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Blocks, Grids, and Threads

= When a kernel is launched, CUDA generates a grid of
threads that are organized in a three-dimensional
hierarchy
— Each grid is organized into an array of thread blocks or blocks
— Each block can contain up to 1,024 threads
— Number of threads in a block is given in the blockDim variable
— The dimension of thread blocks should be a multiple of 32

= Each thread in a block has a unique threadIdx value

— Combine the threadIdx and blockIdx values to create a
unigue global index
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Blocks, Grids, and Threads
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Global Thread IDs: 2D grid of 2D blocks
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Blocks, Grids, and Threads
= blockIdx: The block CUDA Grid
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Blocks, Grids, and Threads
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» Thread index = threadldx.x + blockldx.x * blockDim.x
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Global Thread IDs: 3D grid of 3D blocks
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Blocks Must be Independent

= Any possible interleaving of blocks should be valid
—presumed to run to completion without pre-emption
—can run in any order

—can run concurrently OR sequentially
= Blocks may coordinate but not synchronize

= Independence requirement gives scalability
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Example 2: A Multi-Dimensional Grid
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Processing a Picture with a 2D Grid

16x16 blocks

62x76 picture

1LLINOIS
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Row-Major Layout in C/C++
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Source Code of a PictureKernel

__global _ void PictureKernel(float* d_Pin, float* d_Pout, int height, int width)
{

// Calculate the row # of the d_Pin and d_Pout element
int Row = blockIdx.y*blockDim.y + threadIdx.y;

// Calculate the column # of the d_Pin and d_Pout element
int Col = blockIdx.x*blockDim.x + threadIdx.x;

// each thread computes one element of d_Pout if in range
if ((Row < height) && (Col < width)) {
d_Pout[Row*width+Col] = 2.0*d_Pin[Row*width+Col];
}
}

@nvoin
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Host Code for Launching PictureKernel

// assume that the picture is mXn,

// m pixels in y dimension and n pixels in x dimension

// input d_Pin has been allocated on and copied to device
// output d _Pout has been allocated on device

dim3 DimGrid((n-1)/16 + 1, (m-1)/16+1, 1);

dim3 DimBlock(16, 16, 1);
PictureKernel<<<DimGrid,DimBlock>>>(d_Pin, d_Pout, m, n);

AnviDIA
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Covering a 62x76 Picture with 16x16 Blocks

16x16 block
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Not all threads in a Block will follow the same control flow path.
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Transparent Scalability
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= Each block can execute in any order relative to others
— Concurrently or sequentially
— Facilitates scaling of the same code across many devices

» Hardware is free to assign blocks to any processor at any time
— A kernel scales to any number of parallel processors

SNnVIDIA ILLINOIS
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Example 1: Executing Thread Blocks

» Threads are assigned to Streaming
Multiprocessors (SM) in block granularity
—Up to 8 blocks to each SM as resource allows

—Fermi SM can take up to 1536 threads
o Could be 256 (threads/block) * 6 blocks
o Or 512 (threads/block) * 3 blocks, etc.

= SM maintains thread/block idx #s

= SM manages/schedules thread execution
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The Von-Neumann Model
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The Von-Neumann Model with SIMD
units
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Warps as Scheduling Units

= Each Block is executed as 32-thread Warps

— An implementation decision, not part of the CUDA
programming model

—Warps are scheduling units in SM
—Threads in a warp execute in SIMD

— Future GPUs may have different number of threads in each
warp
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Warp Example

= |f 3 blocks are assigned to an SM and each block has 256
threads, how many Warps are there in an SM?
— Each Block is divided into 256/32 = 8 Warps
— There are 8 * 3 = 24 Warps

