
Module I:
Introduction to OpenACC

Similarly to OpenMP, 
OpenACC is a directives-
based programming approach to 
parallel computing but 
designed for performance
and portability on CPUs and 
GPUs for HPC.  

main()
{
<serial code>
#pragma acc kernels
{  
<parallel code>

}
}

Add Simple Compiler Directive



3 WAYS TO ACCELERATE 
APPLICATIONS

Applications

Libraries

Easy to use
Most Performance

Programming 
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

OpenACC

OpenACC is designed to be portable to many 
existing and future parallel platforms

The programmer need not think about specific 
hardware details, but rather express the 
parallelism in generic terms

An OpenACC program runs on a host
(typically a CPU) that manages one or more 
parallel devices (GPUs, etc.). The host and 
device(s) are logically thought of as having 
separate memories.

Host
Device

Host 
Memory Device 

Memory

OPENACC PORTABILITY
Describing a generic parallel machine



Single Source Low Learning CurveIncremental

OPENACC
Three major strengths

Incremental

OPENACC

Maintain existing 
sequential code
Add annotations to 
expose parallelism
After verifying 
correctness, annotate 
more of the code

for( i = 0; i < N; i++ )
{  

< loop code >
}

for( i = 0; i < N; i++ )
{  

< loop code >
}

Enhance Sequential Code

#pragma acc parallel loop
for( i = 0; i < N; i++ )
{  

< loop code >
}

#pragma acc parallel loop
for( i = 0; i < N; i++ )
{  

< loop code >
}

Begin with a working 
sequential code.

Parallelize it with OpenACC.

Rerun the code to verify 
correct behavior, 

remove/alter OpenACC 
code as needed.



Single Source Low Learning CurveIncremental

OPENACC

Maintain existing 
sequential code
Add annotations to 
expose parallelism
After verifying 
correctness, annotate 
more of the code

Single Source

OPENACC

Rebuild the same code 
on multiple 
architectures
Compiler determines 
how to parallelize for 
the desired machine
Sequential code is 
maintained

POWER

Sunway

x86 CPU

x86 Xeon Phi

NVIDIA GPU

PEZY-SC

Supported Platforms

int main(){

...

for(int i = 0; i < N; i++)
< loop code >

}

int main(){

...

#pragma acc parallel loop

}

The compiler can ignore your 
OpenACC code additions, so the same 

code can be used for parallel or 
sequential execution.



Single Source Low Learning CurveIncremental

OPENACC

Maintain existing 
sequential code
Add annotations to 
expose parallelism
After verifying 
correctness, annotate 
more of the code

Rebuild the same code 
on multiple 
architectures
Compiler determines 
how to parallelize for 
the desired machine
Sequential code is 
maintained

Low Learning Curve

OPENACC

OpenACC is meant to 
be easy to use, and 
easy to learn
Programmer remains 
in familiar C, C++, or 
Fortran
No reason to learn 
low-level details of the 
hardware.

int main(){

<sequential code>

#pragma acc kernels
{

<parallel code>
}

}

Compiler
Hint

CPU Parallel Hardware

The programmer will 
give hints to the 

compiler about which 
parts of the code to 

parallelize.
The compiler will then 
generate parallelism 
for the target parallel 

hardware.



Single SourceIncremental

OPENACC

Maintain existing 
sequential code
Add annotations to 
expose parallelism
After verifying 
correctness, annotate 
more of the code

Rebuild the same code 
on multiple 
architectures
Compiler determines 
how to parallelize for 
the desired machine
Sequential code is 
maintained

Low Learning Curve

OpenACC is meant to 
be easy to use, and 
easy to learn
Programmer remains 
in familiar C, C++, or 
Fortran
No reason to learn 
low-level details of the 
hardware.

EXPRESSING PARALLELISM WITH 
OPENACC



CODING WITH OPENACC
Array pairing example
void pairing(int *input, int *output, int N){

for(int i = 0; i < N; i++)
output[i] = input[i*2] + input[i*2+1];

}

6 3 10 7 2 4 3 8 9 2 0 1
input

output

9 17 6 11 11 1

CODING WITH OPENACC
Array pairing example - parallel
void pairing(int *input, int *output, int N){

for(int i = 0; i < N; i++)
output[i] = input[i*2] + input[i*2+1];

}

6 3 10 7 2 4 3 8 9 2 0 1
input

output

9 17 6 11 11 1

void pairing(int *input, int *output, int N){
#pragma acc parallel loop
for(int i = 0; i < N; i++)

output[i] = input[i*2] + input[i*2+1];
}



2 3 4 5 6 7 8 9 10

DATA DEPENDENCIES
Not all loops are parallel
void pairing(int *a, int N){

for(int i = 1; i < N; i++)
a[i] = a[i] + a[i-1];

}

1 3 6 10 15 21 28 36 45 55

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9

DATA DEPENDENCIES
Not all loops are parallel
void pairing(int *a, int N){

for(int i = 1; i < N; i++)
a[i] = a[i] + a[i-1];

}

1 3 6 10 15 21 28 36 45 55

void pairing(int *a, int N){
#pragma acc parallel loop
for(int i = 1; i < N; i++)

a[i] = a[i] + a[i-1];
}

2 3 4 5 6 7 8 9 101 3 5 9 9 15 13 21 17 27

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9

✓⌧

✓ ⌧⌧

⌧⌧

⌧⌧

⌧

⌧

⌧

⌧

⌧

⌧

⌧

⌧

⌧

Sequential

Parallel

If we attempted to parallelize this 
loop we would get wrong answers 

due to a forward dependency.



