PAI1AU

SN)

Lebanese American University

CSC 447: Parallel Programming for
Multi-Core and Cluster Systems

CUDA Thread Scheduling

Instructor: Haidar M. Harmanani

Spring 2018

Blocks, Grids, and Threads

= When a kernel is launched, CUDA generates a grid of
threads that are organized in a three-dimensional
hierarchy
— Each grid is organized into an array of thread blocks or blocks
— Each block can contain up to 1,024 threads
— Number of threads in a block is given in the blockDim variable
— The dimension of thread blocks should be a multiple of 32

= Each thread in a block has a unique threadIdx value

— Combine the threadIdx and blockIdx values to create a
unigue global index

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Blocks, Grids, and Threads

blockDim.y

il
s 0\45’.\)‘\

o
o

E—J

blockDim.x

gridDim.y<

gridDim.x

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Global Thread IDs: 2D grid of 2D blocks
= tx = threadldx.x CUDA Grid

A
blockldx (0,0) blockldx (1,0) blockidx (2,0)
u ty - th readldx-y - (0,0)| (1,0)| (2,0 - (0,0)| (1,0)| (2,0) - (0,001 (0,0)] (2,0
- b bl kld é enon|en § on|0n|@n é ©on|0n|@n
X = OocC X.X 3 3 2
o202 |ealoaea]| |ea|oa|e
blockDim.x blockDim.x blockDim.x
= by = blockld
y OoC X. y blockidx (0,1) blockidx (1,1) blockidx (2,1)
. Lleojnalea| |eo|oa|eo| |0ofoo|@o
= bw = blockDim > g z z
W OoC m.x E glen|on|en|glonfan|en| 8 len|an|en
. a 2 2 2
_ e e2|02|@2| " [ea]na|ed| |0a|02|e
= bh = blockDim.y E
blockDim.x blockDim.x blockDim.x
. blockldx (0,2) blockldx (1,2) blockldx (2,2)
= id, = bx * b
I X tx + X wW |oalnoalea| |eo|noleo| |oo|noleo
: _ * bh § enon|en g on|on|@n & ©on|0n|@n
= id, =ty + by ; 3 3
Yy o202 |ealoa{ea]| |ea|oa|e
blockDim.x blockDim.x blockDim.x
<« gridDim.x >

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Blocks, Grids, and Threads
= blockIdx: The block CUDA Grid

blockldx (0,0) blockldx (1,0) blockldx (2,0)

index Within the grid 0,0)((1,0) [(2,0) 0,0 (1,0| (2,0 0,0 (1,0)| (2,0)

> > >
. . . . % ©on|an|en % on|on|@n § on|an|@n
u grllem The dlmenSIOﬂS 2loalnalea| 2 lealna|ea]| ®[ea|o]e
‘F h . d blockDim.x blockDim.x blockDimx
O t e grl blockldx (0,1) blockldx (1,1) blockldx (2,1)
oloo|eo| _[ealoo|eo| |0o|0o|eo
. > £ £ g
n bloc lem The E % .| 0| @n g on|an|en % on|an|en
a
d' . _F h bl |< 2 “loalaalea| *eaaa|ea]| T |oa|n|e
Imensions ot the bloc > o e e
blockldx (0,2) blockldx (1,2) blockldx (2,2)

u th r\ead IdX The -th read |ealeoleal |oolooleal |oolooleo

» > >
. . . § enon|en % ©on|0n|@n é ||
|ndex Wlthln the blOCk. = 0,200,222 ° 0,200,222 2 0,20,2)(22
blockDim.x blockDim.x blockDim.x
< gridDim.x >

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems

Blocks, Grids, and Threads

blockDim.y
bockid 001 blockide (1.0 blockidx 2.0
. |eoloolea| [eoloo]ea| [eofoo|eo
&[]0 an| &[on]on]|an| & on]on]an -
3 3 3 [— . .
ealoa|ea| | ea|0a|ea| ®eaf0a|ea 2 gridDim.y <
B ohabm | toapn blockDim. x
blockdk(0.1) blockdx (1) Blockdx2,)
_|eoloolea| [eo]oo]eo] [cofeo|eo
z 5 s s
£ onfon|en enfon|en enlonfen
5| 3 i i
2 valoa|ea| " ea|naea| [ea]0a|ea
&
blockDimx blockDimx blocDimx
bockid (02 blockidx (1.2 blockidx 2.2
|eoloolea| [eoloo]ea| [eofeo|eo N
- - - 8 73
§ onfonien § enfon|en é enfonfen : R f g
*leafoalea| *ea]0a]ea] *|ea{0a|es gridDim.x
blockDimx blockDimax blockDimx

gridDim.x ‘

» Thread index = threadldx.x + blockldx.x * blockDim.x

Spring 2 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems

Global Thread IDs: 3D grid of 3D blocks

* tx = threadldx.x -
gridDim.x
=ty = threadldx.y - »

