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1. Designing Parallel Algorithms
§ Design a parallel algorithm :
–What is the maximum theoretical scalability of my algorithm ?
– Is my algorithm still interesting in a few years, when many-core 

machines will be standard ?

Some serial algorithms are not meant to be 
implemented because they'll never run fast 
enough.
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2. Code Serial and Optimize Serial Performance
§ Code and optimize serial performance:
– Thoroughly debug your code, optimize for serial performance, use 

performance libraries.

§ Collect performance data using a profiler:
– See how they match your algorithm predictions,
– Prepare parallelization of your code,
– Evaluate if parallelization is still worth it.

Collect detailed performance data.
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3. Introduce Parallelism
§ Introduce parallelism :
– Pick the right technology for you problem.
o (OpenMP, OpenACC, MPI, CUDA, …)

– Pick the right place in your code to introduce it.
– Predict maximum scalability based on serial performance data.
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4. Debug Parallel Code
§ Debug parallel bugs :
– A perfectly working serial code can give wrong results when ran in 

parallel if the parallelism was not introduced correctly.
– A serial debug tool won't help.
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5. Optimize Parallel Performance
§ Optimize parallel performance :
–When your serial performance problems are solved, you'll have a 

clear view of your parallel performance problems.
– System tools can help you collect the right information.
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Decomposition
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Decomposition
§ To design a parallel algorithm or parallelize an existing 

code, you first have to understand if you have 
dependencies.

§ If data can be processed or tasks executed independently, 
you can process them in parallel.
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Example
§ Suppose you want to apply two filters on a batch of images 

and save them in jpg and png formats.
– Can you process different images in parallel ?
– Can you process different pixels in parallel ?
– Can you open/save files, apply filters in parallel ?
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Data decomposition: Parallel 
Treatment of files
§ In our case, data decomposition means you'll try to execute in 

parallel the treatment of different images or different pixels.
§ Images are independent from each other, it's perfect and easy 

to implement. But if you have a low number of images to treat 
and a large number of cores available, you won't use them all.

A lot of images and 
a dual-core : easy 
to use all cores 
efficiently.

Few images and a many-core 
(50+) :
data decomposition by file only 
won't be enough to use all 
cores.
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Data decomposition: Parallel 
treatment of pixels
§ For pixels, it's easy to do for a basic luminosity filter as each pixel is 

processed independently from the others. But the blur filter requires 
information from neighboring pixels.

§ It can be done in parallel with some approximations or a lot of 
communication between threads (synchronization), impacting scalability.

Luminosity adjustment can be done 
independently on each pixel.
Easy to parallelize efficiently.

Blur filter requires information from other pixels. 
Requires heavy synchronization OR flexibility 

regarding the result.
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Task decomposition
§ Another way to solve our problem is to execute different operations on 

the same data in parallel.
§ Saving as .png and saving as .jpg are totally independent (and CPU 

intensive) operations.
– Easily be parallelized.

§ But luminosity and blur can't be done in parallel on the same image 
independently.
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Data and task decompositions
§ For our problem, each decomposition has pros and cons depending 

on the the number of files to process, precision required for the blur 
filter, number of cores, developer skills and time ...

§ A good real life solution would be to implement different levels of 
nested parallelism mixing data and task decomposition.
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Methodology
§ Study problem, sequential program, or code segment
§ Look for opportunities for parallelism
§ Try to keep all cores busy doing useful work
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Ways of Exploiting Parallelism
§ Domain decomposition
§ Task decomposition
§ Pipelining

CSC 447: Parallel Programming for Multi-Core and Cluster Systems  15Spring 2021

Domain Decomposition
§ First, decide how data elements should be divided among 

cores
§ Second, decide which tasks each core should be doing
§ Example: Vector addition
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Domain Decomposition: Find the 
Largest Element of an Array
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Task (Functional) Decomposition
§ First, divide problem into independent tasks
§ Second, decide which data elements are going to be 

accessed (read and/or written) by which tasks
§ Example: Event-handler for GUI
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Task Decomposition
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Pipelining
§ Special kind of task decomposition
§ “Assembly line” parallelism
§ Example: 3D rendering in computer graphics

RasterizeClipProjectModel
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Processing One Data Set (Step 1)

RasterizeClipProjectModel
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Processing One Data Set (Step 2)

RasterizeClipProjectModel
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Processing One Data Set (Step 3)

RasterizeClipProjectModel
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Processing One Data Set (Step 4)

RasterizeClipProjectModel

The pipeline processes 1 data set in 4 steps
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Processing Two Data Sets (Step 1)

RasterizeClipProjectModel
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Processing Two Data Sets (Time 2)

RasterizeClipProjectModel
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Processing Two Data Sets (Step 3)

RasterizeClipProjectModel
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Processing Two Data Sets (Step 4)

RasterizeClipProjectModel
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Processing Two Data Sets (Step 5)

RasterizeClipProjectModel

The pipeline processes 2 data sets in 5 steps
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Pipelining Five Data Sets (Step 1)
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Pipelining Five Data Sets (Step 2)
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Pipelining Five Data Sets (Step 3)
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Pipelining Five Data Sets (Step 4)
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Pipelining Five Data Sets (Step 5)
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Pipelining Five Data Sets (Step 6)
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Pipelining Five Data Sets (Step 7)
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Pipelining Five Data Sets (Step 8)
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