
CSC 447: Parallel Programming for
Multi-Core and Cluster Systems
Sha r ed P a r a l l e l P r o g r a m m i n g Us i n g O p e n M P

In s t r u c t o r : H a i d a r M . H a r m a n a n i

Sp r i n g 2 0 2 1

Why ?
§ Thread libraries are hard to use
– Pthreads have many library calls for initialization,

synchronization, thread creation, condition variables, etc.
– Programmer must code with multiple threads in mind

§ Synchronization between threads introduces a new
dimension of program correctness

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Why ?
§ OpenMP is a parallel programming model for Shared-

Memory machines
–All threads have access to a shared main memory
– Each thread may have private data.

§ Parallelism is expressed explicitly by the programmer.

§ Using the worksharing constructs, the work can be
distributed among the threads of a team.

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Spring 2021 Parallel Programming for Multicore and Cluster Systems

int main() {

printf("Hello, World!\n");

return 0;
}

Why ?

Why ? Hello World Pthread Version
int main() {

pthread_attr_t attr;
pthread_t threads[16];
int tn;

pthread_attr_init(&attr);

for(tn=0; tn<16; tn++) {
pthread_create(&threads[tn], &attr, SayHello, NULL);

}

for (tn=0; tn<16 ; tn++) {
pthread_join(threads[tn], NULL);

}
return 0;

}

void* SayHello(void *foo) {
printf("Hello, world!\n");
return NULL;

}

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Spring 2021 Parallel Programming for Multicore and Cluster Systems

int main()

{

omp_set_num_threads(16);

// Do this part in parallel

#pragma omp parallel
{

printf("Hello, World!\n");
}

return 0;

}

Why ? Hello World Pthread Version

OpenMP: Solution Stack

Spring 2021 Parallel Programming for Multicore and Cluster Systems

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em

la
ye

r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

La
ye

r

Application

End User

Us
er

la

ye
r

Shared Address Space

Proc3Proc2Proc1 ProcN

H
W

OpenMP Execution Model
§ OpenMP uses a fork join methodology to implement parallelism
– Master thread spawns a team of threads as needed

§ Parallel directive creates a team of threads with a specified block of
code executed by the multiple threads in parallel.
– The exact number of threads in the team determined by one of several ways.

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Parallel Regions

Master
Thread

OpenMP Execution Model
§ Worker threads are spawned at Parallel Regions, together with the

Master they form the Team of threads.
§ In between Parallel Regions the Worker threads are put to sleep.
§ The OpenMP Runtime takes care of all thread management work

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Parallel Regions

Master
Thread

Getting Started with OpenMP

Spring 2021 Parallel Programming for Multicore and Cluster Systems

OpenMP Syntax
§ OpenMP constructs are compiler directives or

pragmas
– For C and C++, the pragmas take the form:

Spring 2021 Parallel Programming for Multicore and Cluster Systems

#pragma omp directive-name [clause[[,] clause] ...] new-line

Hello Worlds

Spring 2021 Parallel Programming for Multicore and Cluster Systems

#include <stdio.h>
#include <omp.h>

int main() {
#pragma omp parallel
{

int i;

int ID = omp_get_thread_num();

printf("Hello World\n");

for(i=0;i<6;i++)
printf("Iter:%d, %d\n”,i, ID);

}

printf("GoodBye World\n");

}

Switches for compiling and
linking:

gcc –fopenmp filename

Runtime library function to return
a thread ID.

End Parallel region

Begin Parallel region

#pragma omp parallel
§ This pragma will execute in parallel what's next : next

line, next loop, next block of code between brackets.

§ But the parallel keyword alone won't distribute the
workload on different threads. For that we'll see the
constructs for, task, section.

§ parallel will execute the same thing several times in
parallel.

Spring 2021 Parallel Programming for Multicore and Cluster Systems

#pragma omp parallel
§ printf(“before\n”);
#pragma omp parallel
printf(“parallel\n”);
printf(“after\n”);

§ If you compile as usual (without the -openmp flag), will return :
before
parallel
after
§ A pragma is not regular code and require a special flag to be

used by the compiler.