» tz =threadldx.z gridDim.z A
= bx = blockldx.x
* by = blockldx.y

* bz = blockldx.y gridDim.y
= bw = blockDim.x
* bh =blockDim.y
* bd=blockDim.z
= id, = tx + bx * bw \J

= id, =ty +by*bh blockDim.y

* id,=tz+bz*hd
/blockDimAZ
-

blockDim.x

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems

Blocks Must be Independent

= Any possible interleaving of blocks should be valid
—presumed to run to completion without pre-emption
—can run in any order

—can run concurrently OR sequentially
= Blocks may coordinate but not synchronize

= Independence requirement gives scalability

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems

Example 2: A Multi-Dimensional Grid

host (
Block Block
0,0 0, 1
Kernel 1
Block Block
1,0 1, 1)
0
1,0,0 1,0,1 1,0,2 1,0,3
\
Thread f] Thread Thread Thregd
(0,0,0), (0,0,1) (0,0,2) (0,0,3)
L L\
Thre: Thread Thread Thread \
(0,1,0) 0,1,1) 0,1,2) 0,1,3)

1LLINOIS

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Processing a Picture with a 2D Grid

16x16 blocks

62x76 picture

1LLINOIS

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Row-Major Layout in C/C++

M
v

(Mo [M1 [[g

M
| Ll

Mo Mo, [M| M, 5

@nvon

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Source Code of a PictureKernel

__global _ void PictureKernel(float* d_Pin, float* d_Pout, int height, int width)
{

// Calculate the row # of the d_Pin and d_Pout element
int Row = blockIdx.y*blockDim.y + threadIdx.y;

// Calculate the column # of the d_Pin and d_Pout element
int Col = blockIdx.x*blockDim.x + threadIdx.x;

// each thread computes one element of d_Pout if in range
if ((Row < height) && (Col < width)) {
d_Pout[Row*width+Col] = 2.0*d_Pin[Row*width+Col];
}
}

@nvoin

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Host Code for Launching PictureKernel

// assume that the picture is mXn,

// m pixels in y dimension and n pixels in x dimension

// input d_Pin has been allocated on and copied to device
// output d _Pout has been allocated on device

dim3 DimGrid((n-1)/16 + 1, (m-1)/16+1, 1);

dim3 DimBlock(16, 16, 1);
PictureKernel<<<DimGrid,DimBlock>>>(d_Pin, d_Pout, m, n);

AnviDIA

1LLINOIS

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems

Covering a 62x76 Picture with 16x16 Blocks

16x16 block

i

H

7t
1

;;i;&;;;i

Not all threads in a Block will follow the same control flow path.

ILLINOIS

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems

Transparent Scalability

| I |
— T E——

= Each block can execute in any order relative to others
— Concurrently or sequentially
— Facilitates scaling of the same code across many devices

» Hardware is free to assign blocks to any processor at any time
— A kernel scales to any number of parallel processors

SNnVIDIA ILLINOIS

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems

Example 1: Executing Thread Blocks

» Threads are assigned to Streaming
Multiprocessors (SM) in block granularity
—Up to 8 blocks to each SM as resource allows

—Fermi SM can take up to 1536 threads
o Could be 256 (threads/block) * 6 blocks
o Or 512 (threads/block) * 3 blocks, etc.

= SM maintains thread/block idx #s

= SM manages/schedules thread execution

042t /AT

.
.®
I “

<AnvIDIA.

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems

The Von-Neumann Model

A4

Memory .
______ . /10

I

Processing Unit

e
%+

Control Unit

<AnviDIA.

1LLINOIS

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems

The Von-Neumann Model with SIMD
units

\ 4

Memory

A

I/0

- *
Control Unit
[IR |

Single Instruction Multiple Data
(SIMD)

<AnvIDIA.

1LLINOIS

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems

Warps as Scheduling Units

= Each Block is executed as 32-thread Warps

— An implementation decision, not part of the CUDA
programming model

—Warps are scheduling units in SM
—Threads in a warp execute in SIMD

— Future GPUs may have different number of threads in each
warp

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems

Warp Example

= |f 3 blocks are assigned to an SM and each block has 256
threads, how many Warps are there in an SM?
— Each Block is divided into 256/32 = 8 Warps
— There are 8 * 3 = 24 Warps

