
Module II:
OPENACC DIRECTIVES

MODULE OVERVIEW
OpenACC Directives

The parallel directive

The kernels directive

The loop directive

Fundamental differences between the kernels and parallel directive

Expressing parallelism in OpenACC

OPENACC SYNTAX

OPENACC SYNTAX

A pragma in C/C++ gives instructions to the compiler on how to compile the code.
Compilers that do not understand a particular pragma can freely ignore it.

“acc” informs the compiler that what will come is an OpenACC directive

Directives are commands in OpenACC for altering our code.

Clauses are specifiers or additions to directives.

Syntax for using OpenACC directives in code

C/C++
#pragma acc directive clauses
<code>

OPENACC PARALLEL DIRECTIVE

OPENACC PARALLEL DIRECTIVE

The parallel directive instructs the compiler
to create parallel gangs on the accelerator

Gangs are independent groups of worker
threads on the accelerator

The code contained within a parallel directive
is executed redundantly by all parallel gangs

Explicit programming

<sequential code>

#pragma acc parallel
{
<sequential code>
}

Parallel Hardware

CPU

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}

When encountering the
parallel directive, the
compiler will generate

1 or more parallel
gangs, which execute

redundantly.
gang

gang gang

gang

gang

gang

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

This loop will be
executed redundantly

on each gang

gang

gang gang

gang

gang

gang

loop

lo
op

lo
op

lo
op

lo
op

lo
op

lo
op

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

This means that each
gang will execute the

entire loop

gang

gang gang

gang

gang

gang

OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

Use a parallel directive to mark a region of
code where you want parallel execution to occur

This parallel region is marked by curly braces in
C/C++ or a start and end directive in Fortran

The loop directive is used to instruct the
compiler to parallelize the iterations of the next
loop to run across the parallel gangs

C/C++
#pragma acc parallel
{

#pragma acc loop
for(int i = 0; j < N; i++)

a[i] = 0;
}

OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

This pattern is so common that you can do all of
this in a single line of code

In this example, the parallel loop directive
applies to the next loop

This directive both marks the region for parallel
execution and distributes the iterations of the
loop.

When applied to a loop with a data
dependency, parallel loop may produce
incorrect results

C/C++
#pragma acc parallel loop
for(int i = 0; j < N; i++)

a[i] = 0;

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

#pragma acc loop
for(int i = 0; i < N; i++)
{

// Do Something
}

}

The loop directive informs
the compiler which loops to

parallelize.

OPENACC PARALLEL DIRECTIVE
Parallelizing many loops

To parallelize multiple loops, each loop should
be accompanied by a parallel directive

Each parallel loop can have different loop
boundaries and loop optimizations

Each parallel loop can be parallelized in a
different way

This is the recommended way to parallelize
multiple loops. Attempting to parallelize multiple
loops within the same parallel region may give
performance issues or unexpected results

#pragma acc parallel loop
for(int i = 0; i < N; i++)

a[i] = 0;

#pragma acc parallel loop
for(int j = 0; j < M; j++)

b[j] = 0;

OPENACC LOOP DIRECTIVE

OPENACC LOOP DIRECTIVE

Mark a single for loop for parallelization

Allows the programmer to give additional
information and/or optimizations about the
loop

Provides many different ways to describe the
type of parallelism to apply to the loop

Must be contained within an OpenACC
compute region (either a kernels or a parallel
region) to parallelize loops

Expressing parallelism

C/C++
#pragma acc loop
for(int i = 0; i < N; i++)

// Do something

OPENACC LOOP DIRECTIVE
Inside of a parallel compute region

In this example, the first loop is not marked with
the loop directive

This means that the loop will be “redundantly
parallelized”

Redundant parallelization, in this case, means
that the loop will be run in its entirety, multiple
times, by the parallel hardware

The second loop is marked with the loop
directive, meaning that the loop iterations will be
properly split across the parallel hardware

#pragma acc parallel
{
for(int i = 0; i < N; i++)
a[i] = 0;

#pragma acc loop
for(int j = 0; j < N; j++)
a[i]++;

}

OPENACC LOOP DIRECTIVE
Inside of a kernels compute region

With the kernels directive, the loop directive is
implied

The programmer can still explicitly define loops
with the loop directive, however this could affect
the optimizations the compiler makes

The loop directive is not needed, but does allow
the programmer to optimize the loops
themselves

#pragma acc kernels
{

#pragma acc loop
for(int i = 0; i < N; i++)

a[i] = 0;

#pragma acc loop
for(int j = 0; j < M; j++)

b[i] = 0;
}

OPENACC LOOP DIRECTIVE
Parallelizing loop nests

You are able to include multiple loop directives
to parallelize multi-dimensional loop nests

On some parallel hardware, this will allow you
to express more levels of parallelism, and
increase performance further

Other parallel hardware has difficulties
expressing enough parallelism for multi-
dimensional loops

In this case, inner loop directives may be
ignored

#pragma acc parallel loop
for(int i = 0; i < N; i++){
#pragma acc loop
for(int j = 0; j < M; j++){

a[i][j] = 0;
}

}

C
/C

++

REDUCTION CLAUSE

The inner-most loop is not parallelizable

If we attempted to parallelize it without any changes, multiple threads could
attempt to write to c[i][j]

