
CSC 447: Parallel Programming for
Multi-Core and Cluster Systems
CUDA Thread Schedul ing

Instructor : Haidar M. Harmanani

Spring 2018

Blocks, Grids, and Threads
§ When a kernel is launched, CUDA generates a grid of

threads that are organized in a three-dimensional
hierarchy
� Each grid is organized into an array of thread blocks or blocks
� Each block can contain up to 1,024 threads
� Number of threads in a block is given in the blockDim variable
� The dimension of thread blocks should be a multiple of 32

§ Each thread in a block has a unique threadIdx value
� Combine the threadIdx and blockIdx values to create a

unique global index

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 2

Blocks, Grids, and Threads

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 3

Global Thread IDs: 2D grid of 2D blocks
§ tx = threadIdx.x
§ ty = threadIdx.y
§ bx = blockIdx.x
§ by = blockIdx.y
§ bw = blockDim.x
§ bh = blockDim.y
§ idx = tx + bx * bw
§ idy = ty + by * bh

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 4

Blocks, Grids, and Threads
§ blockIdx: The block

index within the grid

§ gridDim: The dimensions
of the grid

§ blockDim: The
dimensions of the block

§ threadIdx: The thread
index within the block.

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 5

Blocks, Grids, and Threads

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 6

§ Thread index = threadIdx.x + blockIdx.x * blockDim.x

Global Thread IDs: 3D grid of 3D blocks
§ tx = threadIdx.x

§ ty = threadIdx.y

§ tz = threadIdx.z

§ bx = blockIdx.x

§ by = blockIdx.y

§ bz = blockIdx.y

§ bw = blockDim.x

§ bh = blockDim.y

§ bd = blockDim.z

§ idx = tx + bx * bw

§ idy = ty + by * bh

§ idz = tz + bz * hd

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 7

Blocks Must be Independent
§ Any possible interleaving of blocks should be valid
� presumed to run to completion without pre-emption
� can run in any order
� can run concurrently OR sequentially

§ Blocks may coordinate but not synchronize

§ Independence requirement gives scalability

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 8

Example 2: A Multi-Dimensional Grid
host device

Kernel 1

Grid 1
Block
(0, 0)

Block
(1, 1)

Block
(1, 0)

Block
(0, 1)

Grid 2

Block (1,0)

Thread
(0,0,0)Thread

(0,1,3)
Thread
(0,1,0)

Thread
(0,1,1)

Thread
(0,1,2)

Thread
(0,0,0)

Thread
(0,0,1)

Thread
(0,0,2)

Thread
(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 9

Processing a Picture with a 2D Grid

62×76 picture

16×16 blocks

62×76 picture

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 10

M0,2

M1,1

M0,1M0,0

M1,0

M0,3

M1,2 M1,3

M0,2M0,1M0,0 M0,3 M1,1M1,0 M1,2 M1,3 M2,1M2,0 M2,2 M2,3

M2,1M2,0 M2,2 M2,3

M3,1M3,0 M3,2 M3,3

M3,1M3,0 M3,2 M3,3

M

Row*Width+Col = 2*4+1 = 9
M2M1M0 M3 M5M4 M6 M7 M9M8 M10 M11 M13M12 M14 M15

M

Row-Major Layout in C/C++

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 11

Source Code of a PictureKernel
__global__ void PictureKernel(float* d_Pin, float* d_Pout, int height, int width)
{

// Calculate the row # of the d_Pin and d_Pout element
int Row = blockIdx.y*blockDim.y + threadIdx.y;

// Calculate the column # of the d_Pin and d_Pout element
int Col = blockIdx.x*blockDim.x + threadIdx.x;

// each thread computes one element of d_Pout if in range
if ((Row < height) && (Col < width)) {
d_Pout[Row*width+Col] = 2.0*d_Pin[Row*width+Col];

}
} Scale every pixel value by 2.0

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 12

Host Code for Launching PictureKernel
// assume that the picture is m× n,
// m pixels in y dimension and n pixels in x dimension
// input d_Pin has been allocated on and copied to device
// output d_Pout has been allocated on device
…
dim3 DimGrid((n-1)/16 + 1, (m-1)/16+1, 1);
dim3 DimBlock(16, 16, 1);
PictureKernel<<<DimGrid,DimBlock>>>(d_Pin, d_Pout, m, n);
…

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 13

Covering a 62×76 Picture with 16×16 Blocks

Not all threads in a Block will follow the same control flow path.

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 14

Transparent Scalability

§ Each block can execute in any order relative to others
� Concurrently or sequentially
� Facilitates scaling of the same code across many devices

§ Hardware is free to assign blocks to any processor at any time
� A kernel scales to any number of parallel processors

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Thread grid
Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7
time

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 15

Example 1: Executing Thread Blocks
§ Threads are assigned to Streaming

Multiprocessors (SM) in block granularity
�Up to 8 blocks to each SM as resource allows
� Fermi SM can take up to 1536 threads
o Could be 256 (threads/block) * 6 blocks
o Or 512 (threads/block) * 3 blocks, etc.

