“Module I
Introduction to OpenACC

Similarly to OpenMP,
OpenACC is a directives-

based programming approach to
parallel computing but
designed for performance

and portability on CPUs and
GPUs for HPC.

TTTTTTTTTTTTTTT

Add Simple Compiler Directive

main()
{
<serial code>
#pragma acc kernels

<parallel code>

}

}

OpenACC

3 WAYS TO ACCELERATE
APPLICATIONS

Applications
: : Compiler Programmin
Libraries omp J J
Directives Languages
Easy to use Easy to use Most Performance
Most Performance Portable code Most Flexibility
Openace 3, Five OpenACC

OPENACC PORTABILITY

Describing a generic parallel machine

OpenACC is designed to be portable to many
existing and future parallel platforms Device

The programmer need not think about specific
hardware details, but rather express the
parallelism in generic terms

An OpenACC program runs on a host '
(typically a CPU) that manages one or more

parallel devices (GPUs, etc.). The host and
device(s) are logically thought of as having Device
separate memories. “ Memory

\

OPENACC

Three major strengths

Incremental

NVIDIA INSTITUTE

OpenAcc < ILJEEE;N\NG

Incremental

\

OPENACC

Maintain existing
sequential code

Add annotations to
expose parallelism
After verifying

correctness, annotate
more of the code

Single Source

UpenACC 62 EEE»E;N\NB

AVIDIA INSTITUTE

Enhance Sequential Code

#pragma acc parallel loop
for(i=0;i < N;i++)
{

< loop code >

}

#pragma acc parallel loop
for(i=0;i < N;i++)
{

< loop code >

}

Low Learning Curve

Begin with a working
sequential code.

Parallelize it with OpenACC.

Rerun the code to verify
correct behavior,
remove/alter OpenACC
code as needed.

OPENACC

Incremental Single Source Low Learning Curve

Maintain existing
sequential code

Add annotations to
expose parallelism

After verifying
correctness, annotate
more of the code

\ S \ J \ S

< DEEP
OpenACC &, tomme

nnnnnn

OPENACC

] The compiler can ignore your
Single Source OpenACC code additions, so the same

code can be used for parallel or
sequential execution.
Rebuild the same code
on multiple
%86 CPU archite.ctures _ int main(){
Compiler determines e
x86 Xeon Phi how to para”elize for #pragma acc parallel loop
the desired machine fo;{()(i);tai)dz i i++)
NVIDIA GPU Seguer_mtial code is)
PEZY-SC maintained
\ J

UpenAcc @ EEE,E;WE

AVIDIA INSTITU

OPENACC

Incremental Single Source Low Learning Curve

Rebuild the same code
on multiple
architectures

Maintain existing
sequential code

Add annotations to Compiler determines
expose parallelism how to parallelize for

After verifying the desired machine
correctness, annotate Sequential code is

more of the code maintained

\ S \ J \ S

OpenACC & DERRNING

IDIA INSTITUTE

OPENACC

Parallel

I

ardware

CPU__

=

—

Low Learning Curve

OpenACC is meant to
be easy to use, and

The programmer will easy to learn

i give hints to the .

int main(){ compiler about which Programmer remains

<sequential code> parts of the code to IFn ﬁlmlllar C, C++, or
i i ortran
#pragma acc kernéds | COIT\.PIIEI' para”ellze'
{ Hint The compiler will then No reason to I_earr]l
<parallel code> generate parallelism low-level details of the
for the target parallel hardware.
} hardware.
\ J

OpenACC <~

DEEP
LEARNING
1A INSTITUTE

OPENACC

Incremental

Maintain existing
sequential code

Add annotations to
expose parallelism

After verifying
correctness, annotate
more of the code

\ S

OpenAcc < DEuns

NVIDIA INSTITUTE

Single Source

Rebuild the same code
on multiple
architectures

Compiler determines
how to parallelize for
the desired machine

Sequential code is
maintained

Low Learning Curve

OpenACC is meant to
be easy to use, and
easy to learn

Programmer remains
in familiar C, C++, or
Fortran

No reason to learn

low-level details of the
hardware.

