
Portability and Scalability in
Heterogeneous Parallel Computing

Accelerated Computing

GPU Teaching Kit

2

Objectives
– To understand the importance and nature of scalability and

portability in parallel programming

3

Software Dominates System Cost
– SW lines per chip increases at 2x/10 months

– HW gates per chip increases at 2x/18 months

– Future systems must
minimize software
redevelopment

4

Keys to Software Cost Control

– Scalability

App

Core A

5

Keys to Software Cost Control

– Scalability
– The same application runs efficiently on new generations of cores

App

Core A 2.0

6

Keys to Software Cost Control

– Scalability
– The same application runs efficiently on new generations of cores
– The same application runs efficiently on more of the same cores

App

Core A Core ACore A

7

More on Scalability
– Performance growth with HW generations

– Increasing number of compute units (cores)
– Increasing number of threads
– Increasing vector length
– Increasing pipeline depth
– Increasing DRAM burst size
– Increasing number of DRAM channels
– Increasing data movement latency

The programming style we use in this course
supports scalability through fine-grained
problem decomposition and dynamic thread
scheduling

8

Keys to Software Cost Control

– Scalability
– Portability

– The same application runs efficiently on different types of cores

App

Core A

App

Core C

App

Core B

9

Keys to Software Cost Control

– Scalability
– Portability

– The same application runs efficiently on different types of cores
– The same application runs efficiently on systems with different organizations and

interfaces

App AppApp

10

More on Portability
– Portability across many different HW types

– Across ISAs (Instruction Set Architectures) - X86 vs. ARM, etc.
– Latency oriented CPUs vs. throughput oriented GPUs
– Across parallelism models - VLIW vs. SIMD vs. threading
– Across memory models - Shared memory vs. distributed memory

CUDA C vs. Thrust vs. CUDA Libraries

Introduction to CUDA C

Accelerated Computing

GPU Teaching Kit

12

Objective
– To learn the main venues and developer resources

for GPU computing
– Where CUDA C fits in the big picture

13

3 Ways to Accelerate Applications

Applications

Libraries

Easy to use
Most Performance

Programming
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

14

Libraries: Easy, High-Quality Acceleration

Ease of use: Using libraries enables GPU acceleration without in-
depth knowledge of GPU programming

“Drop-in”: Many GPU-accelerated libraries follow standard APIs,
thus enabling acceleration with minimal code changes

Quality: Libraries offer high-quality implementations of functions
encountered in a broad range of applications

15

NVIDIA GPU Accelerated Libraries

NVIDIA NPPcuFFT CODEC SDK

DeepStream SDKTensorRTcuDNN

DEEP LEARNING

cuBLAS cuSPARSE cuSOLVER
LINEAR ALGEBRA

nvGRAPH NCCL

PARALLEL
ALGORITHMS

SIGNAL, IMAGE,
VIDEO

16

Vector Addition in Thrust

#include <thrust/device_vector.h>
#include <thrust/copy.h>

int main(void) {
size_t inputLength = 500;
thrust::host_vector<float> hostInput1(inputLength);
thrust::host_vector<float> hostInput2(inputLength);
thrust::device_vector<float> deviceInput1(inputLength);
thrust::device_vector<float> deviceInput2(inputLength);
thrust::device_vector<float> deviceOutput(inputLength);

thrust::copy(hostInput1.begin(), hostInput1.end(), deviceInput1.begin());
thrust::copy(hostInput2.begin(), hostInput2.end(), deviceInput2.begin());

thrust::transform(deviceInput1.begin(), deviceInput1.end(),
deviceInput2.begin(), deviceOutput.begin(),
thrust::plus<float>());

}

17

Compiler Directives: Easy, Portable
Acceleration

Ease of use: Compiler takes care of details of parallelism
management and data movement

Portable: The code is generic, not specific to any type of hardware
and can be deployed into multiple languages

Uncertain: Performance of code can vary across compiler versions

18

OpenACC

– Compiler directives for C, C++, and FORTRAN

#pragma acc parallel loop
copyin(input1[0:inputLength],input2[0:inputLength]),

copyout(output[0:inputLength])
for(i = 0; i < inputLength; ++i) {

output[i] = input1[i] + input2[i];
}

19

Programming Languages: Most Performance and
Flexible Acceleration

Performance: Programmer has best control of parallelism and
data movement

Flexible: The computation does not need to fit into a limited set of
library patterns or directive types

Verbose: The programmer often needs to express more details

20

GPU Programming Languages

CUDA Fortran, OpenACCFortran

CUDA C, OpenACCC

CUDA C++, ThrustC++

PyCUDA, NumbaPython

HybridizerC#

MATLAB,, Mathematica, LabVIEWNumerical analytics

21

CUDA - C

Applications

Libraries

Easy to use
Most Performance

Programming
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

Memory Allocation and Data Movement API Functions

Introduction to CUDA C

Accelerated Computing

GPU Teaching Kit

23

Objective
– To learn the basic API functions in CUDA host code

– Device Memory Allocation
– Host-Device Data Transfer

24

A[0]vector A

vector B

vector C

A[1] A[2] A[N-1]

B[0] B[1] B[2]

…

… B[N-1]

C[0] C[1] C[2] C[N-1]…

+ + + +

Data Parallelism - Vector Addition Example

24

25

Vector Addition – Traditional C Code
// Compute vector sum C = A + B
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{

int i;
for (i = 0; i<n; i++) h_C[i] = h_A[i] + h_B[i];

}

int main()
{

// Memory allocation for h_A, h_B, and h_C
// I/O to read h_A and h_B, N elements
…
vecAdd(h_A, h_B, h_C, N);

}

25

26

CPU

Host Memory

GPU

Device Memory

Part 1

Part 3

Heterogeneous Computing vecAdd CUDA Host Code

#include <cuda.h>
void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{

int size = n* sizeof(float);
float *d_A, *d_B, *d_C;
// Part 1
// Allocate device memory for A, B, and C
// copy A and B to device memory

// Part 2
// Kernel launch code – the device performs the actual vector addition

// Part 3
// copy C from the device memory
// Free device vectors

}

26

Part 2

27

Partial Overview of CUDA Memories
– Device code can:

– R/W per-thread registers
– R/W all-shared global

memory

– Host code can
– Transfer data to/from per

grid global memory

27

We will cover more memory types and more
sophisticated memory models later.

