
CSC 447: Parallel Programming for
Multi-Core and Cluster Systems
Sha r ed P a r a l l e l P r o g r a m m i n g Us i n g O p e n M P

In s t r u c t o r : H a i d a r M . H a r m a n a n i

Sp r i n g 2 0 2 1

More on Sharing and Synchronizing
Variables in OpenMP

firstprivate Example
§ Variables initialized from shared variable

incr = 0;
#pragma omp parallel for firstprivate(incr)

for (i=0;i <= Max; i++) {
if ((i%2)==0) incr++;
A(i)= incr;

}

Parallel Programming for Multicore and Cluster Systems 3Spring 2021

lastprivate Example
§ Variables update shared variable using value from last iteration
§ C++ objects are updated as if by assignment

void sq2(int n, double *lastterm)

{
double x; int i;
#pragma omp parallel
#pragma omp for lastprivate(x)
for (i = 0; i < n; i++){

x = a[i]*a[i] + b[i]*b[i];
b[i] = sqrt(x);

}
lastterm = x;

}

Parallel Programming for Multicore and Cluster Systems 4Spring 2021

5

Reduction
§ Perform a reduction of the data before transferring to the CPU
§ Tree based reduction approach used within each thread block

§ Reduction decomposed into multiple kernels to reduce number of
threads issued in the later stages of tree based reduction

3 1 7 0 4 1 6 3

4 7 5 9

11 14

25 Example of tree based SUM

Parallel Programming for Multicore and Cluster Systems 5Spring 2021

Reduction
§ OpenMP reduction clause:

o reduction (op : list)

§ Inside a parallel or a work-sharing construct:
o A local copy of each list variable is made and initialized depending on the “op” (e.g. 0 for “+”).
o Updates occur on the local copy.
o Local copies are reduced into a single value and combined with the original global value.

§ The variables in “list” must be shared in the enclosing parallel region.
double ave=0.0, A[MAX];
int i;

#pragma omp parallel for reduction (+:ave)
for (i=0;i< MAX; i++) {

ave + = A[i];
}
ave = ave/MAX;

Parallel Programming for Multicore and Cluster Systems 6Spring 2021

C/C++ Reduction Operations
§ A range of associative operands can be used with

reduction

§ Initial values are the ones that make sense
mathematicallyOperand Initial Value

+ 0

* 1

- 0

^ 0

Operand Initial Value
& ~0

| 0

&& 1

|| 0

Parallel Programming for Multicore and Cluster Systems 7Spring 2021

Synchronization
§ Synchronization is used to impose order constraints and

to protect access to shared data
§ High level synchronization:

o critical
o atomic
o barrier
o ordered

§ Low level synchronization
o flush
o locks (both simple and nested)

Parallel Programming for Multicore and Cluster Systems 8Spring 2021

Synchronization
§ OpenMP Synchronization
– OpenMP Critical Sections
o Defines a critical region on a structured code block
o Named or unnamed
o No explicit locks

– Barrier directives

– Explicit Lock functions
o When all else fails – may require flush directive
o More about this one later

– Single-thread regions within parallel regions
o master, single directives

#pragma omp barrier

omp_set_lock(lock_l);

/* Code goes here */
omp_unset_lock(lock_l);

#pragma omp single

{

/* Only executed once */

}

#pragma omp critical [(lock_name)]

{
/* Critical code here */

}

Parallel Programming for Multicore and Cluster Systems 9Spring 2021

Barrier Construct
§ Explicit barrier synchronization
– Each thread waits until all threads arrive
–We will talk about the shared construct later

#pragma omp parallel shared (A, B, C)

{

DoSomeWork(A,B); // Processed A into B

#pragma omp barrier

DoSomeWork(B,C); // Processed B into C

}

Parallel Programming for Multicore and Cluster Systems 10Spring 2021

Explicit Barrier
§ Several OpenMP constructs have implicit barriers

o Parallel – necessary barrier – cannot be removed
o for
o single

§ Unnecessary barriers hurt performance and can be
removed with the nowait clause

Parallel Programming for Multicore and Cluster Systems 11Spring 2021

Explicit Barrier: Example
#pragma omp parallel shared (A, B, C) private(id)
{

id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier

#pragma omp for
for(i=0;i<N;i++){

C[i]=big_calc3(i,A);
}

#pragma omp for nowait
for(i=0;i<N;i++){

B[i]=big_calc2(C, i);
}
A[id] = big_calc4(id);

} implicit barrier at the end of a parallel region

implicit barrier at the end of a for
work sharing construct

no implicit barrier due to nowait

Parallel Programming for Multicore and Cluster Systems 12Spring 2021

Synchronization: ordered
§ Specifies that code under a parallelized for loop

should be executed like a sequential loop.