DATA DEPENDENCIES
Not all loops are parallel
void pairing(int *a, int N){

for(int i = 1; i < N; i++)
a[i] = a[i] + a[i-1];

}

1 3 6 10 15 21 28 36 45 55

void pairing(int *a, int N){
#pragma acc parallel loop
for(int i = 1; i < N; i++)

a[i] = a[i] + a[i-1];
}

2 3 4 5 6 7 8 9 101 3 6 10 15 21 13 21 30 40

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9

✓

✓ ⌧

⌧✓

✓ ⌧

⌧✓

✓ ⌧

⌧✓

✓ ⌧

⌧✓

✓
Sequential

Parallel

Even changing how the iterations 
are parallelized will not make this 

loop safe to parallelize.

Profiling



COMPILING SEQUENTIAL CODE

PGI COMPILER BASICS

The command to compile C code is ‘pgcc’

The command to compile C++ code is ‘pgc++’

The -fast flag instructs the compiler to optimize the code to the best of its abilities

pgcc, pgc++ and pgfortran

$ pgcc –fast main.c
$ pgc++ -fast main.cpp



PGI COMPILER BASICS

The Minfo flag will instruct the compiler to print feedback about the compiled code

-Minfo=accel will give us information about what parts of the code were accelerated 
via OpenACC

-Minfo=opt will give information about all code optimizations

-Minfo=all will give all code feedback, whether positive or negative

-Minfo flag

$ pgcc –fast –Minfo=all main.c
$ pgc++ -fast -Minfo=all main.cpp

GCC COMPILER BASICS

The command to compile C code is ‘gcc’

The command to compile C++ code is ‘g++’

The command to compile Fortran code is ‘gfortran’

The -O2 flag sets the optimization level to 2 (a safe starting point)

gcc, gc++ and gfortran

$ gcc -O2 main.c
$ g++ -O2 main.cpp



GCC COMPILER BASICS

The -fopt-info flag will print limited compiler feedback

The -flto-report flag will also print link-time optimizations, but should be used 
sparingly due to volume of information

Compiler feedback

$ gcc -O2 –fopt-info main.c
$ g++ -O2 –fopt-info main.cpp

PROFILING SEQUENTIAL CODE



OPENACC DEVELOPMENT CYCLE
Analyze your code to determine 
most likely places needing 
parallelization or optimization.

Parallelize your code by starting 
with the most time consuming parts, 
check for correctness and then 
analyze it again.

Optimize your code to improve 
observed speed-up from 
parallelization.

Analyze

ParallelizeOptimize

Analyze

Record the time it takes for your 
sequential program to run.

PROFILING SEQUENTIAL CODE
Step 1: Run Your Code

Note the final results to verify 
correctness later.

Always run a problem that is 
representative of your real jobs.

$ pgcc –fast jacobi.c laplace2d.c
$ ./a.out

0, 0.250000
100, 0.002397
200, 0.001204
300, 0.000804
400, 0.000603
500, 0.000483
600, 0.000403
700, 0.000345
800, 0.000302
900, 0.000269
total: 39.432648 s

Terminal Window



Obtain detailed information about how 
the code ran.

PROFILING SEQUENTIAL CODE
Step 2: Profile Your 
Code

This can include information such as:
Total runtime
Runtime of individual routines
Hardware counters

Identify the portions of code that took 
the longest to run. We want to focus on 

these “hotspots” when parallelizing.

Sample Code: Conjugate Gradient

Total Runtime: 22.38 seconds

The “matvec” 
function is our 

dominate hotspot

PROFILING SEQUENTIAL CODE

Gives visual feedback of how the 
code ran

Gives numbers and statistics, such 
as program runtime

Also gives runtime information for 
individual functions/loops within the 
code

Includes many extra features for 
profiling parallel code

Introduction to PGProf



PROFILING SEQUENTIAL CODE
First sight when using PGPROF

Profiling a simple, sequential code

Our sequential program will on run 
on the CPU

To view information about how our 
code ran, we should select the 
“CPU Details” tab

PROFILING SEQUENTIAL CODE
CPU Details

Within the “CPU Details” tab, we 
can see the various parts of our 
code, and how long they took to run

We can reorganize this info using 
the three options in the top-right 
portion of the tab

We will expand this information, 
and see more details about our 
code



PROFILING SEQUENTIAL CODE
CPU Details

We can see that there are two 
places that our code is spending 
most of its time

21.49 seconds in the “calcNext” 
function

19.04 seconds in a memcpy 
function

The c_mcopy8 that we see is 
actually a compiler optimization that 
is being applied to our “swap” 
function

PROFILING SEQUENTIAL CODE
PGPROF

We are also able to select the 
different elements in the CPU 
Details by double-clicking to open 
the associated source code

Here we have selected the 
“calcNext:37” element, which 
opened up our code to show the 
exact line (line 37) that is 
associated with that element



Obtain detailed information about how 
the code ran.

PROFILING SEQUENTIAL CODE
Step 2: Profile Your 
Code

This can include information such as:
Total runtime
Runtime of individual routines
Hardware counters

Identify the portions of code that took 
the longest to run. We want to focus on 

these “hotspots” when parallelizing.

Lab Code: Laplace Heat Transfer

Total Runtime: 39.43 seconds

Observe the loops contained within the 
identified hotspots

PROFILING SEQUENTIAL CODE
Step 3: Identify Parallelism

Are these loops parallelizable?
Can the loop iterations execute 
independently of each other?

Are the loops multi-dimensional, and 
does that make them very large?

Loops that are good to parallelize tend 
to have a lot of iterations to map to 

parallel hardware.

void pairing(int *input, int *output, int N){

for(int i = 0; i < N; i++)
output[i] = input[i*2] + input[i*2+1];

}

6 3 10 7 2 4
input

output
9 17 6



THANK YOU


