
Accelerated Computing

GPU Teaching Kit

Threads and Kernel Functions

Introduction to CUDA C

GPU Teaching Kit

2

Objective

– To learn about CUDA threads, the main mechanism for exploiting of
data parallelism

– Hierarchical thread organization

– Launching parallel execution

– Thread index to data index mapping

2

3

A[0]vector A

vector B

vector C

A[1] A[2] A[N-1]

B[0] B[1] B[2]

…

… B[N-1]

C[0] C[1] C[2] C[N-1]…

+ + + +

Data Parallelism - Vector Addition Example

3

4

CUDA Execution Model
– Heterogeneous host (CPU) + device (GPU) application C program

– Serial parts in host C code
– Parallel parts in device SPMD kernel code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

5

From Natural Language to Electrons

Natural Language (e.g, English)
Algorithm

High-Level Language (C/C++…)
Instruction Set Architecture

Microarchitecture
Circuits

Electrons

©Yale Patt and Sanjay Patel, From bits and bytes to gates and beyond

Compiler

6

A program at the ISA level
– A program is a set of instructions stored in memory that can be read,

interpreted, and executed by the hardware.
– Both CPUs and GPUs are designed based on (different) instruction sets

– Program instructions operate on data stored in memory and/or
registers.

6

7

A Thread as a Von-Neumann Processor

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

A thread is a “virtualized” or
“abstracted”
Von-Neumann Processor

8

Arrays of Parallel Threads
• A CUDA kernel is executed by a grid (array) of threads

– All threads in a grid run the same kernel code (Single Program Multiple Data)

– Each thread has indexes that it uses to compute memory addresses and make
control decisions

i = blockIdx.x * blockDim.x + threadIdx.x;
C[i] = A[i] + B[i];

…
0 1 2 254 255

…

9

Thread Blocks: Scalable Cooperation

– Divide thread array into multiple blocks
– Threads within a block cooperate via shared memory, atomic operations and

barrier synchronization
– Threads in different blocks do not interact

9

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

Thread Block 0

…
1 2 254 255

Thread Block 1
0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…
1 2 254 255

Thread Block N-1
0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…

…… …

10

blockIdx and threadIdx

• Each thread uses indices to decide what data to work
on
– blockIdx: 1D, 2D, or 3D (CUDA 4.0)
– threadIdx: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …

10

device

Grid Block (0,
0)

Block (1,
1)

Block (1,
0)

Block (0,
1)

Block (1,1)

Thread
(0,0,0)Thread

(0,1,3)
Thread
(0,1,0)

Thread
(0,1,1)

Thread
(0,1,2)

Thread
(0,0,0)

Thread
(0,0,1)

Thread
(0,0,2)

Thread
(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

Accelerated Computing

GPU Teaching Kit

Introduction to the CUDA Toolkit

Introduction to the CUDA Toolkit

Accelerated Computing

GPU Teaching Kit

12

Objective
– To become familiar with some valuable tools and resources from the

CUDA Toolkit
– Compiler flags

– Debuggers

– Profilers

13

GPU Programming Languages

CUDA Fortran, OpenACCFortran

CUDA C, OpenACCC

CUDA C++, ThrustC++

PyCUDA, NumbaPython

HybridizerC#

MATLAB,, Mathematica, LabVIEWNumerical analytics

14

CUDA - C

Applications

Libraries

Easy to use
Most Performance

Programming
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

15

NVCC Compiler
– NVIDIA provides a CUDA-C compiler

– nvcc

– NVCC compiles device code then forwards code on to the host
compiler (e.g. g++)

– Can be used to compile & link host only applications

16

Example 1: Hello World
#include <cstdio>

int main() {
printf("Hello World!\n");
return 0;

}

Instructions:
1. Build and run the hello world code
2. Modify Makefile to use nvcc

instead of g++
3. Rebuild and run

17

CUDA Example 1: Hello World
#include <cstdio>

__global__ void mykernel(void) {

}

int main(void) {
mykernel<<<1,1>>>();
printf("Hello World!\n");
return 0;