EXPRESSING PARALLELISM WITH

OpenACC 2, i

nviDIA

OPENACC

CODING WITH OPENACC

Array pairing example

void pairing(int *input, int *output, int N){

for(int i = 9; i < N; i++)
output[i] = input[i*2] + input[i*2+1];
}
6| 3|10 712]|4]|]3]8]9 1
//// i1nput
91171 6 11|11] 1
output
OpenACC 2, e
Array pairing example - parallel
void pairing(int *input, int *output, int N){
#pragma acc parallel loop
for(int i = 9; 1 < N; i++)
output[i] = input[i*2] + input[i*2+1];
¥
613|107 12]|4]|]3]8]9 1

AVIDIA INSTITUTE

DATA DEPENDENCIES

Not all loops are parallel

void pairing(int *a, int N){

for(int i = 1; i < N; i++)
a[i] = a[i] + a[i-1];

DATA DEPENDENCIES

Not all loops are parallel

If we attempted to parallelize this

SHa—3 . : loop we would get wrong answers

for(int i = 1; i < N; i++) due to a forward dependency.
a[i] = a[i] + a[i-1];

void pairing(int *a, int N){

¥

g [ZAY) [Ea3) REAT) RPAS] rasp pras) pras) pra

1 X 6 |10]15]121]128| 36|45] 55 _

Sequential
i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9
AYAYAYAYAYAYAYA!

1 2|1 8|9 |98 | B|1B|B |20

VA Ixw7 (V7 N7 w2l 1KV NZ NZ sz1] Parallel

openace 2, 7k

DATA DEPENDENCIES

Not all loops are parallel

Even changing how the iterations

a3 _ : are parallelized will not make this

for(int 1 = 1; 1 < N; i++) loop safe to parallelize.
a[i] = a[i] + a[i-1];

void pairing(int *a, int N){

1|5 &[0[15[21|28|36| 45|55

Sequential

P 1lel
\// \// \J/)()()()(aralle

TTTTTTTTTTTTTTT

Profiling

COMPILING SEQUENTIAL CODE

nnnnnnnnnnnnnnnnnn

PGI COMPILER BASICS
pgcc, pgc++ and pgfortran

The command to compile C code is ‘pgcc’
The command to compile C++ code is ‘pgc++’

The -fast flag instructs the compiler to optimize the code to the best of its abilities

$ pgcc -fast main.c
$ pgc++ -fast main.cpp

AVIDIA INSTITUTE

PGlI COMPILER BASICS
-Minfo flag

The Minfo flag will instruct the compiler to print feedback about the compiled code

-Minfo=accel will give us information about what parts of the code were accelerated
via OpenACC

-Minfo=opt will give information about all code optimizations

-Minfo=all will give all code feedback, whether positive or negative

$ pgcc -fast -Minfo=all main.c
$ pgc++ -fast -Minfo=all main.cpp

 NVIDIA INSTITUTE

GCC COMPILER BASICS

gcc, gc++ and gfortran

The command to compile C code is ‘gcc’
The command to compile C++ code is ‘g++’
The command to compile Fortran code is ‘gfortran’

The -O2 flag sets the optimization level to 2 (a safe starting point)

$ gcc -02 main.c
$ g++ -02 main.cpp

DEEP
OpenACC 2, [

GCC COMPILER BASICS

Compiler feedback

The -fopt-info flag will print limited compiler feedback

The -flto-report flag will also print link-time optimizations, but should be used
sparingly due to volume of information

$ gcc -02 -fopt-info main.c
$ g++ -02 -fopt-info main.cpp
OpenACC 2. e

PROFILING SEQUENTIAL CODE

OPENACC DEVELOPMENT CYCLE
Analyze your code to determine
Optimize your code to improve I

most likely places needing

observed speed-up from

parallelization.
Optimize

Analyze

parallelization or optimization.