#pragma omp parallel private (tmp)
#pragma omp for ordered reduction(+:res)

for (i=0;i < n;i++){
tmp = Neat_Stuff(i);
#pragma ordered
res += consum(tmp);

}

Parallel Programming for Multicore and Cluster Systems 13Spring 2021

Avoiding Overhead: if clause
§ The if clause is an integral expression that, if

evaluates to true (nonzero), causes the code in the
parallel region to execute in parallel
–Used for optimization, e.g. avoid going parallel

#pragma omp parallel if(expr)

Parallel Programming for Multicore and Cluster Systems 14Spring 2021

Avoiding Overhead: if clause
#include <stdio.h>

#include <omp.h>

void test(int val)

{

#pragma omp parallel if (val)

if (omp_in_parallel())

{

#pragma omp single

printf_s("val = %d, parallelized with %d threads\n",

val, omp_get_num_threads());

}

else

printf_s("val = %d, serialized\n", val);

}

int main()

{

omp_set_num_threads(2);

test(0);

test(2);

}

Parallel Programming for Multicore and Cluster Systems 15Spring 2021

Avoiding Overhead: if clause
§ At times it maybe useful to identify conditions when a

parallel region should be executed by a single thread
or using parallel threads

double ave=0.0, A[MAX];
int i;

#pragma omp parallel for reduction (+:ave) if (MAX > 10000)
for (i=0;i< MAX; i++) {

ave + = A[i];
}

ave = ave/MAX;

Parallel Programming for Multicore and Cluster Systems 16Spring 2021

Controlling Threads Execution

Parallel Programming for Multicore and Cluster Systems 17Spring 2021

single Construct
§ The single construct denotes a block of code that is executed by only one

thread (not necessarily the master thread).
o First thread to arrive is chosen

§ A barrier is implied at the end of the single block (can remove the barrier with
a nowait clause).

#pragma omp parallel
{

DoManyThings();
#pragma omp single
{

exchange_boundaries();
} // threads wait here for single
do_many_more_things();

}

Parallel Programming for Multicore and Cluster Systems 18Spring 2021

master Construct
§ A master construct denotes block of code to be

executed only by the master thread
– The other threads just skip it (no synchronization is implied).
– Identical to the omp single, except that the master thread is the

thread chosen to do the work
#pragma omp parallel

{

DoManyThings();

#pragma omp master // if not master skip to next stmt

{

ExchangeBoundaries();

}

DoManyMoreThings();

}

Parallel Programming for Multicore and Cluster Systems 19Spring 2021

Worksharing

SPMD vs. Worksharing
§ A parallel construct by itself creates “Single Program

Multiple Data (SPMD)” program
– Each thread redundantly executes the same code.

§ Worksharing
– Split up pathways through the code between threads within a

team

§ OpenMP Constructs for Worksharing
o Loop construct
o Task construct
o Sections/section constructs
o Single construct

Parallel Programming for Multicore and Cluster Systems 21Spring 2021

Worksharing
§ Worksharing is the general term used in OpenMP to

describe distribution of work across threads.

§ Three examples of worksharing in OpenMP are:
– omp for construct
– omp sections construct
– omp task construct

Automatically divides work among threads

Parallel Programming for Multicore and Cluster Systems 22Spring 2021

OpenMP: Concurrent Loops
§ Basic approach
– Find compute intensive loops
–Make the loop iterations independent so

they can safely execute in any order without
loop-carried dependencies

– Place the appropriate OpenMP directive
and test

Parallel Programming for Multicore and Cluster Systems 23Spring 2021

?

?

for(i=0; i < 25; i++) {

BigTask(i);

}

OpenMP: Concurrent Loops
§ OpenMP easily parallelizes loops
– No data dependencies between

iterations!

§ Preprocessor calculates loop
bounds for each thread directly
from serial source

for(i=0; i < 25; i++) {

printf(“Foo”);

}

#pragma omp parallel for
?

?