}

Instructions:
1. Add kernel and kernel launch to

main.cc
2. Try to build

18

CUDA Example 1: Build Considerations
– Build failed

– nvcc only parses .cu files for CUDA

– Fixes:
– Rename main.cc to main.cu

OR

– nvcc –x cu

– Treat all input files as .cu files

Instructions:
1. Rename main.cc to main.cu
2. Rebuild and Run

19

Hello World! with Device Code

#include <cstdio>

__global__ void mykernel(void) {

}

int main(void) {
mykernel<<<1,1>>>();
printf("Hello World!\n");
return 0;

}

– mykernel(does nothing, somewhat anticlimactic!)

Output:

$ nvcc main.cu
$./a.out
Hello World!

20

Developer Tools - Debuggers

Nsight CUDA-GDB
CUDA

MEMCHECK

3rd Party

NVIDIA Provided

https://developer.nvidia.com/debugging-solutions

Nsight
Systems

21

Compiler Flags
– Remember there are two compilers being used

– NVCC: Device code

– Host Compiler: C/C++ code

– NVCC supports some host compiler flags
– If flag is unsupported, use –Xcompiler to forward to host

– e.g. –Xcompiler –fopenmp

– Debugging Flags
– -g: Include host debugging symbols

– -G: Include device debugging symbols

– -lineinfo: Include line information with symbols

22

CUDA-MEMCHECK
– Memory debugging tool

– No recompilation necessary

%> cuda-memcheck ./exe

– Can detect the following errors
– Memory leaks

– Memory errors (OOB, misaligned access, illegal instruction, etc)

– Race conditions

– Illegal Barriers

– Uninitialized Memory

– For line numbers use the following compiler flags:
– -Xcompiler -rdynamic -lineinfo

http://docs.nvidia.com/cuda/cuda-memcheck

23

Example 2: CUDA-MEMCHECK

http://docs.nvidia.com/cuda/cuda-memcheck

Instructions:
1. Build & Run Example 2

Output should be the numbers 0-9
Do you get the correct results?

2. Run with cuda-memcheck
%> cuda-memcheck ./a.out

3. Add nvcc flags “–Xcompiler –rdynamic –
lineinfo”

4. Rebuild & Run with cuda-memcheck
5. Fix the illegal write

24

CUDA-GDB
– cuda-gdb is an extension of GDB

– Provides seamless debugging of CUDA and CPU code

– Works on Linux and Macintosh
– For a Windows debugger use NVIDIA Nsight Eclipse Edition or Visual Studio

Edition

http://docs.nvidia.com/cuda/cuda-gdb

25

Example 3: cuda-gdb

http://docs.nvidia.com/cuda/cuda-gdb

Instructions:
1. Run exercise 3 in cuda-gdb

%> cuda-gdb --args ./a.out
2. Run a few cuda-gdb commands:

(cuda-gdb) b main //set break point at main
(cuda-gdb) r //run application
(cuda-gdb) l //print line context
(cuda-gdb) b foo //break at kernel foo
(cuda-gdb) c //continue
(cuda-gdb) cuda thread //print current thread
(cuda-gdb) cuda thread 10 //switch to thread 10
(cuda-gdb) cuda block //print current block
(cuda-gdb) cuda block 1 //switch to block 1
(cuda-gdb) d //delete all break points
(cuda-gdb) set cuda memcheck on //turn on cuda memcheck
(cuda-gdb) r //run from the beginning

3. Fix Bug

26

Developer Tools - Profilers

NSIGHT NVVP NVPROF

3rd Party

NVIDIA Provided

https://developer.nvidia.com/performance-analysis-tools

VampirTraceTAU

27

NVPROF
Command Line Profiler
– Compute time in each kernel
– Compute memory transfer time
– Collect metrics and events
– Support complex process hierarchy's
– Collect profiles for NVIDIA Visual Profiler
– No need to recompile

