
CSC 447: Parallel Programming for Multi-
Core and Cluster Systems
D e s i g n i n g Pa ra l l e l P ro g ra m s

In st r u cto r : H a i d a r M . H a r m a n a n i

Sp r i n g 2 0 2 1

1. Designing Parallel Algorithms
§ Design a parallel algorithm :
–What is the maximum theoretical scalability of my algorithm ?
– Is my algorithm still interesting in a few years, when many-core

machines will be standard ?

Some serial algorithms are not meant to be
implemented because they'll never run fast
enough.

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 2Spring 2021

2. Code Serial and Optimize Serial Performance
§ Code and optimize serial performance:
– Thoroughly debug your code, optimize for serial performance, use

performance libraries.

§ Collect performance data using a profiler:
– See how they match your algorithm predictions,
– Prepare parallelization of your code,
– Evaluate if parallelization is still worth it.

Collect detailed performance data.

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 3Spring 2021

3. Introduce Parallelism
§ Introduce parallelism :
– Pick the right technology for you problem.
o (OpenMP, OpenACC, MPI, CUDA, …)

– Pick the right place in your code to introduce it.
– Predict maximum scalability based on serial performance data.

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 4Spring 2021

4. Debug Parallel Code
§ Debug parallel bugs :
– A perfectly working serial code can give wrong results when ran in

parallel if the parallelism was not introduced correctly.
– A serial debug tool won't help.

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 5Spring 2021

5. Optimize Parallel Performance
§ Optimize parallel performance :
–When your serial performance problems are solved, you'll have a

clear view of your parallel performance problems.
– System tools can help you collect the right information.

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 6Spring 2021

Decomposition

www.computerhistory.orgCSC 447: Parallel Programming for Multi-Core and Cluster Systems 7Spring 2021

Decomposition
§ To design a parallel algorithm or parallelize an existing

code, you first have to understand if you have
dependencies.

§ If data can be processed or tasks executed independently,
you can process them in parallel.

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 8Spring 2021

Output
.jpg

Output
.jpg

Output
.png

Output
.png

Example
§ Suppose you want to apply two filters on a batch of images

and save them in jpg and png formats.
– Can you process different images in parallel ?
– Can you process different pixels in parallel ?
– Can you open/save files, apply filters in parallel ?

Output
.jpg

Output
.png

Blur LuminosityInput
.jpg
Input
.jpg
Input
.jpg

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 9Spring 2021

Data decomposition: Parallel
Treatment of files
§ In our case, data decomposition means you'll try to execute in

parallel the treatment of different images or different pixels.
§ Images are independent from each other, it's perfect and easy

to implement. But if you have a low number of images to treat
and a large number of cores available, you won't use them all.

A lot of images and
a dual-core : easy
to use all cores
efficiently.

Few images and a many-core
(50+) :
data decomposition by file only
won't be enough to use all
cores.

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 10Spring 2021

Data decomposition: Parallel
treatment of pixels
§ For pixels, it's easy to do for a basic luminosity filter as each pixel is

processed independently from the others. But the blur filter requires
information from neighboring pixels.

§ It can be done in parallel with some approximations or a lot of
communication between threads (synchronization), impacting scalability.

Luminosity adjustment can be done
independently on each pixel.
Easy to parallelize efficiently.

Blur filter requires information from other pixels.
Requires heavy synchronization OR flexibility

regarding the result.

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 11Spring 2021

Task decomposition
§ Another way to solve our problem is to execute different operations on

the same data in parallel.
§ Saving as .png and saving as .jpg are totally independent (and CPU

intensive) operations.
– Easily be parallelized.

§ But luminosity and blur can't be done in parallel on the same image
independently.

Output
.jpg

Output
.jpg

Output
.png

Output
.png

Output
.jpg

Output
.png

Blur LuminosityInput
.jpg
Input
.jpg
Input
.jpg

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 12Spring 2021

Data and task decompositions
§ For our problem, each decomposition has pros and cons depending

on the the number of files to process, precision required for the blur
filter, number of cores, developer skills and time ...

§ A good real life solution would be to implement different levels of
nested parallelism mixing data and task decomposition.

Output
.jpg

Output
.jpg

Output
.png

Output
.png

Output
.jpg

Output
.png

Blur LuminosityInput
.jpg
Input
.jpg
Input
.jpg

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 13Spring 2021

Methodology
§ Study problem, sequential program, or code segment
§ Look for opportunities for parallelism
§ Try to keep all cores busy doing useful work

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 14Spring 2021

Ways of Exploiting Parallelism
§ Domain decomposition
§ Task decomposition
§ Pipelining

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 15Spring 2021

Domain Decomposition
§ First, decide how data elements should be divided among

cores
§ Second, decide which tasks each core should be doing
§ Example: Vector addition