When multiple threads try to write to the same place in memory simultaneously,
we should expect to receive erroneous results

To fix this, we should use the reduction clause

for(i = 0; i < size; i++)
for(j = 0; j < size; j++)

for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

WITHOUT A REDUCTION

#pragma acc parallel loop
for(k = 0; k < size; k++)

c[i][j] += a[i][k] * b[k][j];

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = size-1

C[i][j]
When running this loop in

parallel, we cannot guarantee
that the threads will “take turns”

When running this loop
sequentially, the loop iterations will

“take turns” writing to c[i][j]

REDUCTION CLAUSE
The reduction clause is used when taking
many values and “reducing” it to a single value
such as in a summation

Each thread will have their own private copy of
the reduction variable and perform a partial
reduction on the loop iterations that they
compute

After the loop, the reduction clause will perform
a final reduction to produce a single global
result

for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
double tmp = 0.0f;
#pragma parallel acc loop reduction(+:tmp)
for(k = 0; k < size; k++)
tmp += a[i][k] * b[k][j];

c[i][j] = tmp;

for(i = 0; i < size; i++)
for(j = 0; j < size; j++)

for(k = 0; k < size; k++)
c[i][j] += a[i][k] *

b[k][j];

REDUCTION CLAUSE

The compiler is often very good at
detecting when a reduction is needed so
the clause may be optional

May be more applicable to the parallel
directive (depending on the compiler)

for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
double tmp = 0.0f;
#pragma parallel acc loop reduction(+:tmp)
for(k = 0; k < size; k++)
tmp += a[i][k] * b[k][j];
c[i][j] = tmp;

REDUCTION CLAUSE OPERATORS
Operator Description Example

+ Addition/Summation reduction(+:sum)

* Multiplication/Product reduction(*:product)

max Maximum value reduction(max:maximum)

min Minimum value reduction(min:minimum)

& Bitwise and reduction(&:val)

| Bitwise or reduction(|:val)

&& Logical and reduction(&&:val)

|| Logical or reduction(||:val)

The reduction variable may not be a C
struct member, a C++ class or struct
member, or a Fortran derived type
member

REDUCTION CLAUSE

The reduction variable may not be an
array element

Restrictions

v.val = 0;
#pragma acc parallel loop \

reduction(+:v.val)
for(i = 0; i < v.n; i++)

v.val += i;

a[0] = 0;
#pragma parallel acc loop \

reduction(+:a[0])
for(i = 0; i < 100; i++)

a[0] += i;

OPENACC KERNELS DIRECTIVE

OPENACC KERNELS DIRECTIVE

The kernels directive instructs the compiler to
search for parallel loops in the code

The compiler will analyze the loops and
parallelize those it finds safe and profitable to do
so

The kernels directive can be applied to regions
containing multiple loop nests

Compiler directed parallelization

<sequential code>

#pragma acc kernels
{

<for loop>

<for loop>
}

Parallel HardwareCPU

OPENACC KERNELS DIRECTIVE
Parallelizing a single loop

In this example, the kernels directive applies to
the next for loop

The compiler will take the loop, and attempt to
parallelize it on the parallel hardware

The compiler will also attempt to optimize the
loop

If the compiler decides that the loop is not
parallelizable, it will not parallelize the loop

C/C++
#pragma acc kernels
for(int i = 0; j < N; i++)

a[i] = 0;

OPENACC KERNELS DIRECTIVE
Parallelizing many loops

In this example, we mark a region of code with
the kernels directive

The kernels region is defined by the curly
braces

The compiler will attempt to parallelize all loops
within the kernels region

Each loop can be parallelized/optimized in a
different way

#pragma acc kernels
{
for(int i = 0; i < N; i++)
a[i] = 0;

for(int j = 0; j < M; j++)
b[j] = 0;

}

C
/C

++

#pragma acc kernels
{

for(int i = 0; i < N; i++)
{

// Do Something
}

for(int i = 0; i < M; i++)
{

// Do Something Else
}

}

EXPRESSING PARALLELISM
Compiler generated parallelism

With the kernels directive,
the loop directive is

implied.

#pragma acc kernels
{

for(int i = 0; i < N; i++)
{
// Do Something

}

for(int i = 0; i < M; i++)
{
// Do Something Else

}

}

EXPRESSING PARALLELISM
Compiler generated parallelism

This process can happen
multiple times within the

kernels region.

Each loop can have a different number of
gangs, and those gangs can be

organized/optimized completely differently.

When fully optimized, both will give similar performance.

Programmer based parallelization
Programmer based optimizations
Programmer based restrictions

Kernels Parallel

KERNELS VS PARALLEL

Compiler decides what to parallelize
with direction from user

Compiler guarantees correctness

Can cover multiple loop nests

Programmer decides what to parallelize
and communicates that to the compiler

Programmer guarantees correctness

Must decorate each loop nest

THANK YOU

ADDITIONAL RESOURCES
YouTube OpenACC Introduction Series by Michael Wolfe

Introduction to Parallel Programming with OpenACC – Part 1

Introduction to Parallel Programming with OpenACC – Part 2

Follow along by downloading the code here!

Resources
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

OPENACC RESOURCES
Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools
https://www.openacc.org/tools

FREE
Compilers

https://www.openacc.org/community#slack

