
Module III:
GPU PROGRAMMING

MODULE OVERVIEW

Multicore CPU vs GPU
Introduction to GPU Data Management
CUDA Managed Memory
Explicit Data Management
OpenACC Data Regions and Clauses

Unstructured Data Lifetimes
Data Synchronization

OpenACC Directives



CPU VS GPU

CPU VS GPU
Number of cores and parallelism

Both are extremely popular parallel processors, but 
with different degrees of parallelism

CPUs generally have a small number of very fast 
physical cores

GPUs have thousands of simple cores able to 
achieve high performance in aggregate

Both require parallelism to be fully utilized, but GPUs 
require much more



CPU + GPU WORKFLOW
Application CodeApplication Code

GPU CPU

Small % of Code

Compute-Intensive Functions

Rest of Sequential
CPU Code

Large % of Runtime

int main(){

<sequential code>

#pragma acc kernels
{
<parallel code>

}

}

GPU PROGRAMMING IN OPENACC

Execution always begins and ends on the 
host CPU

Compute-intensive loops are offloaded to the 
GPU using directives

Offloading may or may not require data 
movement between the host and device. Compiler

Hint



CPU + GPU
Physical Diagram

CPU memory is larger, GPU memory has 
more bandwidth

CPU and GPU memory are usually separate, 
connected by an I/O bus (traditionally PCI-e)

Any data transferred between the CPU and 
GPU will be handled by the I/O Bus

The I/O Bus is relatively slow compared to 
memory bandwidth

The GPU cannot perform computation until the 
data is within its memory
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BASIC DATA MANAGEMENT



BASIC DATA MANAGEMENT

The host is traditionally a CPU

The device is some parallel accelerator

When our target hardware is multicore, the 
host and device are the same, meaning that 
their memory is also the same

There is no need to explicitly manage data 
when using a shared memory accelerator, 
such as the multicore target

Between the host and device

Host
Device

Host 
Memory Device 

Memory

BASIC DATA MANAGEMENT

When the target hardware is a GPU data will 
usually need to migrate between CPU and 
GPU memory

The next lecture will discuss OpenACC data 
management, for now we’ll assume a unified 
Host/Accelerator memory

Between the host and device
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CUDA MANAGED MEMORY

Simplified Developer Effort

Without Managed Memory With Managed Memory

Managed MemorySystem 
Memory

GPU Memory

Commonly referred to as “unified 
memory.”

CUDA MANAGED MEMORY

CPU and GPU memories are 
combined into a single, shared pool



CUDA MANAGED MEMORY

Handling explicit data transfers between the host and device (CPU and GPU) can be 
difficult

The PGI compiler can utilize CUDA Managed Memory to defer data management

This allows the developer to concentrate on parallelism and think about data 
movement as an optimization

Usefulness

$ pgcc –fast –acc –ta=tesla:managed –Minfo=accel main.c

MANAGED MEMORY

The programmer will almost always be able to 
get better performance by manually handling 
data transfers

Memory allocation/deallocation takes longer 
with managed memory

Cannot transfer data asynchronously

Currently only available from PGI on NVIDIA 
GPUs.

Limitations

With Managed Memory

Managed Memory



OPENACC WITH MANAGED MEMORY
while ( error > tol && iter < iter_max ) {
error = 0.0;
#pragma acc kernels
{
for( int j = 1; j < n-1; j++)
{
for( int i = 1; i < m-1; i++ )
{
Anew[j][i] = 0.25 * ( A[j][i+1] + A[j][i-1]

+ A[j-1][i] + A[j+1][i]);
error = fmax( error, fabs(Anew[j][i] - A[j][i]));

}
}

for( int j = 1; j < n-1; j++)
{
for( int i = 1; i < m-1; i++ )
{
A[j][i] = Anew[j][i];

}
}

}
}

An Example from the Lab Code

Without Managed Memory the 
compiler must determine the size of 
A and Anew and copy their data to 
and from the GPU each iteration to 

ensure correctness

With Managed Memory the 
underlying runtime will move the 

data only when needed

INTRODUCTION TO DATA CLAUSES



BASIC DATA MANAGEMENT
Moving data between the Host and Device using copy

#pragma acc kernels
for(int i = 0; i < N; i++){

a[i] = 0;
}

C/C++

Data clauses allow the programmer to tell the compiler which data to move and 
when

