
CSC 447: Parallel Programming for
Multi-Core and Cluster Systems
Shared Memory Programming Using POSIX Threads - Examples

Ins tr u ctor : H a id a r M. H a r m a na ni

S p r ing 2021

Example 1: Computing p

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 2

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X0.0

ò 4.0
(1+x2) dx = p

0

1

å F(xi)Dx » p
i = 0

N

Mathematically, we know that:

We can approximate the integral
as a sum of rectangles:

Where each rectangle has width Dx
and height F(xi) at the middle of
interval i.

Spring 2021

Example 1: Computing p

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 3

static long num_steps = 100000;
double step;
void main ()
{

int i;
double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

Spring 2021

Computing p

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 4

4.0

2.0

1.00.0

4.0

(1+x2)
f(x) =ò 4.0

(1+x2) dx = p
0

1

X

Spring 2021

Data Structure

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 5

#define STEPS 1000000000
#define STEP_SIZE 1.0/STEPS
#define THREADS 3

struct pthread_args
{
double lower;
double upper;
double local_sum;
};

Part I: Thread Call

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 6

...
pthread_t *thread;

struct pthread_args *thread_arg;

thread = malloc((unsigned long)num_threads * sizeof(*thread));
thread_arg = malloc((unsigned long)num_threads *
sizeof(*thread_arg));

for (int i = 0; i < num_threads; i++)
{
thread_arg[i].lower = (i+0) * (1.0 / (double)num_threads);
thread_arg[i].upper = (i+1) * (1.0 / (double)num_threads);
pthread_create(thread + i, NULL, &pi_thread, thread_arg + i);
}

Part II: Thread Function

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 7

void * pi_thread(void *ptr)
{
double low = 0.5 * STEP_SIZE + ((struct pthread_args*)ptr)->lower;
double upp = ((struct pthread_args*)ptr)->upper;
double tsum = 0;

while(low < upp)
{
tsum += sqrt(1-low*low) * STEP_SIZE;
low += STEP_SIZE;
}
((struct pthread_args*)ptr)->local_sum = tsum;

return NULL;
}

Step III
§ Complete the code in a breakout room.

§ Compile
§ Any thoughts?

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 8

Condition Variables and Consumer/Producer Problem

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 9

How to check whether a child thread
has completed?

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 10

1 void *child(void *arg) {
2 printf("child\n");
3 // XXX how to indicate we are done?
4 return NULL;
5 }
6
7 int main(int argc, char *argv[]) {
8 printf("parent: begin\n");
9 pthread_t c;
10 Pthread_create(&c, NULL, child, NULL); // create child
11 // XXX how to wait for child?
12 printf("parent: end\n");
13 return 0;

Possible Solution: Problem?

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 11

1 volatile int done = 0;
2
3 void *child(void *arg) {
4 printf("child\n");
5 done = 1;
6 return NULL;
7 }
8
9 int main(int argc, char *argv[]) {
10 printf("parent: begin\n");
11 pthread_t c;
12 pthread_create(&c, NULL, child, NULL); // create child
13 while (done == 0)
14 ; // spin
15 printf("parent: end\n");
16 return 0;
17 }

The Crux

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 12

HOW TO WAIT FOR A CONDITION?
In multi-threaded programs, it is often useful for a thread to wait for
some condition to become true before proceeding. The simple
approach, of just spinning until the condition becomes true, is grossly
inefficient and wastes CPU cycles, and in some cases, can be incorrect.
Thus, how should a thread wait for a condition?

Condition Variables
§ There are cases where a thread wishes to check whether a

condition is true before continuing its execution

§ Condition variables provide a mechanism for threads to
synchronize.
–mutex'es implement synchronization by controlling thread access

to data
– Condition variables allow threads to synchronize based on the

actual value of data.

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 13Spring 2021

Condition Variables
§ A condition variable is an explicit queue that threads can put

themselves on when some state of execution is not as desired
– Without condition variables, the programmer would need to have threads

continually polling (possibly in a critical section), to check if the condition
is met.
o Resource consuming

§ The idea goes back to Dijkstra’s use of “private semaphores”

§ A condition variable (cv) allows a thread to block itself until a
specified condition becomes true.

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 14Spring 2021

Condition Variables
§ A condition variable is always used in conjunction with a mutex lock.
§ When a thread executes pthread_cond_wait(cv), it is blocked

until another thread executes pthread_cond_signal(cv) or
pthread_cond_broadcast(cv).
– pthread_cond_signal() is used to unblock one of the threads blocked waiting

on the condition variable.
– pthread_cond_broadcast() is used to unblock all the threads blocked waiting

on the condition variable.