Parallel Programming for Multicore and Cluster Systems 24Spring 2021

OpenMP: Concurrent Loops

#pragma omp parallel

#pragma omp for

Implicit barrier

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

// assume N=12
#pragma omp parallel for
for(i = 0; i < N; i++)

c[i] = a[i] + b[i];

Parallel Programming for Multicore and Cluster Systems 25Spring 2021

Working with Loops: schedule Clause
§ Can control how loop iterations are divided among

the thread team using the schedule clause
– Static
–Dynamic
–Guided

§ Although you can nest parallel loops in OpenMP, the
compiler can choose to serialize the nested parallel
region

Parallel Programming for Multicore and Cluster Systems 26Spring 2021

Working with Loops: schedule Clause
§ Static or schedule(static, chunk-size)
–Divide the loop into equal-sized chunks or as equal as

possible if the number of loop iterations is not evenly
divisible by the number of threads multiplied by the chunk
size.

–By default, chunk size is loop_count/number_of_threads.
– Set chunk to 1 to interleave the iterations.
– Least work at runtime : scheduling done at compile-time

Parallel Programming for Multicore and Cluster Systems 27Spring 2021

OpenMP: Loop Scheduling
#pragma omp parallel for schedule(static)

for(i=0; i<16; i++)

{

doIteration(i);

}

// static scheduling

int chunk = 16/T;
int base = tid * chunk;
int bound = (tid+1)*chunk;

for(i=base; i<bound; i++)
{

doIteration(i);
}

Barrier();

Parallel Programming for Multicore and Cluster Systems 28Spring 2021

Schedule Clause Example
§ Iterations are divided into chunks of 8

o If start = 3, then first chunk is
o i={3,5,7,9,11,13,15,17}

#pragma omp parallel for schedule (static, 8)
for(int i = start; i <= end; i += 2)
{

if (TestForPrime(i))
gPrimesFound++;

}

Parallel Programming for Multicore and Cluster Systems 29Spring 2021

Spring 2021 Parallel Programming for Multicore and Cluster Systems 30

Working with Loops: schedule Clause
§ dynamic
–Use the internal work queue to give a chunk-sized block of

loop iterations to each thread.
–When a thread is finished, it retrieves the next block of loop

iterations from the top of the work queue.
–By default, the chunk size is 1.
–Be careful when using this scheduling type because of the

extra overhead involved.
– Least work at runtime: scheduling done at compile-time

Parallel Programming for Multicore and Cluster Systems 31Spring 2021

OpenMP: Loop Scheduling

for(i=0; i<16; i++)

{

doIteration(i);

}

// Dynamic Scheduling

int current_i;

while(workLeftToDo())
{
current_i = getNextIter();
doIteration(i);

}

Barrier();

#pragma omp parallel for \

schedule(dynamic)

Parallel Programming for Multicore and
Cluster Systems

Parallel Programming for Multicore and Cluster Systems

Working with Loops: schedule Clause
§ guided
– Similar to dynamic scheduling, but the chunk size starts off

large and decreases to better handle load imbalance
between iterations.

– The optional chunk parameter specifies them minimum size
chunk to use.

–By default the chunk size is approximately
loop_count/number_of_threads.

Parallel Programming for Multicore and Cluster Systems 34Spring 2021

Working with Loops: schedule Clause
§ auto
–When schedule (auto) is specified, the decision regarding

scheduling is delegated to the compiler.
– The programmer gives the compiler the freedom to choose

any possible mapping of iterations to threads in the team.

Parallel Programming for Multicore and Cluster Systems 35Spring 2021

Working with Loops: schedule Clause
§ runtime
–Uses the OMP_ SCHEDULE environment variable to specify

which one of the three loop-scheduling types should be
used.

– OMP_SCHEDULE is a string formatted exactly the same as
would appear on the parallel construct.

Parallel Programming for Multicore and Cluster Systems 36Spring 2021

Avoiding Overhead: nowait Clause
§ Use when threads unnecessarily wait between

independent computations
#pragma single nowait
{ [...] }

#pragma omp for nowait
for(...)

{...};

#pragma omp for schedule(dynamic,1) nowait
for(int i=0; i<n; i++)

a[i] = bigFunc1(i);

#pragma omp for schedule(dynamic,1)
for(int j=0; j<m; j++)

b[j] = bigFunc2(j);

Parallel Programming for Multicore and Cluster Systems 37Spring 2021

Loop Dependence

Parallel Programming for Multicore and Cluster Systems 38Spring 2021

Data Dependence
§ Data dependence in a program may be represented using a

dependence graph G=(V,E), where the nodes V represent
statements in the program and the directed edges E represent
dependence relations.

