
CSC 447: Parallel Programming for
Multi-Core and Cluster Systems
Shared Memory Programming Using POSIX Threads

Ins tr u ctor : H a id a r M. H a r m a na ni

S p r ing 2021

What are Pthreads?
§ IEEE POSIX 1003.1c standard

§ pthreads routines be grouped in the following categories
– Thread Management: Routines to create, terminate, and manage the

threads.
– Mutexes: Routines for synchronization
– Condition Variables: Routines for communications between threads that

share a mutex.
– Synchronization: Routines for the management of read/write locks and

barriers.

§ All identifiers in the threads’ library begin with pthread_

2 2Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Preliminaries
§ All major thread libraries on Unix systems are Pthreads-

compatible
§ Include pthread.h in the main file
§ Compile program with –lpthread
– gcc –o test test.c –lpthread
–may not report compilation errors otherwise but calls will fail
– The MacOS has dropped the need for the inclusion of -lpthread
– Check your OS’s requirement!

§ Good idea to check return values on common functions

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 3

The Pthreads API
Routine Prefix Functional Group

pthread_ Threads themselves and miscellaneous subroutines
pthread_attr_ Thread attributes objects
pthread_mutex_ Mutexes
pthread_mutexattr_ Mutex attributes objects.
pthread_cond_ Condition variables
pthread_condattr_ Condition attributes objects
pthread_key_ Thread-specific data keys
pthread_rwlock_ Read/write locks
pthread_barrier_ Synchronization barriers

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 4

Creating Threads
§ Identify portions of code to thread

§ Encapsulate code into function
– If code is already a function, a driver function may need to be

written to coordinate work of multiple threads

§ Use pthread_create() call to assign thread(s) spawn
a thread that runs the function

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 5Spring 2021

pthread_create
§ int pthread_create(tid, attr, function, arg);

– pthread_t *tid
o Handle of created thread
– const pthread_attr_t *attr
o attributes of thread to be created
o You can specify a thread attributes object, or NULL for the default values.
– void *(*function)(void *)
o The C routine that the thread will execute once it is created
– void *arg
o single argument to function
o NULL may be used if no argument is to be passed.

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 6

Example: pthread_create
pthread_create(&threads[t], NULL, HelloWorld, (void *) t)

§ Thread handle returned via pthread_t structure
– Specify NULL to use default attributes

§ Single argument sent to function
– If no arguments to function, specify NULL

§ Check error codes!

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 7

EAGAIN - insufficient resources to create thread
EINVAL - invalid attribute

Spring 2021

What is the Outcome of the following
code?

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 8

#include <stdio.h>
#include <pthread.h>
void *hello ()

{
printf(“Hello Thread\n”);

}

main() {
pthread_t tid;
pthread_create(&tid, NULL, hello, NULL);

}

Spring 2021

Example: Thread Creation
§ The outcome is not what we would expect!

§ In fact nothing is printed on screen.
§ Why?

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 9

Example: Thread Creation
§ The outcome is not what we would expect!

§ In fact nothing is printed on screen.
§ Why?

o Main thread is the process and when the process ends, all threads are cancelled,
too.

o Thus, if the pthread_create call returns before the OS has had the time to set
up the thread and begin execution, the thread will die a premature death when the
process ends.

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 10

pthread_join

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 11Spring 2021

Waiting for a Thread
§ int pthread_join(tid, val_ptr);
§ pthread_joinwill block until the thread associated with the
pthread_t handle has terminated.
– There is no single function that can join multiple threads.

§ The second parameter returns a pointer to a value from the thread being
joined.

§ pthread_join()can be used to wait for one thread to terminate.
pthread_t tid
– handle of joinable thread
void **val_ptr
– exit value returned by joined thread

12Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

A Better Hello Threads…

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 13

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

#define NUM_THREADS 8
void* hello(void* threadID) {

long id = (long) threadID;
printf("Hello World, this is thread %ld\n", id);
return NULL;

}

int main(int argc, char argv[]) {
long t;
pthread_t thread_handles[NUM_THREADS];
for(t=0 ; t<NUM_THREADS; t++)

pthread_create(&thread_handles[t], NULL, hello, (void *) t);
printf("Hello World, this is the main thread\n");
for(t=0; t<NUM_THREADS; t++)

pthread_join(thread_handles[t], NULL);
return 0;

}

Sample Execution Runs
yoda:~ haidar$./a.out
Hello World, this is thread 0
Hello World, this is thread 1
Hello World, this is thread 2
Hello World, this is thread 3
Hello World, this is thread 4
Hello World, this is thread 5
Hello World, this is the main
thread
Hello World, this is thread 7
Hello World, this is thread 6

yoda:~ haidar$./a.out
Hello World, this is thread 0
Hello World, this is thread 1
Hello World, this is thread 2
Hello World, this is thread 3
Hello World, this is thread 4
Hello World, this is the main
thread
Hello World, this is thread 5
Hello World, this is thread 7
Hello World, this is thread 6