Data clauses may be added to kernels or parallel regions, but also data, enter 
data, and exit data, which will discussed shortly

BASIC DATA MANAGEMENT
Moving data between the Host and Device using copy

#pragma acc parallel loop copyout(a[0:n])
for(int i = 0; i < N; i++){

a[i] = 0;
}

C/C++

Data clauses allow the programmer to tell the compiler which data to move and 
when

Data clauses may be added to kernels or parallel regions, but also data, enter 
data, and exit data, which will discussed shortly

I don’t need the initial value 
of a, so I’ll only copy it out 
of the region at the end.



BASIC DATA MANAGEMENT
Moving data between the Host and Device using copy

Allocate ‘a’ on 
GPU

Copy ‘a’ 
from CPU 
to GPU

Execute 
Kernels

Copy ‘a’ 
from GPU 

to CPU

Deallocate 
‘a’ from 
GPU

#pragma acc parallel loop copy(a[0:N])
for(int i = 0; i < N; i++){

a[i] = 2 * a[i];
}

BASIC DATA MANAGEMENT
Moving data between the Host and Device using copy

Allocate ‘a’ on 
GPU

Copy ‘a’ 
from CPU 
to GPU

Execute 
Kernels

Copy ‘a’ 
from GPU 

to CPU

Deallocate 
‘a’ from 
GPU

CPU MEMORY GPU MEMORY

A AA’A’



DATA CLAUSES
copy( list ) Allocates memory on GPU and copies data from host to GPU when 

entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this is a 
logical default to input, modify and return the data.

copyin( list ) Allocates memory on GPU and copies data from host to GPU when 
entering region.

Principal use: Think of this like an array that you would use as  just an 
input to a subroutine.

copyout( list ) Allocates memory on GPU and copies data to the host when exiting 
region.

Principal use: A result that isn’t overwriting the input data structure.

create( list ) Allocates memory on GPU but does not copy.

Principal use: Temporary arrays.

ARRAY SHAPING

Sometimes the compiler needs help understanding the shape of an array

The first number is the start index of the array

In C/C++, the second number is how much data is to be transferred

copy(array[starting_index:length]) C/C++



BASIC DATA MANAGEMENT
Multi-dimensional Array shaping

copy(array[0:N][0:M]) C/C++

EXPLICIT MEMORY MANAGEMENT



EXPLICIT MEMORY MANAGEMENT

Data must be visible on the device when 
we run our parallel code

Data must be visible on the host when 
we run our sequential code

When the host and device don’t share 
memory, data movement must occur

To maximize performance, the 
programmer should avoid all unnecessary 
data transfers

Requirements

Host
Device

Host 
Memory Device 

Memory

EXPLICIT MEMORY MANAGEMENT

Many parallel accelerators (such as 
devices) have a separate memory space 
from the host

These separate memories can become 
out-of-sync and contain completely 
different data

Transferring between these two 
memories can be a very time consuming 
process

Key problems

Host
Device

Host 
Memory Device 

Memory



EXPLICIT MEMORY MANAGEMENT

Many parallel accelerators (such as 
devices) have a separate memory pool 
from the host

These separate memories can become 
out-of-sync and contain completely 
different data

Transferring between these two 
memories can be a very time consuming 
process

Key problems
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OPENACC DATA DIRECTIVE

The data directive defines a lifetime 
for data on the device

During the region data should be 
thought of as residing on the 
accelerator

Data clauses allow the programmer 
to control the allocation and 
movement of data

Definition

#pragma acc data clauses
{

< Sequential and/or Parallel code >

}

copy( list ) Allocates memory on device and copies data from host to device 
when entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this is a 
logical default to input, modify and return the data.

copyin( list ) Allocates memory on device and copies data from host to device 
when entering region.

Principal use: Think of this like an array that you would use as  just an 
input to a subroutine.

copyout( list ) Allocates memory on device and copies data to the host when exiting 
region.

