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Why                  ?
§ Thread libraries are hard to use
– Pthreads have many library calls for initialization, 

synchronization, thread creation, condition variables, etc.
– Programmer must code with multiple threads in mind

§ Synchronization between threads introduces a new 
dimension of program correctness
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Why                  ? 
§ OpenMP is a parallel programming model for Shared-

Memory  machines
–All threads have access to a shared main  memory
– Each thread may have private data.

§ Parallelism is expressed explicitly by the programmer.

§ Using the worksharing constructs, the work can be 
distributed  among the threads of a team.
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int main() {

printf( "Hello, World!\n" );

return 0;
}

Why                  ? 



Why               ? Hello World Pthread Version 
int main() {

pthread_attr_t attr;
pthread_t threads[16];
int tn;

pthread_attr_init(&attr);

for(tn=0; tn<16; tn++) {
pthread_create(&threads[tn], &attr, SayHello, NULL);

}

for (tn=0; tn<16 ; tn++) {
pthread_join(threads[tn], NULL);

}
return 0;

}

void* SayHello(void *foo) {
printf( "Hello, world!\n" );
return NULL;

}
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int main() 

{

omp_set_num_threads(16);

// Do this part in parallel

#pragma omp parallel
{

printf( "Hello, World!\n" );
}

return 0;

}

Why               ? Hello World Pthread Version 



OpenMP: Solution Stack
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OpenMP Runtime library

OS/system support for shared memory and threading
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OpenMP Execution Model
§ OpenMP uses a fork join methodology to implement parallelism
– Master thread spawns a team of threads as needed

§ Parallel directive creates a team of threads with a specified block of 
code executed by the multiple threads in parallel. 
– The exact number of threads in the team determined by one of several ways.
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Parallel Regions

Master 
Thread



OpenMP Execution Model
§ Worker threads are spawned at Parallel Regions, together with the 

Master they form the Team of threads. 
§ In between Parallel Regions the Worker threads are put to sleep. 
§ The OpenMP Runtime takes care of all thread management work

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Parallel Regions

Master 
Thread

Getting Started with OpenMP
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OpenMP Syntax
§ OpenMP constructs are compiler directives or 

pragmas
– For C and C++, the pragmas take the form:
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#pragma omp directive-name [clause[ [,] clause] ... ] new-line

Hello Worlds
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#include <stdio.h>
#include <omp.h>

int main() {
#pragma omp parallel
{

int i;

int ID = omp_get_thread_num();

printf("Hello World\n");

for(i=0;i<6;i++)
printf("Iter:%d, %d\n”,i, ID);

}

printf("GoodBye World\n");

}

Switches for compiling and 
linking:

gcc –fopenmp filename

Runtime library function to return 
a thread ID.

End Parallel region

Begin Parallel region



#pragma omp parallel
§ This pragma will execute in parallel what's next : next 

line, next loop, next block of code between brackets.

§ But the parallel keyword alone won't distribute the 
workload on different threads. For that we'll see the 
constructs for, task, section.

§ parallel will execute the same thing several times in 
parallel.
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#pragma omp parallel
§ printf(“before\n”);
#pragma omp parallel
printf(“parallel\n”);
printf(“after\n”);

§ If you compile as usual (without the -openmp flag), will return :
before
parallel
after
§ A pragma is not regular code and require a special flag to be 

used by the compiler.
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#pragma omp parallel
§ printf(“before\n”);
#pragma omp parallel
printf(“parallel\n”);
printf(“after\n”);

§ If compile with the -openmp flag, will return on a quad-core 
machine:

before
parallel
parallel
parallel
parallel
after
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#pragma omp parallel
§ #pragma omp parallel
{

printf(“start ”);
printf(“end ”);

}
Will return on a dual-core machine:
start start end end
or (depending on various conditions)
start end start end

§ Parallel execution does NOT implicate anything about the 
order of execution.
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Structured Blocks
§ Most OpenMP constructs apply to structured blocks
– Exactly one entry point at the top 
– Exactly one exit point at the bottom 
–Branching in or out is not allowed 
– Terminating the program is allowed (abort / exit) 
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OMP Parallel Regions
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Structured Blocks
§ A parallel region consists of a structured block of 

code

§ A structured block of code is a code fragment with a 
single point of entry into the block at the top of the 
block, and one exit to the block at the bottom – AND 
no breaks out of the block.
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Structured Blocks: Example
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A structured block Not a structured block

if (go_now()) goto more;
#pragma omp parallel
{
int id = omp_get_thread_num();

more:  res[id] = do_big_job(id);    
if (conv (res[id]) goto done;
goto more;

}
done: if (!really_done()) goto more;

#pragma omp parallel
{
int id = omp_get_thread_num();

more: res[id] = do_big_job (id);

if (conv (res[id]) goto more;
}
printf (“All done\n”);

§ Create threads in OpenMP using the “omp parallel”
pragma.