Spring 2021 Parallel Programming for Multicore and Cluster Systems

#pragma omp parallel
§ printf(“before\n”);
#pragma omp parallel
printf(“parallel\n”);
printf(“after\n”);

§ If compile with the -openmp flag, will return on a quad-core
machine:

before
parallel
parallel
parallel
parallel
after

Spring 2021 Parallel Programming for Multicore and Cluster Systems

#pragma omp parallel
§ #pragma omp parallel
{

printf(“start ”);
printf(“end ”);

}
Will return on a dual-core machine:
start start end end
or (depending on various conditions)
start end start end

§ Parallel execution does NOT implicate anything about the
order of execution.

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Structured Blocks
§ Most OpenMP constructs apply to structured blocks
– Exactly one entry point at the top
– Exactly one exit point at the bottom
–Branching in or out is not allowed
– Terminating the program is allowed (abort / exit)

Spring 2021 Parallel Programming for Multicore and Cluster Systems

OMP Parallel Regions

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Structured Blocks
§ A parallel region consists of a structured block of

code

§ A structured block of code is a code fragment with a
single point of entry into the block at the top of the
block, and one exit to the block at the bottom – AND
no breaks out of the block.

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Structured Blocks: Example

Spring 2021 Parallel Programming for Multicore and Cluster Systems

A structured block Not a structured block

if (go_now()) goto more;
#pragma omp parallel
{
int id = omp_get_thread_num();

more: res[id] = do_big_job(id);
if (conv (res[id]) goto done;
goto more;

}
done: if (!really_done()) goto more;

#pragma omp parallel
{
int id = omp_get_thread_num();

more: res[id] = do_big_job (id);

if (conv (res[id]) goto more;
}
printf (“All done\n”);

§ Create threads in OpenMP using the “omp parallel”
pragma.

OpenMP: Parallel Regions
§ Example: create a 4 parallel thread regions

Spring 2021 Parallel Programming for Multicore and Cluster Systems

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_thread_num();

pooh(ID,A);

}

Each thread
redundantly

executes the code
within the

structured block

OpenMP: Parallel Regions
Each thread executes the same code
redundantly.

Spring 2021 Parallel Programming for Multicore and Cluster Systems

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
int ID = omp_thread_num();

pooh(ID, A);
}
printf(“all done\n”);omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single copy of A
is shared between
all threads.

Threads wait here for all threads to finish before proceeding
(I.e. a barrier)

single, master and wait clauses

#pragma omp single
§ single will execute the next block of code once by the first

available thread.
§ #pragma omp parallel
{

printf(“start ”);
#pragma omp single
printf(“end ”);

}
Will return on a dual-core machine:
start start end

Spring 2021 Parallel Programming for Multicore and Cluster Systems

#pragma omp master
§ single will execute the next block of code once by the master

thread.
§ #pragma omp parallel
{

printf(“start ”);
#pragma omp master
printf(“end ”);

}
Will return on a dual-core machine:
start start end

Spring 2021 Parallel Programming for Multicore and Cluster Systems

#pragma omp master
§ Master thread has ID 0
–Only thread that exists in

sequential regions
–Depending on implementation,

may have special purpose inside
parallel regions

– Some special directives affect only
the master thread (like master)

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Fork

Join

0

0 1 2 3 4 5 6 7

0

#pragma omp … nowait
§ nowait will prevent the join phase at the end of a parallel

region (an implicit barrier) from blocking execution.
§ #pragma omp parallel for nowait
for (int i=0;i<n;i++) {

printf(“i”);
}
#pragma omp parallel for
for (int j=0;j<m;j++) {

printf(“j”);
}
Could print iiiiiijijiijjjjjjjjjj

Spring 2021 Parallel Programming for Multicore and Cluster Systems

for
worksharing construct

data decomposition

for worksharing construct
§ The omp parallel for construct starts a parallel region by

creating an optimal number of threads and maintaining a
queue of iterations to execute and distribute them to the
threads as needed.

§ When all the iterations are executed, the parallel region will end
and the code will go back to serial execution.

#pragma omp parallel for
for (i=0 ; i<N ; i++) {

printf(“loop %d\n”,i);
}

Spring 2021 Parallel Programming for Multicore and Cluster Systems

for worksharing construct
§ parallel for is a simple and flexible way to implement data

decomposition:
– Keep a simple loop structure
– All the queue management is done automatically
– Worksharing is handled automatically

§ Iterations will not execute in a specific order or show the same
behavior on different software or hardware environments

§ If some variables are defined before the parallel region, they
are shared between threads.
– Sharing to read is safe but sharing and writing leads to parallel bugs.

We'll see how to share variables safely.

Spring 2021 Parallel Programming for Multicore and Cluster Systems

task
worksharing construct

flexible task decomposition

#pragma omp task
§ Allows parallelization of irregular problems
§ unbounded loops
§ recursive algorithms
§ producer/consumer
§ A task is composed of :
§ Code to execute
§ Data environment
§ Internal control variables (ICV)

Spring 2021 Parallel Programming for Multicore and Cluster Systems

#pragma omp task
#pragma omp parallel
{
#pragma omp single private(p)
{
while (p) {
#pragma omp task
processwork(p);
p = p->next; # not in the task

}
} # end of the single region

} # end of the parallel region

Spring 2021 Parallel Programming for Multicore and Cluster Systems

synchronizations
§ Tasks are guaranteed to be complete :

§ At thread or task barriers

§ At the directive :
#pragma omp barrier

§ At the directive :
#pragma omp taskwait

Spring 2021 Parallel Programming for Multicore and Cluster Systems

barrier
#pragma omp parallel
{

#pragma omp task
foo();
#pragma omp barrier

#pragma omp single
{

#pragma omp task
bar();

}
}

task : Multiple foo() tasks created, one for each
thread in the parallel region.

barrier : All foo() tasks are guaranteed to be
completed here.

task-single : one bar() task is created because there
is only 1 thread running with the single keyword.

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Sharing Variables in OpenMP

OpenMP Shared-Memory Model
§ OpenMP worker threads and

the master thread share the
same process and variables.

§ If variable scope includes the
parallel region, it is shared by
default
– All the threads will read and write

to the same memory location.

Operating System

OpenMP Process

OpenMP Thread : Stack vars

Main Thread

Shared
Variables

OpenMP Thread : Stack vars

OpenMP Thread : Stack vars

OpenMP Thread : Stack vars

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Scoping Rules
§ Not everything is shared...
– Examples of implicitly determined private variables:
o Stack (local) variables in functions called from parallel regions are PRIVATE
o Automatic variables within a statement block are PRIVATE
o Loop iteration variables are private
o Implicitly declared private variables within tasks will be treated as firstprivate

§ Shared clause can be used to make items explicitly
shared
– Global variables are shared by default among tasks
o File scope variables, namespace scope variables, static variables, variables with

const-qualified type having no mutable member are shared, Static variables which
are declared in a scope inside the construct are shared

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Global Data
§ Global data are shared and require special care
§ A problem may arise in case multiple threads access the same

memory section simultaneously:
– Read-only data is no problem
– Updates have to be checked for race conditions
– It is the programmer’s responsibility to deal with this situation

§ In general one can do the following:
– Split the global data into a part that is accessed in serial parts only and

a part that is accessed in parallel
o Manually create thread private copies of the latter
o Use the thread ID to access these private copies

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Shared by default

§ This code is executing correctly in serial but may give
a different results in parallel. Why?

float x, y;
int i;
#pragma omp parallel for
for(i=0; i<N; i++) {

x = a[i]; y = b[i];
c[i] = x + y;

}

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Problem 1 : Race condition
§ A race condition is nondeterministic behavior caused by the times at

which two or more threads access a shared variable.
§ Let's suppose we have 2 threads executing :

x = a[i]; y = b[i];
c[i] = x + y;

§ If a thread can execute the two lines without having the other thread
changing variables x and y, good
– Not guaranteed.

§ If the two threads have a mixed execution, the result c will be
wrong.

§ Race conditions may or may not be visible depending on various
experimental conditions (number of cores, other software running,
luck, ...)

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Problem 2 : Corruption
§ Independently from race conditions, writing to the

same object or memory location from different
threads without protection is risky.
– Example : Different threads write to the serial output

(console) at the same time.
– If you are lucky, messages will intercalate nicely.
– If you are not, the output may become garbled as bits of

information representing the output text will be mixed
together.

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Problem 3 : Initialization
§ If you use local copies instead of global variables to

prevent race conditions and corruption, the last
problem is initialization.

§ Local variables created by the OpenMP layer may or
may not be initialized, or initialized differently

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Solutions
§ Recode to prevent sharing
– Explicit declarations using data scope clauses
– Synchronization (more about this one later)

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Data Scope Clauses
§ shared

– Declares variables in its list to be shared among all threads in the team

§ private

– Reproduce the variable for each task
o Variables are un-initialized;
o Any value external to the parallel region is undefined

§ firstprivate

– Combines the behavior of the private clause with automatic initialization of the variables in
its list

§ lastprivate
– Combines the behavior of the private clause with a copy from the last loop iteration or

section to the original variable object

§ More about data scope clauses later
– Reduction, copyin and copyprivate

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Solution 1: Explicitly Change the Scope
Before : variables defined with global scope
from the master thread, shared between
threads.

After : local variables defined locally.
Nothing shared.

Efficient and safe.

float x, y;
int i;
#pragma omp parallel for
for(i=0; i<N; i++) {

x = a[i]; y = b[i];
c[i] = x + y;

}

int i;
#pragma omp parallel for
for(i=0; i<N; i++) {

float x, y;
x = a[i]; y = b[i];
c[i] = x + y;

}
Spring 2021 Parallel Programming for Multicore and Cluster Systems

Solution 2: forcing serial execution of
the critical block

Before : variables
defined with global scope
from the master thread,
shared between threads.

After : same thing, but
serial execution forced.

Safe but not scaling.

float x, y;
int i;

#pragma omp parallel for

for(i=0; i<N; i++) {

x = a[i]; y = b[i];

c[i] = x + y;
}

float x, y;
int i;

#pragma omp parallel for

for(i=0; i<N; i++) {

#pragma omp critical

x = a[i]; y = b[i]; c[i] = x + y;
}

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Solution 3: atomic
§ Instead of protecting an entire block of code, is it enough to

protect write accesses to a single shared variable only ?
§ If yes, use atomic it will be a lot faster than critical :
– atomic is like a mini critical section for a variable.

#pragma omp parallel for shared(sum)
for(i=0; i<N; i++) {
#pragma omp atomic

sum += a[i] * b[i];
}

Spring 2021 Parallel Programming for Multicore and Cluster Systems

Solution 4: Changing the Scope Using the
private Clause

Before : global variables shared
between threads.

After : local copies of global
variables.
Nothing shared.

Efficient and safe.

float x, y;
int i;
#pragma omp parallel for
for(i=0; i<N; i++) {

x = a[i]; y = b[i];
c[i] = x + y;

}

float x, y;
int i;
#pragma omp parallel for private (x,y)
for(i=0; i<N; i++) {

x = a[i]; y = b[i];
c[i] = x + y;

}
Spring 2021 Parallel Programming for Multicore and Cluster Systems

Solution 4: Changing the Scope Using the
private Clause
§ The private clause reproduces the variable for each task

o Variables are un-initialized;
o C++ object is default constructed
o Any value external to the parallel region is undefined

Spring 2021 Parallel Programming for Multicore and Cluster Systems

void* work(float* c, int N) {
float x, y;
int i;

#pragma omp parallel for private(x,y)
for(i=0; i<N; i++) {
x = a[i]; y = b[i];
c[i] = x + y;

}
}