Principal use: A result that isn’t overwriting the input data structure.

create( list ) Allocates memory on device but does not copy.

Principal use: Temporary arrays.

DATA CLAUSES



ARRAY SHAPING

Sometimes the compiler needs help understanding the shape of an array

The first number is the start index of the array

In C/C++, the second number is how much data is to be transferred

copy(array[starting_index:length]) C/C++

ARRAY SHAPING (CONT.)
Multi-dimensional Array shaping

copy(array[0:N][0:M]) C/C++

Both of these examples copy a 2D array to the device



ARRAY SHAPING (CONT.)
Partial Arrays

copy(array[i*N/4:N/4]) C/C++

Both of these examples copy only ¼ of the full array

STRUCTURED DATA DIRECTIVE
Example

#pragma acc parallel loop
for(int i = 0; i < N; i++){
c[i] = a[i] + b[i];
}

This parallel loop will 
execute on the 

accelerator, so a, b, 
and c must be visible 

on the accelerator.



STRUCTURED DATA DIRECTIVE
Example

#pragma acc data copyin(a[0:N],b[0:N]) copyout(c[0:N])
{
#pragma acc parallel loop
for(int i = 0; i < N; i++){
c[i] = a[i] + b[i];
}
}

Start of             
Data Region

End of             
Data Region

STRUCTURED DATA DIRECTIVE
Example

#pragma acc data copyin(a[0:N],b[0:N]) copyout(c[0:N])
{
#pragma acc parallel loop
for(int i = 0; i < N; i++){
c[i] = a[i] + b[i];
}
}

Action

Host Memory Device memory

A B C

Allocate A 
on

device
Copy A from

CPU to device

A

Allocate B on
device

Copy B from
CPU to device

B

Allocate C on
device

Execute loop on
device

C’

Copy C from
device to CPU

C’

Deallocate C from
device

Deallocate B from
device

Deallocate A 
from

device



IMPLIED DATA REGIONS

IMPLIED DATA REGIONS
Definition

#pragma acc kernels copyin(a[0:100])
{
for( int i = 0; i < 100; i++ )
{
a[i] = 0;
}
}

Every kernels and parallel region has 
an implicit data region surrounding it

This allows data to exist solely for the 
duration of the region

All data clauses usable on a data
directive can be used on a parallel and 
kernels as well



IMPLIED DATA REGIONS
Explicit vs Implicit Data Regions

These two codes are functionally the same.

#pragma acc data copyin(a[0:100])
{
#pragma acc kernels
{
for( int i = 0; i < 100; i++ )
{
a[i] = 0;

}
}
}

#pragma acc kernels copyin(a[0:100])
{
for( int i = 0; i < 100; i++ )
{
a[i] = 0;

}
}

Explicit Implicit

EXPLICIT VS. IMPLICIT DATA REGIONS
Limitation

The code on the left will perform better than the code on the right.

#pragma acc data copyout(a[0:100])
{

#pragma acc kernels
{

a[i] = i;
}

#pragma acc kernels
{

a[i] = 2 * a[i];
}

}

#pragma acc kernels copyout(a[0:100])
{
a[i] = i;

}

#pragma acc kernels copy(a[0:100])
{
a[i] = 2 * a[i];

}

1 Data Copy 2 Data CopiesExplicit Implicit



UNSTRUCTURED DATA DIRECTIVES

UNSTRUCTURED DATA DIRECTIVES

Data lifetimes aren’t always neatly 
structured.

The enter data directive handles 
device memory allocation

You may use either the create or the 
copyin clause for memory allocation

The enter data directive is not the start 
of a data region, because you may 
have multiple enter data directives

Enter Data Directive

#pragma acc enter data clauses

< Sequential and/or Parallel code >

#pragma acc exit data clauses



UNSTRUCTURED DATA DIRECTIVES

The exit data directive handles device 
memory deallocation

You may use either the delete or the 
copyout clause for memory deallocation

You should have as many exit data for 
a given array as enter data

These can exist in different functions

Exit Data Directive

#pragma acc enter data clauses

< Sequential and/or Parallel code >

#pragma acc exit data clauses

UNSTRUCTURED DATA CLAUSES

copyin ( list ) Allocates memory on device and copies data from host to device 
on enter data.