§ SM maintains thread/block idx #s

§ SM manages/schedules thread execution

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 16

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

SM

The Von-Neumann Model

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 17

The Von-Neumann Model with SIMD
units

Single Instruction Multiple Data
(SIMD)

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

Single Instruction Multiple Data
(SIMD)

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 18

Warps as Scheduling Units
§ Each Block is executed as 32-thread Warps
�An implementation decision, not part of the CUDA

programming model
�Warps are scheduling units in SM
� Threads in a warp execute in SIMD
� Future GPUs may have different number of threads in each

warp

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 19

Warp Example
§ If 3 blocks are assigned to an SM and each block has 256

threads, how many Warps are there in an SM?
� Each Block is divided into 256/32 = 8 Warps
� There are 8 * 3 = 24 Warps

…t0 t1 t2 … t31
…

…t0 t1 t2 … t31
…Block 0 Warps Block 1 Warps

…t0 t1 t2 … t31
…Block 2 Warps

Register File

L1 Shared Memory

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 20

Blocks, Grids, and Threads
§ Instructions are issued per warp
� It takes 4 clock cycles to issue a single instruction for the

whole warp

§ If an operand is not ready the warp will stall

§ Threads in any given warp execute in lock-step, but to
synchronise across warps, you need to use
__syncthreads()

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 21

Example: Thread Scheduling (Cont.)
§ SM implements zero-overhead warp scheduling
�Warps whose next instruction has its operands ready for

consumption are eligible for execution
� Eligible Warps are selected for execution based on a

prioritized scheduling policy
�All threads in a warp execute the same instruction when

selected

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 22

Fermi Architecture
§ Has 16 SM that each can process at most 8 blocks

§ Each SM has 32 cores for a total of 512 cores

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 23

Block Granularity Considerations
§ For Matrix Multiplication using multiple blocks,

should we use 8X8, 16X16 or 32X32 blocks for Fermi?
� For 8X8, we have 64 threads per block.
o We will need 1536/64 = 24 blocks to fully occupy an SM since each SM can

take up to 1536 threads
o However, each SM has only 8 Blocks, only 64x8 = 512 threads will go into

each SM!
o This means that the SM execution resources will likely be underutilized

because there will be fewer warps to schedule around long latency
operations.

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 24

Block Granularity Considerations
§ For Matrix Multiplication using multiple blocks,

should I use 8X8, 16X16 or 32X32 blocks for Fermi?
� For 16X16, we have 256 threads per Block. Since each SM

can take up to 1536 threads, it can take up to 6 Blocks and
achieve full capacity unless other resource considerations
overrule.

� For 32X32, we would have 1024 threads per Block. Only one
block can fit into an SM for Fermi. Using only 2/3 of the
thread capacity of an SM.

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 25

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 26

Performance Tuning¶
§ For optimal performance, the programmer has to

juggle
� finding enough parallelism to use all SMs
� finding enough parallelism to keep all cores in an SM busy
� optimizing use of registers and shared memory
� optimizing device memory access for contiguous memory
� organizing data or using the cache to optimize device

memory access for contiguous memory

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 27

Spring 2018 28

Memory Management

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

Example: Cooperating Threads

CSC 447: Parallel Programming for Multi-Core and Cluster Systems

1D Stencil
§ Consider applying a 1D stencil to a 1D array of

elements
� Each output element is the sum of input elements within a

radius

§ If radius is 3, then each output element is the sum of
7 input elements:

radius radius

Spring 2018 29CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Implementing Within a Block
§ Each thread processes one output element
� blockDim.x elements per block

§ Input elements are read several times
�With radius 3, each input element is read seven times

Spring 2018 30CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Sharing Data Between Threads
• Terminology: within a block, threads share data via

shared memory

• Extremely fast on-chip memory, user-managed

• Declare using __shared__, allocated per block

• Data is not visible to threads in other blocks

Spring 2018 31CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Implementing With Shared Memory
§ Cache data in shared memory
� Read (blockDim.x + 2 * radius) input elements from global memory

to shared memory
� Compute blockDim.x output elements
� Write blockDim.x output elements to global memory
� Each block needs a halo of radius elements at each boundary

blockDim.x output elements

halo on left halo on right

Spring 2018 32CSC 447: Parallel Programming for Multi-Core and Cluster Systems

1D Stencil Computation Example ,
Radius = 1

Spring 2018 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 33

// assume u[i] initialized to some values
for (s=1; s<T; s+=2) {

for (i=1; i<(N-1); i++) {
tmp[i] = 1/3 * (u[i-1] + u[i] + u[i+1]); // S1

}

for (j=1; j<(N-1); j++) {
u[i] = 1/3 * (tmp[j-1] + tmp[j] + tmp[j+1]); // S2 }

}

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}
// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result
out[gindex] = result;

}

Stencil Kernel

Spring 2018 34CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Data Race!
§ The stencil example will not work…
§ Suppose thread 15 reads the halo before thread 0 has fetched it…

temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex – RADIUS = in[gindex – RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

int result = 0;
result += temp[lindex + 1];

Store at temp[18]

Load from temp[19]

Skipped, threadIdx > RADIUS

Spring 2018 35CSC 447: Parallel Programming for Multi-Core and Cluster Systems

__syncthreads()
• void __syncthreads();

• Synchronizes all threads within a block
–Used to prevent RAW / WAR / WAW hazards

• All threads must reach the barrier
– In conditional code, the condition must be uniform across

the block

Spring 2018 36CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Stencil Kernel

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + radius;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex – RADIUS] = in[gindex – RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}
// Synchronize (ensure all the data is available)
__syncthreads();
// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];
// Store the result
out[gindex] = result;

}

Spring 2018 37CSC 447: Parallel Programming for Multi-Core and Cluster Systems