Host

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

28

CUDA Device Memory Management API functions

– cudaMalloc()
– Allocates an object in the device

global memory
– Two parameters

– Address of a pointer to the
allocated object

– Size of allocated object in terms
of bytes

– cudaFree()
– Frees object from device global

memory
– One parameter

– Pointer to freed object

Host

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

29

Host-Device Data Transfer API functions

– cudaMemcpy()
– memory data transfer
– Requires four parameters

– Pointer to destination
– Pointer to source
– Number of bytes copied
– Type/Direction of transfer

– Transfer to device is synchronous
with respect to the host

Host

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

30

CUDA Unified
Memory (UM) • Is a single memory address space accessible both

from the host and from the device.
• The hardware/software handles automatically the data
migration between the host and the device maintaining
consistency between them.

30

31

Vector Addition, Explicit Memory Management
… Allocate h_A, h_B, h_C …

void vecAdd(float *h_A, float *h_B, float *h_C, int n)
{

int size = n * sizeof(float); float *d_A, *d_B, *d_C;

cudaMalloc((void **) &d_A, size);
cudaMalloc((void **) &d_B, size);
cudaMalloc((void **) &d_C, size);

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Kernel invocation code – to be shown later

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
cudaFree(d_A); cudaFree(d_B); cudaFree (d_C);

}

… Free h_A, h_B, h_C …

32

Partial Overview of CUDA Memories

– Device code can:
– R/W per-thread registers
– R/W all-shared global

memory
– R/W managed memory

(Unified Memory)
– Host code can

– Transfer data to/from per
grid global memory

– R/W managed memory

Host

(Device) Grid

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Unified Memory

Global
Memory

Host
Memory

33

Partial Overview of CUDA Memories

– cudaMallocManaged()
– Allocates an object in the Unified Memory

address space.
– Two parameters, with an optional third

parameter.
– Address of a pointer to the allocated

object
– Size of the allocated object in terms of

bytes
– [Optional] Flag indicating if memory can

be accessed from any device or stream
– cudaFree()

– Frees object from unified memory.
– One parameter

– Pointer to freed object

Host

(Device) Grid

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Unified Memory

Global
Memory

Host
Memory

34

Partial Overview of CUDA Memories

– cudaMemcpy()
– Memory data transfer
– Requires four parameters

– Pointer to destination
– Pointer to source
– Number of bytes copied
– Type/Direction of transfer

– Depending on the transfer type, the driver
may decide to use the memory on the host or
the device.

– In Unified Memory this function is utilized to
copy data between different arrays,
regardless of position.

Host

(Device) Grid

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Unified Memory

Global
Memory

Host
Memory

35

Putting it all together, vecAdd CUDA host
code using Unified Memory

int main() {

float *m_A, float *m_B, float *m_C, int n;

int size = n * sizeof(float);

cudaMallocManaged((void**) &m_A, size);
cudaMallocManaged((void**) &m_B, size);
cudaMallocManaged((void**) &m_C, size);

// Memory initialization on the Host

// Kernel invocation code - to be shown later

cudaFree(m_A); cudaFree(m_B); cudaFree(m_C);
}

Allocation of Managed Memory

m_A, m_B gets initialized on the host

The device performs the actual vector
addition

36

CUDA Unified Memory for different architectures

Prior to compute capability 6.x

– There is no specialized hardware
units to improve UM efficiency.

– For data migration the full memory
block needs to be copied
synchronically by the driver.

– No memory oversubscription.

Compute capability 6.x onwards

– There are specialized hardware
units managing page faulting.

– Data is migrated on demand,
meaning that data gets copied only
on page fault.

– Possibility to oversubscribe
memory, enabling
larger arrays than the device
memory size.

36

37

Unified Memory

Host

(Device) Grid

Global
Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Unified Memory ……

– cudaMallocManaged(
void** ptr, size_t size)
– Single memory space for all

CPUs/GPUs
– Maintain single copy of data

– CUDA-managed data
– On-demand page migration

– Compatible with cudaMalloc(),
cudaFree()

– Can be optimized
– cudaMemAdvise(),

cudaMemPrefetchAsync(),
– cudaMemcpyAsync()

38

Vector Addition, Unified Memory
float *A, *B, *C
cudaMallocManaged(&A, n * sizeof(float));
cudaMallocManaged(&B, n * sizeof(float));
cudaMallocManaged(&C, n * sizeof(float));

// Initialize A, B

void vecAdd(float *A, float *B, float *C, int n)
{
// Kernel invocation code – to be shown later

}

cudaFree(A);
cudaFree(B);
cudaFree(C);

39

In Practice, Check for API Errors in Host Code
cudaError_t err = cudaMalloc((void **) &d_A, size);

if (err != cudaSuccess) {
printf(“%s in %s at line %d\n”, cudaGetErrorString(err), __FILE__,
__LINE__);
exit(EXIT_FAILURE);

}

10

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

Accelerated Computing

http://creativecommons.org/licenses/by-nc/4.0/legalcode