S1

S2

S3

S4

dt

da

do

do

dt

dIB/CA:S

DCA:S
2.0AB:S

1.0A:S

4

3

2

1

=

-=
+=

=

!

Parallel Programming for Multicore and Cluster Systems 39Spring 2021

True Dependence and Anti-Dependence
§ Given statements S1 and S2,
– S1;
– S2;

§ S2 has a true (flow) dependence on S1 if and
only if S2 reads a value written by S1

§ S2 has an anti-dependence on S1 if and only
if S2 writes a value read by S1

X =

= X

... d

= X

X =

... d-1

Parallel Programming for Multicore and Cluster Systems 40Spring 2021

Output Dependence
§ Given statements S1 and S2,

S1;
S2;

§ S2 has an output dependence on S1 if and only if S2 writes
a variable written by S1

§ Anti- and output dependences are “name” dependencies
– Are they “true” dependences?

§ How can you get rid of output dependences?
– Are there cases where you can not?

X =

X =

... d0

Parallel Programming for Multicore and Cluster Systems 41Spring 2021

Statement Dependency Graphs
§ Can use graphs to show dependence relationships
§ Example

S1: a=1;
S2: b=a;
S3: a=b+1;
S4: c=a;

§ S2 d S3 : S3 is flow-dependent on S2

§ S1 d0 S3 : S3 is output-dependent on S1

§ S2 d-1 S3 : S3 is anti-dependent on S2

S1

S2

S3

S4

flow

anti
output

Parallel Programming for Multicore and Cluster Systems 42Spring 2021

When can two statements execute in
parallel?
§ Statements S1 and S2 can execute in parallel if and

only if there are no dependences between S1 and S2
– True dependences
–Anti-dependences
–Output dependences

§ Some dependences can be removed by modifying
the program
– Rearranging statements
– Eliminating statements

Parallel Programming for Multicore and Cluster Systems 43Spring 2021

How do you determine dependencies?
§ Data dependence relations can be found by comparing

the IN and OUT sets of each node
§ The IN and OUT sets of a statement S are defined as:
– IN(S) : set of memory locations (variables) that may be used in S
– OUT(S) : set of memory locations (variables) that may be modified

by S

§ Note that these sets include all memory locations that
may be fetched or modified
– As such, the sets can be conservatively large

Parallel Programming for Multicore and Cluster Systems 44Spring 2021

IN / OUT Sets and Computing
Dependence
§ Assuming that there is a path from S1 to S2 , the

following shows how to intersect the IN and OUT sets
to test for data dependence

() ()

dependenceoutput)()(

dependence-anti)()(

dependence flow

2
0

121

2
1

121

2121

SSSoutSout

SSSoutSin

SSSinSout

δ

δ

δ

∅≠∩

∅≠∩

∅≠∩
−

Parallel Programming for Multicore and Cluster Systems 45Spring 2021

Loop-Level Parallelism
§ Significant parallelism can be identified within loops

for (i=0; i<100; i++)
S1: a[i] = i;

§ Dependencies? What about i, the loop index?

§ #pragma omp parallel for
– All iterations are independent of each other
– All statements be executed in parallel at the same time
o Is this really true?

for (i=0; i<100; i++) {
S1: a[i] = i;
S2: b[i] = 2*i;

}

Parallel Programming for Multicore and Cluster Systems 46Spring 2021

Iteration Space
§ Unroll loop into separate statements / iterations

§ Show dependences between iterations

for (i=0; i<100; i++)

S1: a[i] = i;

S10

S20

for (i=0; i<100; i++) {

S1: a[i] = i;
S2: b[i] = 2*i;

}
S11

S21

S199

S299

S10 S11 S199…

…

Parallel Programming for Multicore and Cluster Systems 47Spring 2021

Examples
Example 1

◦ S1: a=1;
◦ S2: b=1;

Example 2
◦ S1: a=1;
◦ S2: b=a;

Example 3
◦ S1: a=f(x);
◦ S2: a=b;

Example 4
◦ S1: a=b;
◦ S2: b=1;

Statements are independent

Dependent (true (flow) dependence)
◦ Second is dependent on first
◦ Can you remove dependency?

Dependent (output dependence)
◦ Second is dependent on first
◦ Can you remove dependency? How?

Dependent (anti-dependence)
◦ First is dependent on second
◦ Can you remove dependency? How?

Parallel Programming for Multicore and Cluster Systems 48Spring 2021

Example: Loop-Carried Dependencies
§ A dependency that exists across iterations
– if the loop is removed, the dependency no longer exists.

for(i=1; i<n; i++) {
S1: a[i] = a[i-1] + 1;
S2: b[i] = a[i];

}

S1[i] → T S1[i+1]: loop-carried
S1[i] → T S2[i]: loop-independent

for(i=1; i<n; i++)
for(j=1; j<n; j++)

S3: a[i][j] = a[i][j-1] + 1;

S3[i,j] → T S3[i,j+1]:
• loop-carried on for j loop
• no loop-carried dependence in

for i loop

Parallel Programming for Multicore and Cluster Systems 49Spring 2021

Sections and Tasks

Sections worksharing Construct
§ OpenMP supports non-iterative parallel task

assignment using the sections directive.
– #pragma omp sections
o Must be inside a parallel region
o Precedes a code block containing of N blocks of code that may be

executed concurrently by N threads
o Encompasses each omp section

– #pragma omp section
o Precedes each block of code within the encompassing block

described above
o May be omitted for first parallel section after the parallel sections

pragma
o Enclosed program segments are distributed for parallel execution

among available threads

Parallel Programming for Multicore and Cluster Systems 51Spring 2021

Sections Worksharing Construct
§ The omp sections directive supports the following

OpenMP clauses:
– shared(list)
– private(list) firstprivate(list) lastprivate(list)
– default(shared | none)
– nowait
– reduction

Parallel Programming for Multicore and Cluster Systems 52Spring 2021

Decomposition

a = alice();
b = bob();
s = boss(a, b);
c = cy();
printf ("%6.2f\n”, bigboss(s,c));

Alice ,bob, and cy can be computed in parallel

alice bob

boss

bigboss

cy

Parallel Programming for Multicore and Cluster Systems 53Spring 2021

Sections work sharing Construct
#pragma omp parallel sections
{
#pragma omp section /* Optional */

a = alpha();
#pragma omp section

b = beta();
}

printf ("%6.2f\n”, gamma(a, b));

alpha beta

gamma

By default, there is a barrier at the end of the “omp sections”. Use the “nowait”
clause to turn off the barrier.

epsilon

Parallel Programming for Multicore and Cluster Systems 54Spring 2021

Sections work sharing Construct
#pragma omp parallel sections
{
#pragma omp section /* Optional */

a = alpha();
#pragma omp section

b = beta();
}
#pragma omp parallel sections
{
#pragma omp section /* Optional */

c = delta();
#pragma omp section

s = gamma(a, b);
}
printf ("%6.2f\n”, epsilon(s,c));

alpha beta

gamma

epsilon

delta

Parallel Programming for Multicore and Cluster Systems 55Spring 2021

Tasks
§ Tasks are independent units of work
§ Threads are assigned to perform the work of

each task
– Tasks may be deferred or executed immediately
– The system determines at runtime which case of

the above

§ Tasks are composed of:
– code to execute
– data environment
– internal control variables (ICV)

Serial Parallel
Parallel Programming for Multicore and Cluster Systems 56Spring 2021

OpenMP task Worksharing Construct
§ The OpenMP tasking model enables the

parallelization of a large range of applications.

§ The task pragma can be used to explicitly define a
task.
–Used to identify a block of code to be executed in parallel

with the code outside the task region
– The task pragma can be useful for parallelizing irregular

algorithms such as pointer chasing or recursive algorithms.

Parallel Programming for Multicore and Cluster Systems 57Spring 2021

OpenMP task Worksharing Construct
§ The omp task pragma has the following syntax:

– Where a clause is one of the following:
o if(scalar-expression)
o final (scalar expression)
o Untied
o default(shared | none)
o Mergeable
o private(list)
o firstprivate(list)
o shared(list)

#pragma omp task [clause[[,] clause] ...] new-line structured-block

Parallel Programming for Multicore and Cluster Systems 58Spring 2021

OpenMP task Worksharing Construct
§ OpenMP Run Time System
– When a thread encounters a task construct, a new task is

generated
– The moment of execution of the task is up to the runtime

system
– Execution can either be immediate or delayed
–Completion of a task can be enforced through task

synchronization

Parallel Programming for Multicore and Cluster Systems 59Spring 2021

Tasks versus Sections
§ In contrast to tasks, sections are enclosed within

the sections construct and (unless the nowait clause
was specified) threads will not leave it until all
sections have been executed

§ Tasks are queued and executed whenever possible at
the so-called task scheduling points