OpenMP: Parallel Regions
§ Example: create a 4 parallel thread regions
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double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_thread_num();

pooh(ID,A);

}

Each thread 
redundantly 

executes  the code
within the 

structured block

OpenMP: Parallel Regions
Each thread executes the same code 
redundantly.
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double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
int ID = omp_thread_num();

pooh(ID, A);
}
printf(“all done\n”);omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single copy of A 
is shared between 
all threads.

Threads wait  here  for all threads to finish before proceeding 
(I.e. a barrier)



single, master and wait clauses

#pragma omp single
§ single will execute the next block of code once by the first 

available thread.
§ #pragma omp parallel
{

printf(“start ”);
#pragma omp single
printf(“end ”);

}
Will return on a dual-core machine:
start start end
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#pragma omp master
§ single will execute the next block of code once by the master

thread.
§ #pragma omp parallel
{

printf(“start ”);
#pragma omp master
printf(“end ”);

}
Will return on a dual-core machine:
start start end
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#pragma omp master
§ Master thread has ID 0
–Only thread that exists in 

sequential regions
–Depending on implementation, 

may have special purpose inside 
parallel regions

– Some special directives affect only 
the master thread (like master)
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#pragma omp … nowait
§ nowait will prevent the join phase at the end of a parallel 

region (an implicit barrier) from blocking execution.
§ #pragma omp parallel for nowait
for (int i=0;i<n;i++) {

printf(“i”);
}
#pragma omp parallel for
for (int j=0;j<m;j++) {

printf(“j”);
}
Could print iiiiiijijiijjjjjjjjjj
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for
worksharing construct

data decomposition



for worksharing construct
§ The omp parallel for construct starts a parallel region by 

creating an optimal number of threads and maintaining a 
queue of iterations to execute and distribute them to the 
threads as needed.

§ When all the iterations are executed, the parallel region will end 
and the code will go back to serial execution.

#pragma omp parallel for
for (i=0 ; i<N ; i++) {

printf(“loop %d\n”,i);
}
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for worksharing construct
§ parallel for is a simple and flexible way to implement data 

decomposition:
– Keep a simple loop structure
– All the queue management is done automatically
– Worksharing is handled automatically

§ Iterations will not execute in a specific order or show the same 
behavior on different software or hardware environments

§ If some variables are defined before the parallel region, they 
are shared between threads. 
– Sharing to read is safe but sharing and writing leads to parallel bugs.

We'll see how to share variables safely.
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task
worksharing construct

flexible task decomposition

#pragma omp task
§ Allows parallelization of irregular problems
§ unbounded loops
§ recursive algorithms
§ producer/consumer
§ A task is composed of :
§ Code to execute
§ Data environment
§ Internal control variables (ICV)
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#pragma omp task
#pragma omp parallel
{
#pragma omp single private(p)
{
while (p) {
#pragma omp task
processwork(p);
p = p->next; # not in the task

}
} # end of the single region

} # end of the parallel region
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synchronizations
§ Tasks are guaranteed to be complete :

§ At thread or task barriers

§ At the directive :
#pragma omp barrier

§ At the directive :
#pragma omp taskwait
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barrier
#pragma omp parallel
{

#pragma omp task
foo();
#pragma omp barrier

#pragma omp single
{

#pragma omp task
bar();

}
}

task : Multiple foo() tasks created, one for each 
thread in the parallel region.

barrier : All foo() tasks are guaranteed to be 
completed here.

task-single : one bar() task is created because there 
is only 1 thread running with the single keyword.
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Sharing Variables in OpenMP



OpenMP Shared-Memory Model
§ OpenMP worker threads and 

the master thread share the 
same process and variables.

§ If variable scope includes the 
parallel region, it is shared by 
default
– All the threads will read and write 

to the same memory location.

Operating System

OpenMP Process

OpenMP Thread : Stack vars

Main Thread

Shared
Variables

OpenMP Thread : Stack vars

OpenMP Thread : Stack vars

OpenMP Thread : Stack vars
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Scoping Rules
§ Not everything is shared...
– Examples of implicitly determined private variables:
o Stack (local) variables in functions called from parallel regions are PRIVATE
o Automatic variables within a statement block are PRIVATE
o Loop iteration variables are private
o Implicitly declared private variables within tasks will be treated as firstprivate

§ Shared clause can be used to make items explicitly 
shared
– Global variables are shared by default among tasks
o File scope variables, namespace scope variables, static variables, variables with 

const-qualified type having no mutable member are shared, Static variables which 
are declared in a scope inside the construct are shared
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Global Data
§ Global data are shared and require special care
§ A problem may arise in case multiple threads access the same 

memory section simultaneously:
– Read-only data is no problem
– Updates have to be checked for race conditions
– It is the programmer’s responsibility to deal with this situation