Block 2 Warps

Block 0 Warps

Block 1 Warps

~~~~~~~~~~

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems




Blocks, Grids, and Threads

= |nstructions are issued per warp

— It takes 4 clock cycles to issue a single instruction for the
whole warp

= |f an operand is not ready the warp will stall

* Threads in any given warp execute in lock-step, but to
synchronise across warps, you need to use
___syncthreads ()

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems

Example: Thread Scheduling (Cont.)

= SM implements zero-overhead warp scheduling

—Warps whose next instruction has its operands ready for
consumption are eligible for execution

—Eligible Warps are selected for execution based on a
prioritized scheduling policy

— All threads in a warp execute the same instruction when
selected

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems




Fermi Architecture

= Has 16 SM that each can process at most 8 blocks
= Fach SM has 32 cores for a total of 512 cores

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems

Block Granularity Considerations

= For Matrix Multiplication using multiple blocks,

should we use 8X8, 16X16 or 32X32 blocks for Fermi?

—For 8X8, we have 64 threads per block.

o We will need 1536/64 = 24 blocks to fully occupy an SM since each SM can
take up to 1536 threads

o However, each SM has only 8 Blocks, only 64x8 = 512 threads will go into
each SM!

o This means that the SM execution resources will likely be underutilized
because there will be fewer warps to schedule around long latency
operations.

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems




Block Granularity Considerations

= For Matrix Multiplication using multiple blocks,
should | use 8X8, 16X16 or 32X32 blocks for Fermi?

—For 16X16, we have 256 threads per Block. Since each SM
can take up to 1536 threads, it can take up to 6 Blocks and
achieve full capacity unless other resource considerations
overrule.

—For 32X32, we would have 1024 threads per Block. Only one
block can fit into an SM for Fermi. Using only 2/3 of the
thread capacity of an SM.

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems

time
L]
.

Each Kepler SMX contains 4 Warp Schedulers, each with dual Instruction Dispatch Units. A single Warp Scheduler Unit is
shown above.

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems




Performance Tuningf]

» For optimal performance, the programmer has to
juggle
—finding enough parallelism to use all SMs
—finding enough parallelism to keep all cores in an SM busy
— optimizing use of registers and shared memory
— optimizing device memory access for contiguous memory

—organizing data or using the cache to optimize device
memory access for contiguous memory

CSC 44T: Parallel Programming for Multi-Core and Cluster Systems

Spring 2018

Asynchronous operation
Handling errors
Managing devices

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems



1D Stencil

= Consider applying a 1D stencil to a 1D array of

elements

—Each output element is the sum of input elements within a
radius

= |f radius is 3, then each output element is the sum of
/7 input elements:

W_IW_I

radius radius

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems

Implementing Within a Block

» Each thread processes one output element
—blockDim.x elements per block

* |Input elements are read several times
— With radius 3, each input element is read seven times

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems




Sharing Data Between Threads

» Terminology: within a block, threads share data via
shared memory

* Extremely fast on-chip memory, user-managed
* Declare using  shared |, allocated per block

e Data is not visible to threads in other blocks

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems

Implementing With Shared Memory

= Cache data in shared memory

— Read (blockDim.x + 2 * radius) input elements from global memory
to shared memory

— Compute blockDim.x output elements
— Write blockDim.x output elements to global memory
— Each block needs a halo of radius elements at each boundary

wWuwiddaddddddddddddduud
%(_/ H_/
halo on left ‘.’ halo on right

TSN 1NN S O N I
- J

~
blockDim.x output elements

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems



1D Stencil Computation Example ,
Radius = 1

// assume u[i] initialized to some values
for (s=1; s<T; s+=2) {
for (i=1; i<(N-1); i++) {
tmp[i] = 1/3 * (u[i-1] + u[i] + u[i+1]); // S1
}

for (j=1; j<(N-1); Jj++) {
ufi] = 1/3 * (tmp[j-1] + tmp[j] + tmp[j+1]); // S2 }

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

__global  void stencil_1ld(int *in, int *out) ({ N
int temp[BLOCK_SIZE + 2 * RADIUS]; StenC|| Kernel
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

Iy

result += temp[lindex + offset]; WEE ) e
// Store the result S 1 S A A1
out[gindex] = result; 8 S5 S Y

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems




Data Race!

= The stencil example will not work...
= Suppose thread 15 reads the halo before thread 0 has fetched it...

temp[lindex] = inlgindex]; ISR DO

if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS = in[gindex - RADIUS];
temp([lindex + BLOCK SIZE] = in[gindex + BLOCK SIZE];
}

int result = 0;

result += temp[lindex + 1]; ISR

Spring 2018 CSC 44T: Parallel Programming for Multi-Core and Cluster Systems

__syncthreads()

* void  syncthreads();

» Synchronizes all threads within a block
—Used to prevent RAW / WAR / WAW hazards

e All threads must reach the barrier
—In conditional code, the condition must be uniform across

the block

CSC 44T: Parallel Programming for Multi-Core and Cluster Systems

Spring 2018



__global  void stencil 1ld(int *in, int *out) ({
__shared  int temp[BLOCK SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + radius;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
}
// Synchronize (ensure all the data is available)
__syncthreads() ;
// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];
// Store the result

out[gindex] = result; StenCiI Kernel

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems