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 14

Thread States
§ pthreads threads have two states
– joinable and detached

§ A detached thread when you know you won't want to wait for it
with pthread_join()

§ Threads are joinable by default
– Resources are kept until pthread_join
– Can be reset with attributes or API call

§ Detached threads cannot be joined
– Resources can be reclaimed at termination
– Cannot reset to be joinable

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 15Spring 2021

Example: Multiple Threads with Joins

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 16

#include <stdio.h>

#include <pthread.h>

#define NUM_THREADS 4

void *hello () {

printf(“Hello Thread\n”);

}

main() {

pthread_t tid[NUM_THREADS];

for (int i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i], NULL, hello, NULL);

for (int i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);

}

Spring 2021

Avoiding Data Races
§ Scope variables to be local to threads
– Variables declared within threaded functions
– Allocate on thread’s stack
– Thread Local Storage (TLS)

§ Control shared access with critical regions
–Mutual exclusion and synchronization
– Lock, semaphore, condition variable, critical section, mutex…

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 17Spring 2021

pthread’s Mutex
§ Simple, flexible, and efficient
§ Enables correct programming structures for avoiding race

conditions
§ Mutex variables must be declared with

type pthread_mutex_t, and must be initialized before
they can be used

§ Attributes are set using pthread_mutexattr_t
§ The mutex is initially unlocked.

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 18Spring 2021

Initializing mutex Variables
§ Two ways:
– Statically, when it is declared:
o pthread_mutex_t mymutex = PTHREAD_MUTEX_INITIALIZER;

– Dynamically, with the pthread_mutex_init() routine.
o Permits setting mutex object attributes, attr.

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 19

pthread_mutex_init
§ int pthread_mutex_init(mutex, attr);

pthread_mutex_t *mutex
– mutex to be initialized
const pthread_mutexattr_t *attr
– attributes to be given to mutex

§ The Pthreads standard defines three optional mutex attributes:
– Protocol: Specifies the protocol used to prevent priority inversions for a

mutex.
– Prioceiling: Specifies the priority ceiling of a mutex.
– Process-shared: Specifies the process sharing of a mutex.

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 20Spring 2021

Alternate Initialization
§ Can also use the static initializer

PTHREAD_MUTEX_INITIALIZER

–Uses default attributes

§ Programmer must always pay attention to mutex scope
–Must be visible to threads

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 21

pthread_mutex_t mtx1 = PTHREAD_MUTEX_INITIALIZER;

Spring 2021

pthread_mutex_lock
§ int pthread_mutex_lock(mutex);

pthread_mutex_t *mutex
o mutex to attempt to lock

§ Used by a thread to acquire a lock on the
specified mutex variable
– If mutex is locked by another thread, calling thread is blocked

§ Mutex is held by calling thread until unlocked
– Mutex lock/unlock must be paired or deadlock occurs

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 22

EINVAL - mutex is invalid
EDEADLK - calling thread already owns mutex

Spring 2021

pthread_mutex_trylock
§ Attempt to lock a mutex.

§ If the mutex is already locked, the routine will return
immediately with a "busy" error code.

§ This routine may be useful in preventing deadlock
conditions, as in a priority-inversion situation.

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 23

pthread_mutex_unlock
§ int pthread_mutex_unlock(mutex);

pthread_mutex_t *mutex
–mutex to be unlocked

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 24

EINVAL - mutex is invalid
EPERM - calling thread does not own mutex

Spring 2021

Freeing mutexObjects and Attributes
§ Used to free a mutex object which is no longer needed
§ pthread_mutexattr_init() and
pthread_mutexattr_destroy()
– Create and destroy mutex attribute objects respectively

§ pthread_mutex_destroy()
–Used to free a mutex object which is no longer needed.

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 25

More on Mutexes

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 26Spring 2021

More on Mutexes

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 27Spring 2021

Thread Function: Semaphore / Mutex
void *sum_sem(void *vargp)
{

int myid = *((int *)vargp);
size_t start = myid * nelems_per_thread;
size_t end = start + nelems_per_thread;
size_t i;

for (i = start; i < end; i++) {
sem_wait(&semaphore);
global_sum += i;
sem_post(&semaphore);

}
return NULL;

}

sem_wait(&semaphore);
global_sum += i;
sem_post(&semaphore);

pthread_mutex_lock(&mutex);
global_sum += i;
pthread_mutex_unlock(&mutex);

Semaphore

Mutex

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 28

Semaphore / Mutex Performance
§ Terrible Performance
– 2.5 seconds è ~10

minutes

§ Mutex 3X faster than
semaphore

§ Clearly, neither is
successful

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 29