§ In general one can do the following:
– Split the global data into a part that is accessed in serial parts only and 

a part that is accessed in parallel
o Manually create thread private copies of the latter
o Use the thread ID to access these private copies
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Shared by default

§ This code is executing correctly in serial but may give 
a different results in parallel. Why?

float x, y;
int i;
#pragma omp parallel for
for(i=0; i<N; i++) {

x = a[i]; y = b[i];
c[i] = x + y;

}
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Problem 1 : Race condition
§ A race condition is nondeterministic behavior caused by the times at 

which two or more threads access a shared variable.
§ Let's suppose we have 2 threads executing :

x = a[i]; y = b[i];
c[i] = x + y;

§ If a thread can execute the two lines without having the other thread 
changing variables x and y, good
– Not guaranteed.

§ If the two threads have a mixed execution, the result c will be 
wrong.

§ Race conditions may or may not be visible depending on various 
experimental conditions (number of cores, other software running, 
luck, ...)
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Problem 2 : Corruption
§ Independently from race conditions, writing to the 

same object or memory location from different 
threads without protection is risky.
– Example : Different threads write to the serial output 

(console) at the same time.
– If you are lucky, messages will intercalate nicely.
– If you are not, the output may become garbled as bits of 

information representing the output text will be mixed 
together.
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Problem 3 : Initialization
§ If you use local copies instead of global variables to 

prevent race conditions and corruption, the last 
problem is initialization.

§ Local variables created by the OpenMP layer may or 
may not be initialized, or initialized differently
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Solutions
§ Recode to prevent sharing
– Explicit declarations using data scope clauses
– Synchronization (more about this one later)
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Data Scope Clauses
§ shared

– Declares variables in its list to be shared among all threads in the team

§ private

– Reproduce the variable for each task
o Variables are un-initialized; 
o Any value external to the parallel region is undefined

§ firstprivate

– Combines the behavior of the private clause with automatic initialization of the variables in 
its list

§ lastprivate
– Combines the behavior of the private clause with a copy from the last loop iteration or 

section to the original variable object

§ More about data scope clauses later
– Reduction, copyin and copyprivate
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Solution 1: Explicitly Change the Scope
Before : variables defined with global scope 
from the master thread, shared between 
threads.

After : local variables defined locally.
Nothing shared.

Efficient and safe.

float x, y;
int i;
#pragma omp parallel for
for(i=0; i<N; i++) {

x = a[i]; y = b[i];
c[i] = x + y;

}

int i;
#pragma omp parallel for
for(i=0; i<N; i++) {

float x, y;
x = a[i]; y = b[i];
c[i] = x + y;

}
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Solution 2: forcing serial execution of 
the critical block

Before : variables 
defined with global scope 
from the master thread, 
shared between threads.

After : same thing, but 
serial execution forced.

Safe but not scaling.

float x, y;
int i;

#pragma omp parallel for

for(i=0; i<N; i++) {

x = a[i]; y = b[i];

c[i] = x + y;
}

float x, y;
int i;

#pragma omp parallel for

for(i=0; i<N; i++) {

#pragma omp critical

x = a[i]; y = b[i]; c[i] = x + y;
}
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Solution 3: atomic
§ Instead of protecting an entire block of code, is it enough to 

protect write accesses to a single shared variable only ?
§ If yes, use atomic it will be a lot faster than critical :
– atomic is like a mini critical section for a variable.

#pragma omp parallel for shared(sum)
for(i=0; i<N; i++) {
#pragma omp atomic

sum += a[i] * b[i];
}
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Solution 4: Changing the Scope Using the 
private Clause

Before : global variables shared 
between threads.

After : local copies of global 
variables.
Nothing shared.

Efficient and safe.

float x, y;
int i;
#pragma omp parallel for
for(i=0; i<N; i++) {

x = a[i]; y = b[i];
c[i] = x + y;

}

float x, y;
int i;
#pragma omp parallel for private (x,y)
for(i=0; i<N; i++) {

x = a[i]; y = b[i];
c[i] = x + y;

}
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Solution 4: Changing the Scope Using the 
private Clause
§ The private clause reproduces the variable for each task

o Variables are un-initialized; 
o C++ object is default constructed
o Any value external to the parallel region is undefined

Spring 2021 Parallel Programming for Multicore and Cluster Systems

void* work(float* c, int N) {
float x, y; 
int i;

#pragma omp parallel for private(x,y)
for(i=0; i<N; i++) {
x = a[i]; y = b[i];
c[i] = x + y;

}
}