Parallelize your code by starting
with the most time consuming parts,
check for correctness and then
analyze it again.

Parallelize

N

OpenAcc 62 EEE»E;\HNG

NVIDIA INSTITUTE

PROFILING SEQUENTIAL CODE

Step 1: Run Your Code

Record the time it takes for your $ pgcc “;aSt J;caCObi'c laplace2d.c
- _ ./a.ou
sequential program to run 0, 0.250000
100, 0.002397
200, 0.001204
, , 300, 0.000804
Note the flna}[I resulltst to verify 400, 0.000603
correctness later. 500, 0.000483
600, 0.000403
700, 0.000345
Al _ 800, 0.000302
ways run a problem tha_t is 900, 0.000269
representative of your real jobs. total: 39.432648 s

DEEP
> A
OpenACC &, omme

PROFILING SEQUENTIAL CODE

Step 2: Profile Your
Code Sample Code: Conjugate Gradient

Obtain detailed information about how Total Runtime: 22.38 seconds
the code ran.

This can include information such as:
Total runtime
Runtime of individual routines
Hardware counters

The “matvec”

function is our
dominate hotspot

C—

Identify the portions of code that took
the longest to run. We want to focus on
these “hotspots” when parallelizing.

OpenACC &, [Hawe

NVIDIA INSTITUTE

PROFILING SEQUENTIAL CODE

Introduction to PGProf

DEE &y @@ RI&&2&2 A~

% conjugate_gradient.nvvp 52 =g

Gives ViSuaI feedback of hOW the 0695 06955 07s 07055 or1s 07155 0725 07255 073s

=) Process "cg.x" (5127)

code ran vaiorsne
|acc_update@vector.h... | update@vectorh [acc_compute_construct@vector.... [lJacc_compute _construct@vector....| HH [acc_compute_constructd . compute constructd

OpenACC
[acc_walt@vectorh33 [occ wattevectorhss I
Driver API \ \ | cuStreamSynchronize cuStreamSynchronize i (ustreamsyn(hro

Gives numbers and statistics, such oo

as program runtlme B s3] EEEE ‘ -

“ 7 MemCpy (DtoH) | | |

= Compute lmmamm
-7 89.0% ZomatvecR..

Also gives runtime information for 7 720 v

Y 2.4% _Z3dotRKéve...

individual functions/loops within the Y 13 e

= Streams

code L swan> B

Analysis B GPU Details 3 CPU Details & Console Settings = B [Properties 8 = 0

2 3 4 < Stream13

|nC|UdeS ma ny eXtra featu reS for Name StartTime Duration GridSize Block Size ;egs‘stattsMem: " Duration

- Memcpy HtoD [async]|307.719ms | 2.08ps| Session
prof|||ng parallel code e oo e eS0T
Memcpy HtoD [async]{310.385ms | 1.281ms |
Memcpy HtoD [async] 312.464ms | 1.356ms |
Memcpy HtoD [async] 313.983ms | 2.848ps |
Memcpy HtoD [async] 314.374 ms |262.264 s |
UpenACC S R Memcpy HtoD [async]|316.287ms | 1.351ms |
. et T Memcpy HtoD [asynd]|318.214ms | 1.351ms |

AVIDIA INSTITUTE

PROFILING SEQUENTIAL CODE
First sight when using PGPROF

ew
B 5%y Q@ RI&&&8 A

Profiling a simple, sequential code ~ veseres }

Our sequential program will on run
on the CPU

To view information about how our
code ran, we should select the
“CPU Details” tab