28

Example 4: nvprof

Instructions:
1. Collect profile information for the matrix add example

%> nvprof ./a.out
2. How much faster is add_v2 than add_v1?
3. View available metrics

%> nvprof --query-metrics
4. View global load/store efficiency

%> nvprof --metrics gld_efficiency,gst_efficiency ./a.out
5. Store a timeline to load in NVVP

%> nvprof –o profile.timeline ./a.out
6. Store analysis metrics to load in NVVP

%> nvprof –o profile.metrics --analysis-metrics ./a.out

29

NVIDIA’s Visual Profiler (NVVP)

Timeline

Guided
System Analysis

30

Example 4: NVVP

Instructions:
1. Import nvprof profile into NVVP

Launch nvvp
Click File/ Import/ Nvprof/ Next/ Single process/ Next / Browse

Select profile.timeline
Add Metrics to timeline

Click on 2nd Browse
Select profile.metrics

Click Finish
2. Explore Timeline

Control + mouse drag in timeline to zoom in
Control + mouse drag in measure bar (on top) to measure time

31

Example 4: NVVP

Note:
If kernel order is non-deterministic you can only load the timeline or the metrics

but not both.
If you load just metrics the timeline looks odd but metrics are correct.

Instructions:
1. Click on a kernel
2. On Analysis tab click on the unguided analysis

2. Click Analyze All
Explore metrics and properties
What differences do you see between the two
kernels?

32

Instructions:
1. Click File / New Session / Browse

Select Example 4/a.out
Click Next / Finish

2. Click on a kernel
Select Unguided Analysis
Click Analyze All

Example 4: NVVP
Let’s now generate the same data within NVVP

33

NVTX
– Our current tools only profile API calls on the host

– What if we want to understand better what the host is doing?

– The NVTX library allows us to annotate profiles with ranges
– Add: #include <nvToolsExt.h>

– Link with: -lnvToolsExt

– Mark the start of a range
– nvtxRangePushA(“description”);

– Mark the end of a range
– nvtxRangePop();

– Ranges are allowed to overlap

http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/

34

NVTX Profile

35

NSIGHT
– CUDA enabled Integrated Development Environment

– Source code editor: syntax highlighting, code refactoring, etc

– Build Manger

– Visual Debugger

– Visual Profiler

– Linux/Macintosh
– Editor = Eclipse

– Debugger = cuda-gdb with a visual wrapper

– Profiler = NVVP

– Windows
– Integrates directly into Visual Studio

– Profiler is NSIGHT VSE

36

Example 4: NSIGHT
Let’s import an existing Makefile project into NSIGHT

Instructions:
1. Run nsight

Select default workspace
2. Click File / New / Makefile Project With Existing CodeTest
3. Enter Project Name and select the Example15 directory
4. Click Finish
5. Right Click On Project / Properties / Run Settings / New / C++

Application
6. Browse for Example 4/a.out
7. In Project Explorer double click on main.cu and explore source
8. Click on the build icon
9. Click on the run icon
10.Click on the profile icon

37

Profiler Summary
– Many profile tools are available
– NVIDIA Provided

– NVPROF: Command Line

– NVVP: Visual profiler

– NSIGHT: IDE (Visual Studio and Eclipse)

– 3rd Party
– TAU

– VAMPIR

38

Optimization

Assess

Parallelize

Optimize

Deploy

39

Assess

– Profile the code, find the hotspot(s)
– Focus your attention where it will give the most benefit

HOTSPOTS

40

Parallelize

Applications

Libraries
Programming

Languages
Compiler
Directives

41

Optimize

Timeline

Guided
System Analysis

42

Bottleneck Analysis

– Don’t assume an optimization was wrong
– Verify if it was wrong with the profiler

129 GB/s 84
GB/s

43

Performance Analysis

84 GB/s 137 GB/s

Accelerated Computing

GPU Teaching KitGPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