§ If no threads are waiting on the condition variable, then a pthread-
cond_signal() or pthreadcond_broadcast() will have no effect.

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 15

Notes on Condition Variables
§ Use a while loop instead of an if statement to check the

waited for condition in order to alleviate the following
problems:
– If several threads are waiting for the same wake up signal, they will

take turns acquiring the mutex, and any one of them can then
modify the condition they all waited for.

§ Mutex is unlocked
– Allows other threads to acquire lock
–When signal arrives, mutex will be reacquired before
pthread_cond_wait returns

16Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 17

Main Thread
• Declare and initialize global data/variables that require synchronization (such as "count")
• Declare and initialize a condition variable object
• Declare and initialize an associated mutex
• Create threads A and B to do work

Thread A
• Do work up to the point where a certain condition

must occur (such as "count" must reach a specified
value)

• Lock associated mutex and check value of a global
variable

• Call pthread_cond_wait() to perform a blocking
wait for signal from Thread B.

• A call to pthread_cond_wait() automatically
and atomically unlocks the associated mutex
variable so that it can be used by Thread B.

• When signaled, wake up. Mutex is automatically
and atomically locked.

• Explicitly unlock mutex
• Continue

Thread B
• Do work
• Lock associated mutex
• Change the value of the global variable that Thread

A is waiting upon.
• Check value of the global Thread A wait variable. If

it fulfills the desired condition, signal Thread A.
• Unlock mutex.
• Continue

Main Thread
Join / Continue

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 18

Problem
• Two of the threads perform work and update a "count" variable.
• The third thread waits until the count variable reaches a specified value.
int main (int argc, char *argv[])
{
int i, rc;
long t1=1, t2=2, t3=3;
pthread_t threads[3];
pthread_attr_t attr;

/* Initialize mutex and condition variable objects */
pthread_mutex_init(&count_mutex, NULL);
pthread_cond_init (&count_threshold_cv, NULL);

/* For portability, explicitly create threads in a joinable state */
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
pthread_create(&threads[0], &attr, watch_count, (void *)t1);
pthread_create(&threads[1], &attr, inc_count, (void *)t2);
pthread_create(&threads[2], &attr, inc_count, (void *)t3);

/* Wait for all threads to complete */
for (i=0; i<NUM_THREADS; i++) {

pthread_join(threads[i], NULL);
}
printf ("Main(): Waited on %d threads. Done.\n", NUM_THREADS);

pthread_attr_destroy(&attr);
pthread_mutex_destroy(&count_mutex);
pthread_cond_destroy(&count_threshold_cv);
pthread_exit(NULL);

}

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 19

Problem
• Two of the threads perform work and update a "count" variable.
• The third thread waits until the count variable reaches a specified value.
pthread_mutex_t count_mutex;
pthread_cond_t count_threshold_cv;

void *inc_count(void *t)
{

int i;
long my_id = (long)t;

for (i=0; i<TCOUNT; i++) {
pthread_mutex_lock(&count_mutex);
count++;

if (count == COUNT_LIMIT) {
pthread_cond_signal(&count_threshold_cv);
printf("inc_count(): thread %ld, count = %d Threshold reached.\n", my_id, count);
}

printf("inc_count(): thread %ld, count = %d, unlocking mutex\n", my_id, count);
pthread_mutex_unlock(&count_mutex);

sleep(1);
}

pthread_exit(NULL);
}

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 20

Problem
• Two of the threads perform work and update a "count" variable.
• The third thread waits until the count variable reaches a specified value.
void *watch_count(void *t)
{

long my_id = (long)t;

printf("Starting watch_count(): thread %ld\n", my_id);

/*
Lock mutex and wait for signal. Note that the pthread_cond_wait routine will automatically and
atomically unlock mutex while it waits. Also, note that if COUNT_LIMIT is reached before this
routine is run by the waiting thread, the loop will be skipped to prevent pthread_cond_wait
from never returning.
*/
pthread_mutex_lock(&count_mutex);
while (count<COUNT_LIMIT) {

pthread_cond_wait(&count_threshold_cv, &count_mutex);
printf("watch_count(): thread %ld Condition signal received.\n", my_id);
count += 125;
printf("watch_count(): thread %ld count now = %d.\n", my_id, count);

}
pthread_mutex_unlock(&count_mutex);
pthread_exit(NULL);

}

Condition Variables: Declaration
§ Condition variables must be declared with type
pthread_cond_t, and must be initialized before they can be
used.
– pthread cond t c ← declares c as a condition variable

§ Two ways to initialize a condition variable:
– Statically, when it is declared. For example:
pthread_cond_t myconvar = PTHREAD_COND_INITIALIZER;
– Dynamically, with the pthread_cond_init() routine.
o The ID of the created condition variable is returned to the calling thread through the

condition parameter.
o This method permits setting condition variable object attributes, attr.