Parallel Programming for Multicore and Cluster Systems 60Spring 2021

omp parallel num_threads(np)#pragma
{
#pragma omp task

function_A();
omp barrier
omp single

#pragma
#pragma
{

#pragma omp task
function_B();

}
}

Task synchronization

np Tasks created here, one for each thread

All Tasks guaranteed to be completed here

1 Task created here

B-Task guaranteed to be completed here

Parallel Programming for Multicore and Cluster Systems 61Spring 2021

Parallel Construct
Implicit Task View
§ Tasks are created in OpenMP

even without an explicit task
directive.
– Let’s look at how tasks are created

implicitly for the code snippet below
o Thread encountering parallel construct

packages up a set of implicit tasks
o Team of threads is created.
o Each thread in team is assigned to one of the

tasks (and tied to it).
o Barrier holds original master thread until all

implicit tasks are finished.

#pragma omp parallel

#pragma omp parallel
{ int mydata

code
}

{
int mydata;
code…

}

{
mydata
code
}

{
mydata
code
}

{
mydata
code
}

Thread
1

Thread
2

Thread
3

Barrier

Parallel Programming for Multicore and Cluster Systems 62Spring 2021

Why are tasks useful?
Block 1

Block 2
Task 1

Block 2
Task 2

Block 2
Task 3

Block 3

Block 3

Tim
e

Single
Threaded

Block 1

Block 3
Block 3

Thr1 Thr2 Thr3 Thr4

Block 2
Task 2

Block 2
Task 1

Block 2
Task 3

Time
Saved

Idle

Idle

Parallel Programming for Multicore and Cluster Systems 63Spring 2021

When are tasks guaranteed to be
complete?
§ Tasks are guaranteed to be complete at thread or task

barriers
–At the directive: #pragma omp barrier
–At the directive: #pragma omp taskwait

§ Task barrier: taskwait
– Encountering task is suspended until children tasks are

complete
–Applies only to direct children, not descendants!

Parallel Programming for Multicore and Cluster Systems 64Spring 2021

Avoiding Overhead: taskyield
Clause
§ The taskyield directive specifies that the current

task can be suspended in favor of execution of a
different task.
–Hint to the runtime for optimization and/or deadlock

prevention

#pragma omp taskyield

Parallel Programming for Multicore and Cluster Systems 65Spring 2021

Avoiding Overhead: taskyield
Clause
#include <omp.h>

void something_useful();
void something_critical();
void foo(omp_lock_t * lock, int n)
{
for(int i = 0; i < n; i++)
#pragma omp task

{

something_useful();
while(!omp_test_lock(lock)) {

#pragma omp taskyield

}

something_critical();
omp_unset_lock(lock);

}

}

The waiting task may be suspended
here and allow the executing thread to
perform other work. This may also
avoid deadlock situations

Parallel Programming for Multicore and Cluster Systems 66Spring 2021

Avoiding Overhead: final Clause

§ final clause is useful for recursive problems that perform task
decomposition

§ Stop task creation at a certain depth in order to expose enough
parallelism and reduces the overhead.

§ The generated task will be a final one if the expr evaluates to
nonzero value

§ All task constructs encountered inside a final task create final
and included tasks

#pragma omp task final(expr)

Parallel Programming for Multicore and Cluster Systems 67Spring 2021

Avoiding Overhead: final Clause
void foo(int arg)
{

int i = 3;

#pragma omp task final(arg < 10) firstprivate(i)
i++;

printf(“%d\n”, i); // will print 3 or 4 depending on arg
}

Parallel Programming for Multicore and Cluster Systems 68Spring 2021

A couple of Notes…
§ A task is untied if the code can be executed by more

than one thread, so that different threads execute
different parts of the code.
–By default, tasks are tied

Parallel Programming for Multicore and Cluster Systems 69Spring 2021

Closing Comments: Explicit Threads Versus
Directive Based Programming
§ Directives layered on top of threads facilitate a variety of thread-related tasks.
§ A programmer is rid of the tasks of initializing attributes objects, setting up

arguments to threads, partitioning iteration spaces, etc.
§ There are some drawbacks to using directives as well.
§ An artifact of explicit threading is that data exchange is more apparent. This

helps in alleviating some of the overheads from data movement, false sharing,
and contention.

§ Explicit threading also provides a richer API in the form of condition waits,
locks of different types, and increased flexibility for building composite
synchronization operations.

§ Finally, since explicit threading is used more widely than OpenMP, tools and
support for Pthreads programs are easier to find.

Parallel Programming for Multicore and Cluster Systems 70Spring 2021