M. = @ O Properties

select or highlight a single interval to see properties

OpenAcc 62 EEE»E;\HNG

NVIDIA INSTITUTE

PROFILING SEQUENTIAL CODE
CPU Details

o B ey R (e EC e R
Within the “CPU Details” tab, we © taplacenvvp -0
can see the various parts of our T
code, and how long they took to run
We can reorganize this info using
the three options in the top-right
portion of the tab i@l -

select or highlight a single

We will expand this information, n

H > /home/ewright/edited_laplad 53.325% §21.255
and see more details about our e e

Code > /lib/x86_64-linux-gnu/libc-2.2] 0.125% 10.055

> DEEP
OpenACC 2, e

PROFILING SEQUENTIAL CODE
CPU Details

We can see that there are two
places that our code is spending

DEE &y ®Q@ R (&2 &8 A~

most of its time S -

bs 5000000005 10000000005

21.49 seconds in the “calcNext”
functlon S 5PUD s B CPU Details % & Console i Settin % 4% = O Oproperties X =8

TOTAL v | Use the buttons on the top-right of this view to select how to display profile data More. Select or highlight a single interval to see
] Event % Time properties
19.04 seconds in a memcpy
. v /laplace2d.c 21.519% 21.51s
f nCtlon T calonos 2ci0 1ol
u I calcNext:37 21.499% 21.495 I
calcNext:35 0.02% 0.02s
v Jopt/pgi/linux86-64/17.4/lib/l| 19.048% 19.04s
M ¥ Unknown Filename 19.048% 19.04s
The c_mcopy8 that we see is g e
— ¢ mcopy8:-1 19.048% 19.045 |

actually a compiler optimization that O e
is being applied to our “swap”
function

«p DEEP‘
OpenACC 3, inwe

PROFILING SEQUENTIAL CODE
PGPROF

We are also able to select the

% © laplacezd.c 2

different elements in the CPU o i s 5. e+

31
32-double calcNext(double *restrict A, double *restrict Anew, int m, int n)

Details by double-clicking to open S ————

int o= 1; § < n-1; jer

the associated source code

Anew[OFFSET(j, i, m)] = ©.25 * (A[OFFSET(j, i+l, m)] + A[OFFSET(j, i-1, m)]
+ A[OFFSET(j-1, i, m)] + A[OFFSET(j+1, i, m1)}
m)] - A[OFFSET

rror = fmax(error, fabs(Anew[OFFSET(j, i, Gy i, m;

Here we have selected the
“calcNext:37” element, which i
opened up our code to show the

exact line (line 37) that is == kT -
associated with that element

Event % Time EESE
v /home/ewright/edited_laplad 21.519% | 21.51s
v Jlaplace2d.c 21519% | 21.51s
¥ calcNext 21.519% 121515
calcNext:37 21.499% 21495
calcNext:35 0.02% 0025
> /opt/pgi/linux86-64/17.4/lib/l| 19.048% | 19.04s
@2 DEEP » /lib/x86_64-linux-gnu/libc-2.21 0.06% l0.06s

OpenACC &, iomme

PROFILING SEQUENTIAL CODE

Step 2: Profile Your
Code Lab Code: Laplace Heat Transfer

Obtain detailed information about how
the code ran. Total Runtime: 39.43 seconds

This can include information such as:
Total runtime
Runtime of individual routines
Hardware counters

Identify the portions of code that took
the longest to run. We want to focus on
these “hotspots” when parallelizing.

OpenAcc < DEuns

NVIDIA INSTITUTE

PROFILING SEQUENTIAL CODE

Step 3: Identify Parallelism

Observe the loops contained within the

i ifi for(int 1 = 0; i < N; i++)
identified hOtSPOtS output[i] = input[i*2] + input[i*2+1];

void pairing(int *input, int *output, int N){

Are these loops parallelizable?
Can the loop iterations execute
independently of each other? 6 3 10 7 2 4
Are the loops multi-dimensional, and input
does that make them very large?

Loops that are good to parallelize tend
to have a lot of iterations to map to 9 17
parallel hardware. output

OpenACC <2, s

nviDIA

"THANK YOU