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 16Spring 2021

Domain Decomposition: Find the
Largest Element of an Array

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 17Spring 2021

Domain Decomposition: Find the
Largest Element of an Array

Core 0 Core 1 Core 2 Core 3

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 18Spring 2021

Domain Decomposition: Find the
Largest Element of an Array

Core 0 Core 1 Core 2 Core 3

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 19Spring 2021

Domain Decomposition: Find the
Largest Element of an Array

Core 0 Core 1 Core 2 Core 3

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 20Spring 2021

Domain Decomposition: Find the
Largest Element of an Array

Core 0 Core 1 Core 2 Core 3

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 21Spring 2021

Domain Decomposition: Find the
Largest Element of an Array

Core 0 Core 1 Core 2 Core 3

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 22Spring 2021

Domain Decomposition: Find the
Largest Element of an Array

Core 0 Core 1 Core 2 Core 3

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 23Spring 2021

Domain Decomposition: Find the
Largest Element of an Array

Core 0 Core 1 Core 2 Core 3

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 24Spring 2021

Domain Decomposition: Find the
Largest Element of an Array

Core 0 Core 1 Core 2 Core 3

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 25Spring 2021

Domain Decomposition: Find the
Largest Element of an Array

Core 0 Core 1 Core 2 Core 3

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 26Spring 2021

Domain Decomposition: Find the
Largest Element of an Array

Core 0 Core 1 Core 2 Core 3

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 27Spring 2021

Domain Decomposition: Find the
Largest Element of an Array

Core 0 Core 1 Core 2 Core 3

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 28Spring 2021

Task (Functional) Decomposition
§ First, divide problem into independent tasks
§ Second, decide which data elements are going to be

accessed (read and/or written) by which tasks
§ Example: Event-handler for GUI

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 29Spring 2021

Task Decomposition

s()

r()
q()

h()

g()

f()

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 30Spring 2021

Task Decomposition

s()

r()
q()

h()

g()

Core 0

Core 2

Core 1 f()

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 31Spring 2021

Task Decomposition

s()

r()
q()

h()

g()
Core 2

Core 1 f() Core 0

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 32Spring 2021

Task Decomposition

s()

r()
q()

h()

g()
Core 2

Core 1 Core 0f()

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 33Spring 2021

Task Decomposition

s()

r()
q()

h()

g()
Core 2

Core 1 Core 0f()

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 34Spring 2021

Task Decomposition

s()

r()
q()

h()

g()
Core 2

Core 1 Core 0f()

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 35Spring 2021

Pipelining
§ Special kind of task decomposition
§ “Assembly line” parallelism
§ Example: 3D rendering in computer graphics

RasterizeClipProjectModel

Input Output

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 36Spring 2021

Processing One Data Set (Step 1)

RasterizeClipProjectModel

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 37Spring 2021

Processing One Data Set (Step 2)

RasterizeClipProjectModel

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 38Spring 2021

Processing One Data Set (Step 3)

RasterizeClipProjectModel

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 39Spring 2021

Processing One Data Set (Step 4)

RasterizeClipProjectModel

The pipeline processes 1 data set in 4 steps

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 40Spring 2021

Processing Two Data Sets (Step 1)

RasterizeClipProjectModel

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 41Spring 2021

Processing Two Data Sets (Time 2)

RasterizeClipProjectModel

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 42Spring 2021

Processing Two Data Sets (Step 3)

RasterizeClipProjectModel

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 43Spring 2021

Processing Two Data Sets (Step 4)

RasterizeClipProjectModel

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 44Spring 2021

Processing Two Data Sets (Step 5)

RasterizeClipProjectModel

The pipeline processes 2 data sets in 5 steps

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 45Spring 2021

Pipelining Five Data Sets (Step 1)
Data set 0

Data set 1

Data set 2

Data set 3

Data set 4

Core 0 Core 1 Core 2 Core 3

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 46Spring 2021

Pipelining Five Data Sets (Step 2)
Data set 0

Data set 1

Data set 2

Data set 3

Data set 4

Core 0 Core 1 Core 2 Core 3

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 47Spring 2021

Pipelining Five Data Sets (Step 3)
Data set 0

Data set 1

Data set 2

Data set 3

Data set 4

Core 0 Core 1 Core 2 Core 3

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 48Spring 2021

Pipelining Five Data Sets (Step 4)
Data set 0

Data set 1

Data set 2

Data set 3

Data set 4

Core 0 Core 1 Core 2 Core 3

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 49Spring 2021

Pipelining Five Data Sets (Step 5)
Data set 0

Data set 1

Data set 2

Data set 3

Data set 4

Core 0 Core 1 Core 2 Core 3

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 50Spring 2021

Pipelining Five Data Sets (Step 6)
Data set 0

Data set 1

Data set 2

Data set 3

Data set 4

Core 0 Core 1 Core 2 Core 3

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 51Spring 2021

Pipelining Five Data Sets (Step 7)
Data set 0

Data set 1

Data set 2

Data set 3

Data set 4

Core 0 Core 1 Core 2 Core 3

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 52Spring 2021

Pipelining Five Data Sets (Step 8)
Data set 0

Data set 1

Data set 2

Data set 3

Data set 4

Core 0 Core 1 Core 2 Core 3

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 53Spring 2021