copyout ( list ) Allocates memory on device and copies data back to the host on 
exit data.

create ( list ) Allocates memory on device  without data transfer on enter data.

delete ( list ) Deallocates memory on device without data transfer on exit data



UNSTRUCTURED DATA DIRECTIVES
Basic Example

#pragma acc parallel loop
for(int i = 0; i < N; i++){
c[i] = a[i] + b[i];
}

UNSTRUCTURED DATA DIRECTIVES
Basic Example

#pragma acc enter data copyin(a[0:N],b[0:N]) create(c[0:N])

#pragma acc parallel loop
for(int i = 0; i < N; i++){
c[i] = a[i] + b[i];
}

#pragma acc exit data copyout(c[0:N])



UNSTRUCTURED DATA DIRECTIVES
Basic Example

#pragma acc enter data copyin(a[0:N],b[0:N]) create(c[0:N])

#pragma acc parallel loop
for(int i = 0; i < N; i++){
c[i] = a[i] + b[i];
}

#pragma acc exit data copyout(c[0:N])

Action

CPU MEMORY device MEMORY

A B C

Allocate A 
on

device

Copy A 
from

CPU to 
device

A

Allocate B 
on

device

Copy B 
from

CPU to 
device

B

Allocate C 
on

device

Execute loop 
on

device

C’

Copy C 
from

device to 
CPU

C’

Deallocate C 
from

device

UNSTRUCTURED DATA DIRECTIVES
Basic Example – proper memory deallocation

#pragma acc enter data copyin(a[0:N],b[0:N]) create(c[0:N])

#pragma acc parallel loop
for(int i = 0; i < N; i++){

c[i] = a[i] + b[i];
}

#pragma acc exit data copyout(c[0:N]) delete(a,b)

Action

CPU MEMORY

A B C A BC’
device MEMORY

Deallocate A 
from

device

Deallocate B 
from

device



UNSTRUCTURED VS STRUCTURED
With a simple code

#pragma acc enter data copyin(a[0:N],b[0:N]) \
create(c[0:N])

#pragma acc parallel loop
for(int i = 0; i < N; i++){
c[i] = a[i] + b[i];

}

#pragma acc exit data copyout(c[0:N]) \
delete(a,b)

#pragma acc data copyin(a[0:N],b[0:N]) \
copyout(c[0:N])

{
#pragma acc parallel loop
for(int i = 0; i < N; i++){
c[i] = a[i] + b[i];

}

}

Unstructured Structured

Can have multiple starting/ending points

Can branch across multiple functions

Memory exists until explicitly deallocated

Must have explicit start/end points

Must be within a single function

Memory only exists within the data region

UNSTRUCTURED DATA DIRECTIVES
Branching across multiple functions

int* allocate_array(int N){
int* ptr = (int *) malloc(N * sizeof(int));
#pragma acc enter data create(ptr[0:N])
return ptr;

}

void deallocate_array(int* ptr){
#pragma acc exit data delete(ptr)
free(ptr);

}

int main(){
int* a = allocate_array(100);
#pragma acc kernels
{
a[0] = 0;

}
deallocate_array(a);

}

In this example enter data and exit data are 
in different functions

This allows the programmer to put device 
allocation/deallocation with the matching 
host versions

This pattern is particularly useful in C++, 
where structured scopes may not be 
possible.



DATA SYNCHRONIZATION

update:  Explicitly transfers data between the host and the device

Useful when you want to synchronize data in the middle of a data region

Clauses:

self: makes host data agree with device data

device: makes device data agree with host data

#pragma acc update self(x[0:count])
#pragma acc update device(x[0:count])

C/C++

OPENACC UPDATE DIRECTIVE



BB*

A*A

OPENACC UPDATE DIRECTIVE

A
CPU Memory device Memory

#pragma acc update device(A[0:N])

B*
#pragma acc update self(A[0:N])

The data must exist on 
both the CPU and device 
for the update directive 

to work.