Block 2 Warps

Block 0 Warps

Block 1 Warps

~~~~~~~~~~
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Blocks, Grids, and Threads

= |nstructions are issued per warp

— It takes 4 clock cycles to issue a single instruction for the
whole warp

= |f an operand is not ready the warp will stall

* Threads in any given warp execute in lock-step, but to
synchronise across warps, you need to use
___syncthreads ()
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Example: Thread Scheduling (Cont.)

= SM implements zero-overhead warp scheduling

—Warps whose next instruction has its operands ready for
consumption are eligible for execution

—Eligible Warps are selected for execution based on a
prioritized scheduling policy

— All threads in a warp execute the same instruction when
selected
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Fermi Architecture

= Has 16 SM that each can process at most 8 blocks
= Fach SM has 32 cores for a total of 512 cores
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Block Granularity Considerations

= For Matrix Multiplication using multiple blocks,

should we use 8X8, 16X16 or 32X32 blocks for Fermi?

—For 8X8, we have 64 threads per block.

o We will need 1536/64 = 24 blocks to fully occupy an SM since each SM can
take up to 1536 threads

o However, each SM has only 8 Blocks, only 64x8 = 512 threads will go into
each SM!

o This means that the SM execution resources will likely be underutilized
because there will be fewer warps to schedule around long latency
operations.
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Block Granularity Considerations

= For Matrix Multiplication using multiple blocks,
should | use 8X8, 16X16 or 32X32 blocks for Fermi?

—For 16X16, we have 256 threads per Block. Since each SM
can take up to 1536 threads, it can take up to 6 Blocks and
achieve full capacity unless other resource considerations
overrule.

—For 32X32, we would have 1024 threads per Block. Only one
block can fit into an SM for Fermi. Using only 2/3 of the
thread capacity of an SM.
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Each Kepler SMX contains 4 Warp Schedulers, each with dual Instruction Dispatch Units. A single Warp Scheduler Unit is
shown above.
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Performance Tuningf]

» For optimal performance, the programmer has to
juggle
—finding enough parallelism to use all SMs
—finding enough parallelism to keep all cores in an SM busy
— optimizing use of registers and shared memory
— optimizing device memory access for contiguous memory

—organizing data or using the cache to optimize device
memory access for contiguous memory
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Spring 2018

Asynchronous operation
Handling errors
Managing devices
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1D Stencil

= Consider applying a 1D stencil to a 1D array of

elements

—Each output element is the sum of input elements within a
radius

= |f radius is 3, then each output element is the sum of
/7 input elements:

W_IW_I

radius radius
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Implementing Within a Block

» Each thread processes one output element
—blockDim.x elements per block

* |Input elements are read several times
— With radius 3, each input element is read seven times
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Sharing Data Between Threads

» Terminology: within a block, threads share data via
shared memory

* Extremely fast on-chip memory, user-managed
* Declare using  shared |, allocated per block

e Data is not visible to threads in other blocks
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Implementing With Shared Memory

= Cache data in shared memory

— Read (blockDim.x + 2 * radius) input elements from global memory
to shared memory

— Compute blockDim.x output elements
— Write blockDim.x output elements to global memory
— Each block needs a halo of radius elements at each boundary
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1D Stencil Computation Example ,
Radius = 1

// assume u[i] initialized to some values
for (s=1; s<T; s+=2) {
for (i=1; i<(N-1); i++) {
tmp[i] = 1/3 * (u[i-1] + u[i] + u[i+1]); // S1
}

for (j=1; j<(N-1); Jj++) {
ufi] = 1/3 * (tmp[j-1] + tmp[j] + tmp[j+1]); // S2 }
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__global  void stencil_1ld(int *in, int *out) ({ N
int temp[BLOCK_SIZE + 2 * RADIUS]; StenC|| Kernel
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

Iy

result += temp[lindex + offset]; WEE ) e
// Store the result S 1 S A A1
out[gindex] = result; 8 S5 S Y
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Data Race!

= The stencil example will not work...
= Suppose thread 15 reads the halo before thread 0 has fetched it...

temp[lindex] = inlgindex]; ISR DO

if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS = in[gindex - RADIUS];
temp([lindex + BLOCK SIZE] = in[gindex + BLOCK SIZE];
}

int result = 0;

result += temp[lindex + 1]; ISR
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__syncthreads()

* void  syncthreads();

» Synchronizes all threads within a block
—Used to prevent RAW / WAR / WAW hazards

e All threads must reach the barrier
—In conditional code, the condition must be uniform across

the block
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__global  void stencil 1ld(int *in, int *out) ({
__shared  int temp[BLOCK SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + radius;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
}
// Synchronize (ensure all the data is available)
__syncthreads() ;
// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];
// Store the result

out[gindex] = result; StenCiI Kernel

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems