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 21Spring 2021

pthread_cond_init
§ int pthread_cond_init(cond, attr);

pthread_cond_t *cond
– condition variable to be initialized
const pthread_condattr_t *attr
– attributes to be given to condition variable

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 22

ENOMEM - insufficient memory for mutex
EAGAIN - insufficient resources (other than memory)
EBUSY - condition variable already intialized
EINVAL - attr is invalid

Spring 2021

Alternate Initialization
§ Can also use the static initializer

PTHREAD_COND_INITIALIZER

–Uses default attributes

§ Programmer must always pay attention to condition (and
mutex) scope
–Must be visible to threads

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 23

pthread_cond_t cond1 = PTHREAD_COND_INITIALIZER;

Spring 2021

Condition Variables: Usage
§ A condition variable has two operations associated with it
– wait()
– signal()

§ The wait() call is executed when a thread wishes to put itself
to sleep

§ The signal() call is executed when a thread has changed
something in the program and thus wants to wake a sleeping
thread waiting on this condition

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 24

pthread_cond_wait(pthread_cond_t *c, pthread_mutex_t *m);
pthread_cond_signal(pthread_cond_t *c);

Condition Variable and Mutex
§ Mutex is associated with condition variables
– Protects evaluation of the conditional expression
– Prevents race condition between signaling thread and threads

waiting on condition variable

§ While the thread is waiting on a condition variable, the
mutex is automatically unlocked, and when the thread is
signaled, the mutex is automatically locked again

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 25

pthread_cond_signal Explained
§ Signal condition variable, wake one waiting thread

§ If no threads waiting, no action taken
– Signal is not saved for future threads

§ Signaling thread need not have mutex
–May be more efficient
– Problem may occur if thread priorities used

26

EINVAL - cond is invalid

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

pthread_cond_broadcast Explained
§ Wake all threads waiting on condition variable

§ If no threads waiting, no action taken
– Broadcast is not saved for future threads

§ Signaling thread need not have mutex

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 27

EINVAL - cond is invalid

Spring 2021

Producer/Consumer Problem

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 28

Producer-Consumer Problem
§ A common implementation pattern for cooperating processes or

threads.
– Producer produces information that is later consumed by a consumer

§ Implementation details:
– Use a common buffer in order to allow the producer and consumer to run

concurrently
– Synchronize processes so that the consumer does not try to consume an

item that has not yet been produced
– If the common data buffer is bounded, the consumer process must wait if

the buffer is empty, and the producer process must wait if the buffer is full.

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 29

Producer-Consumer Problem

§ Examples
–Multimedia processing:
o Producer creates video frames, consumer renders them

– Event-driven graphical user interfaces
o Producer detects mouse clicks, mouse movements, and keyboard hits and inserts

corresponding events in buffer
o Consumer retrieves events from buffer and paints the display

producer
thread

shared
buffer

consumer
thread

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 30

Producer-Consumer on 1-element Buffer
§ Maintain two semaphores: full + empty

empty
buffer

0

full

1

empty

full
buffer

1

full

0

empty

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 31

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 32

Condition Variables
Example

Spring 2021

Sequential Circular Buffer Code

insert(int v)
{

if (items >= n)
error();

if (++rear >= n) rear = 0;
buf[rear] = v;
items++;

}

int remove()
{

if (items == 0)
error();

if (++front >= n) front = 0;
int v = buf[front];
items--;
return v;

}

init(int v)
{

items = front = rear = 0;
}

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 33

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 34

Use of Mutex
and Signals

Spring 2021

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 35

Condition Variables
Example

Spring 2021

Producer-Consumer on 1-element Buffer
#define NITERS 5

void *producer(void *arg);
void *consumer(void *arg);

struct {
int buf; /* shared var */
sem_t full; /* sems */
sem_t empty;