SYNCHRONIZE DATA WITH UPDATE
int* allocate_array(int N){
int* A=(int*) malloc(N*sizeof(int));
#pragma acc enter data create(A[0:N])
return A;
}

void deallocate_array(int* A){
#pragma acc exit data delete(A)
free(A);
}

void initialize_array(int* A, int N){
for(int i = 0; i < N; i++){
A[i] = i;

}
#pragma acc update device(A[0:N])
}

Inside the initialize function we alter the 
host copy of ‘A’

This means that after calling initialize the 
host and device copy of ‘A’ are out-of-sync

We use the update directive with the 
device clause to update the device copy of 
‘A’

Without the update directive later compute 
regions will use incorrect data.



C/C++ STRUCTS/CLASSES

C STRUCTS
Without dynamic data members typedef struct {

float x, y, z;
} float3;

int main(int argc, char* argv[]){
int N = 10;
float3* f3 = malloc(N * sizeof(float3));

#pragma acc enter data create(f3[0:N])

#pragma acc kernels
for(int i = 0; i < N; i++){
f3[i].x = 0.0f;
f3[i].y = 0.0f;
f3[i].z = 0.0f;
}

#pragma acc exit data delete(f3)
free(f3);
}

Dynamic data members are anything 
contained within a struct that can have a 
variable size, such as dynamically 
allocated arrays

OpenACC is easily able to copy our 
struct to device memory because 
everything in our float3 struct has a 
fixed size

But what if the struct had dynamically 
allocated members?



C STRUCTS
With dynamic data members typedef struct {

float *arr;
int n;
} vector;

int main(int argc, char* argv[]){

vector v;
v.n = 10;
v.arr = (float*) malloc(v.n*sizeof(float));

#pragma acc enter data copyin(v)
#pragma acc enter data create(v.arr[0:v.n])

...

#pragma acc exit data delete(v.arr)
#pragma acc exit data delete(v)
free(v.arr);
}

OpenACC does not have enough 
information to copy the struct and its 
dynamic members

You must first copy the struct into 
device memory, then allocate/copy the 
dynamic members into device memory

To deallocate, first deal with the 
dynamic members, then the struct

OpenACC will automatically attach
your dynamic members to the struct

C++ STRUCTS/CLASSES
With dynamic data members

class vector {
private:
float *arr;
int n;
public:
vector(int size){
n = size;
arr = new float[n];
#pragma acc enter data copyin(this)
#pragma acc enter data create(arr[0:n])
}
~vector(){
#pragma acc exit data delete(arr)
#pragma acc exit data delete(this)
delete(arr);
}

};

C++ Structs/Classes work the same 
exact way as they do in C

The main difference is that now we 
have to account for the implicit “this” 
pointer



C++ CLASS DATA SYNCHRONIZATION

Since data is encapsulated, the class 
needs to be extended to include data 
synchronization methods

Including explicit methods for 
host/device synchronization may ease 
C++ data management

Allows the class to be able to naturally 
handle synchronization, creating less 
code clutter

void accUpdateSelf() {
#pragma acc update self(arr[0:n])
}
void accUpdateDevice() {
#pragma acc update device(arr[0:n])
}

CPU Memory device Memory

vector.accUpdateDevice();

vector.accUpdateSelf();

USING A OPENACC AWARE C++ CLASS
#include “vector.h"

int main() {

vector A(N), B(N);
for (int i=0; i < B.size(); ++i) {

B[i]=2.5;
}
B.accUpdateDevice();
#pragma acc parallel loop present(A,B)
for (int i=0; i < A.size(); ++i) {

A[i]=B[i]+i;
}
A.accUpdateSelf();
for(int i=0; i<10; ++i) {

cout << "A[" << i << "]: " << A[i] << endl;
}
exit(0);

}

A

Host Memory Device Memory

B B

A



MODULE REVIEW

KEY CONCEPTS
In this module we discussed…

Why explicit data management is necessary for best performance

Structured and Unstructured Data Lifetimes

Explicit and Implicit Data Regions

The data, enter data, exit data, and update directives

Data Clauses



KEY CONCEPTS
In this module we discussed…

The fundamental differences between CPUs and GPUs

Assisting the compiler by providing information about array sizes for data 
management

Managed memory


