flo...

kernel(float*, int, int) kernel(float*,

[=| Streams
L Stream 13 kernel(float*, int, int)
- sream 16 Memcpy Do
- sweam 15

@nion

NSIGHT

— CUDA enabled Integrated Development Environment
— Source code editor: syntax highlighting, code refactoring, etc
— Build Manger
— Visual Debugger
— Visual Profiler
— Linux/Macintosh
— Editor = Eclipse
— Debugger = cuda-gdb with a visual wrapper
— Profiler = NVVP
— Windows
— Integrates directly into Visual Studio
— Profiler is NSIGHT VSE

@nvon

Example 4: NSIGHT

Let’'s import an existing Makefile project into NSIGHT

Instructions:
1. Run nsight
Select default workspace
. Click File / New / Makefile Project With Existing CodeTest
. Enter Project Name and select the Example15 directory
. Click Finish
. Right Click On Project / Properties / Run Settings / New / C++

Application
. Browse for Example 4/a.out
. In Project Explorer double click on main.cu and explore source
. Click on the build icon
. Click on the run icon
0.Click on the profile icon

@noin

Profiler Summary

— Many profile tools are available

— NVIDIA Provided
— NVPROF: Command Line
— NVVP: Visual profiler
— NSIGHT: IDE (Visual Studio and Eclipse)

— 3 Party
— TAU
— VAMPIR

@nvon

Optimization

Deploy Parallelize

wvos f |

AnviDIA

Assess

=
o
=
(v}
£
3
(™

— Profile the code, find the hotspot(s)
— Focus your attention where it will give the most benefit

Snvoia [Bios

Parallelize

Applications

Compiler Programming
Directives Languages

Libraries

Snvoin [I

ptimize

Timeline

=1 [0] Tesla K40c
=] Context MPS (CUDA) \
T MemCy (HtoD) i i I i I 1
F Memcpy Otor) | I I I I I ||
= Compute | flost const-._|
\

= 57 100.0% Stepl0_c..

[+ Streams

Guided
System Analysis

_Sharea wenory

LocalLoads o oss
Local Stores. o oBs. Stall Reasons
shaed Loads o osis execution

The first step in analyzing an individual kernel is to ared Stores o oers dependency

determine if the performance of the kernel is EanrT 0 o

bounded by computation, memory bandwidth, or ol]

instruction/memory latency. The results at right Lu/shared Total o oam for Tiah T

icate that the performance of kernel 2 cache

‘Step10_cuda_kernel” is most likely limited by ceads caaouze | 236798 oo

compute. rtes au1e | 17aces

- S ; 1 otal aoea0 | 2srzons || F — — 3 instruction

y perform Compute Analysis e request
The most likely bottleneck to performance for this kernel is
compute so you should first perform compute analysis to Feads 6450496 | 240,886 Gl ‘ n = Togh T

determine how it is limiting performance. Device Memory

reade scaeas | seass can
i perform Latency Analysis ees 7504 | 280228 vk
- e -, :

[i§ Perform Mermory Bandwidth Analysis ‘
Spsem ey [Pl conburatan;Gar 16, Gos 1

Instruction and memory latency and memory bandwidth are
likely not the primary performance bottlenecks for this
kernel, but you may still want to perform those analyses.

synchronization

H

169.375 kBls

obrs
149.375 kBls

4 Rerun Analysis

1 you modify the kernel you need to rerun your application
to update this analysis.

[@rvon [Buvos []

Bottleneck Analysis

gpuTranspose_kernel(int, int, float const *, float*)

— Don’t assume an optimization was wrong 23md
End 547.716 ms (:
. e . . Duration 413.872 s
— Verify if it was wrong with the profiler (nser)
Block Size [32321]
Registers/Thread 10
Shared Memory/Block 4K
129 GB/s 9> 84
Global Load Efficiency 100%
Global Store Efficiency 100%
G B / S Shared Efficiency & 5.9%
L1/shared Memory Warp Execution Efficiency 100%
Local Loads 0 0B/s Non-Predicated Warp Execution Efficien 97.1%
Local Stores 0| 0B/s < occupancy
Shared Loads 2097152 1,351.979 GB/s
shared Stores 131072 | 84.499 GBJs Achieved 86.7%
Global Loads 131072 42.249 GB/s Theoretical 100%
Global Stores 131072 ‘ 42.249 GB/s ~ shared Memory Configuration
Atomic 0 0B/ Shared Memory Requested 48 KiB
Y] 2490368 Jh,520.977 GBS | idie Low Medium Shared Memory Executed 48 KiB.

& Shared Memory Alignment and Access Pattern

Memory bandwidth is used most efficiently when each shared memory load and store has proper alignment and access pattern.

Optimization: Select each entry below to open the source code to a shared load or store within the kernel with an inefficient alignment or access pattern. For each
access pattern of the memory access.

< Line / File ! main.cu - /home/jluitjens/code/CudaHandsOn/Example19

49 Shared Load Transactions/Access = 16, Ideal Transactions/Access = 1 [2097152 transactions for 131072 total executions]

@nvioia

Performance Analysis

gpuTranspose_kernel(int, int, float const *, float*

Start
End
Duration
Grid Size
Block Size
Registers/Thread
Shared Memory/Block
v Efficiency
Global Load Efficiency
Global Store Efficiency
Shared Efficiency
Warp Execution Efficiency
Non-Predicated Warp Execution Efficien
¥ Occupancy
Achieved
Theoretical
< Shared Memory Configuration
Shared Memory Requested
Shared Memory Executed

[

770.0671
770.3241
256.714
[64,64,1
[32321
10

4.125 KiE

100%
100%
50%
100%
97.1%

87.7%
100%

48 KiB
48 KiB

Utilization

Function Unit (Arithmetic)

84 GB/s

L1/Shared Memory

P 137 GB/s

Local Loads 0 08/s
Local Stores 0 0Bss
Shared Loads 131072 | 138433 GB/s
Shared Stores 131720 | 139118 GB/s
Global Loads 131072 | 69.217 GBls
Global Stores 131072 | 69.217 GBls
Atomic o 08/s
L1/Shared Total 52493 | 4159846855 || = = —
L2 Cache
L1 Reads 524288 | 69.217 GBJs
L1 Wites 524288 | 69.217GBJs
Texture Reads 0 08/s
Atomic 0 0B/s
Noncoherent Reads 0 08/s
Total 1048576 | 13843368)s | = — =
Texture Cache
Reads ° 085 | e Low Medium
Device Memory
Reads 524968 | 69.306 GB/s
Writes 524289 | 69.217GBJs
Total 1049257 | 138.523 GBJs -
Idle Low Medium

<A NVIDIA.

I

ILLINOIS

UNVERSITY CF ILLINUIS AT URBANA-CHARIPAIGN

@nvon

GPU Teaching Kit