} shared;

int main(int argc, char** argv) {
pthread_t tid_producer;
pthread_t tid_consumer;

/* Initialize the semaphores */
sem_init(&shared.empty, 0, 1);
sem_init(&shared.full, 0, 0);

/* Create threads and wait */
pthread_create(&tid_producer, NULL,

producer, NULL);
pthread_create(&tid_consumer, NULL,

consumer, NULL);
pthread_join(tid_producer, NULL);
pthread_join(tid_consumer, NULL);

return 0;
}

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 36

Producer-Consumer on 1-element Buffer

void *producer(void *arg) {
int i, item;

for (i=0; i<NITERS; i++) {
/* Produce item */
item = i;
printf("produced %d\n",

item);

/* Write item to buf */
P(&shared.empty);
shared.buf = item;
V(&shared.full);

}
return NULL;

}

void *consumer(void *arg) {
int i, item;

for (i=0; i<NITERS; i++) {
/* Read item from buf */
P(&shared.full);
item = shared.buf;
V(&shared.empty);

/* Consume item */
printf("consumed %d\n“, item);

}
return NULL;

}

Initially: empty==1, full==0
Producer Thread Consumer Thread

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 37

Why 2 Semaphores for 1-Entry Buffer?
§ Consider multiple producers & multiple consumers

§ Producers will contend with each to get empty
§ Consumers will contend with each other to get full

shared
buffer

P1

Pn

�
�
�

C1

Cm

�
�
�

P(&shared.full);
item =
shared.buf;
V(&shared.empty);

Consumers

P(&shared.empty);
shared.buf = item;
V(&shared.full);

Producers
fullempty

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 38

Producer-Consumer on an n-element
Buffer
§ Implemented using a shared buffer package called sbuf.

P1

Pn

�
�
�

C1

Cm

�
�
�

���

Between 0 and n elements

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 39

Circular Buffer (n = 10)
§ Store elements in array of size n
§ items: number of elements in buffer
§ Empty buffer:
– front = rear

§ Nonempty buffer
– rear: index of most recently inserted element
– front: (index of next element to remove – 1) mod n

§ Initially:

items 0
rear 0

front 0 8765432 910

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 40

Circular Buffer Operation (n = 10)
§ Insert 7 elements

§ Remove 5 elements

§ Insert 6 elements

§ Remove 8 elements

items 7
rear 7

front 0

items 2
rear 7

front 5

items 8
rear 3

front 5

items 0
rear 3

front 3

8765432 910

8765432 910

8765432 910

8765432 910

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 41

Producer-Consumer on an n-element
Buffer
§ Requires a mutex and two counting semaphores:
– mutex: enforces mutually exclusive access to the buffer and counters
– slots: counts the available slots in the buffer
– items: counts the available items in the buffer

§ Makes use of general semaphores
– Will range in value from 0 to n

P1

Pn

�
�
�

C1

Cm

�
�
�

���

Between 0 and n elements

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 42

Thread Safety
§ Functions called from a thread must be thread-safe

§ Def: A function is thread-safe iff it will always produce correct
results when called repeatedly from multiple concurrent
threads.

§ Classes of thread-unsafe functions:
– Class 1: Functions that do not protect shared variables
– Class 2: Functions that keep state across multiple invocations
– Class 3: Functions that return a pointer to a static variable
– Class 4: Functions that call thread-unsafe functions

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 43

Thread-Unsafe Functions (Class 1)
§ Failing to protect shared variables
– Fix: Use P and V semaphore operations
– Issue: Synchronization operations will slow down code

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 44

Thread-Unsafe Functions (Class 2)
§ Relying on persistent state across multiple function invocations
– Example: Random number generator that relies on static state

static unsigned int next = 1;

/* rand: return pseudo-random integer on 0..32767 */
int rand(void)
{

next = next*1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */
void srand(unsigned int seed)
{

next = seed;
}

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 45

Thread-Safe Random Number Generator
§ Pass state as part of argument
– and, thereby, eliminate static state

§ Consequence: programmer using rand_r must maintain seed

/* rand_r - return pseudo-random integer on 0..32767 */

int rand_r(int *nextp)
{

*nextp = *nextp*1103515245 + 12345;
return (unsigned int)(*nextp/65536) % 32768;

}

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 46

Summary
§ Create threads to execute work encapsulated within

functions

§ Coordinate shared access between threads to avoid race
conditions
– Local storage to avoid conflicts
– Synchronization objects to organize use

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 47Spring 2021

