
CSC 447: Parallel Programming for Multi-
Core and Cluster Systems
P a r a l l e l A r c hi t e c t u r e s

In s t r u c t o r : H a i d a r M . H a r m a n a n i

Sp r i n g 2 0 2 1

Today’s Agenda
§ Flynn’s taxonomy
§ Classification based on the memory arrangement
§ Classification based on communication
§ Classification based on the kind of parallelism
–Data-parallel
– Function-parallel

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 2

Flynn’s Taxonomy
§ The most universally excepted method of classifying

computer systems (1966)
§ Any computer can be placed in one of 4 broad

categories
–SISD: Single instruction stream, single data stream
–SIMD: Single instruction stream, multiple data streams
–MIMD: Multiple instruction streams, multiple data streams
–MISD: Multiple instruction streams, single data stream

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 3

SISD
§ At one time, one instruction operates on one data
§ Traditional sequential architecture

Spring 2021

Processing
element (PE)

Main memory
(M)

Instructions

Data

Control Unit PE MemoryPE

IS

IS DS

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 4

SIMD
§ At any given time, one

instruction operates on many
data
–Data parallel architecture
– Vector architecture has similar

characteristics but achieve the
parallelism with pipelining.

§ Array processors

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 5

SIMD Architectures
§ Fine-grained
– Image processing application
– Large number of PEs
– Minimum complexity PEs
– Programming language is a simple extension of a sequential

language

§ Coarse-grained
– Each PE is of higher complexity and it is usually built with

commercial devices
– Each PE has local memory

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 6

SSE / SSE2 SIMD on Intel
§ SSE2 data types: anything that fits into 16 bytes, e.g.,

§ Instructions perform add, multiply etc. on all the data in this 16-byte register in parallel

§ Challenges:
– Need to be contiguous in memory and aligned
– Some instructions to move data around from one part of register to another

§ Similar on GPUs, vector processors (but many more simultaneous operations)

16x bytes

4x floats

2x doubles

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 7

MIMD
§ Multiple instruction streams

operating on multiple data
streams
–Classical distributed memory or

SMP architectures

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 8

MISD
§ Not commonly seen.
§ Systolic array is one example of

an MISD architecture.

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 9

Flynn Taxonomy
§ Advantages
–Universally accepted
–Compact Notation
– Easy to classify a system

§ Disadvantages
– Very coarse-grain differentiation among machine systems
–Comparison of different systems is limited
– Interconnections, I/O, memory not considered in the scheme

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 10

Parallel Architecture Types

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 11

Spring 2021

Shared Memory Multiprocessor
(SMP)
◦ Shared memory address space
◦ Bus-based memory system

◦ Interconnection network

Parallel Architecture Types
Uniprocessor
◦ Scalar processor

◦ Vector processor

◦ Single Instruction Multiple Data
(SIMD)

processor

memory

processor

memory

vector

processor processor

memory

bus

processor processor

memory

network

…

…

…processor

memory
…

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 12

Shared-Memory Multiprocessors
§ Uniform Memory Access (UMA)
§ Non-Uniform Memory Access (NUMA)
§ Cache-only Memory Architecture (COMA)

§ Memory is common to all the processors.
§ Processors easily communicate by means of shared

variables.

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 13

Shared-Memory Multiprocessors
§ Shared memory parallel computers vary widely, but

generally have in common the ability for all
processors to access all memory as global address
space.

§ Multiple processors can operate independently but
share the same memory resources.

§ Changes in a memory location effected by one
processor are visible to all other processors.

§ Shared memory machines can be divided into two
main classes based upon memory access times:
UMA and NUMA.

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 14

The UMA Model
§ Tightly-coupled systems (high degree of resource

sharing)
§ Suitable for general-purpose and time-sharing

applications by multiple users.
P1

$

Interconnection network

$

Pn

Mem Mem

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 15

The NUMA Model
§ The access time varies with the

location of the memory word.
§ Shared memory is distributed to

local memories.
§ COMA - Cache-only Memory

Architecture
§ All local memories form a global

address space accessible by all
processors

Access time: Cache, Local memory, Remote memory

P1

$

Interconnection network

$

Pn

Mem Mem

Distributed Memory (NUMA)

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 16

Shared Memory : UMA vs. NUMA
§ Uniform Memory Access (UMA):
– Most commonly represented today by Symmetric Multiprocessor (SMP) machines
– Identical processors
– Equal access and access times to memory
– Sometimes called CC-UMA - Cache Coherent UMA. Cache coherent means if one

processor updates a location in shared memory, all the other processors know about
the update. Cache coherency is accomplished at the hardware level.

§ Non-Uniform Memory Access (NUMA):
– Often made by physically linking two or more SMPs
– One SMP can directly access memory of another SMP
– Not all processors have equal access time to all memories
– Memory access across link is slower
– If cache coherency is maintained, then may also be called CC-NUMA - Cache Coherent

NUMA

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 17

Shared Memory: Pro and Con
§ Advantages
– Global address space provides a user-friendly programming perspective to

memory
– Data sharing between tasks is both fast and uniform due to the proximity of

memory to CPUs

§ Disadvantages:
– Primary disadvantage is the lack of scalability between memory and CPUs.

Adding more CPUs can geometrically increase traffic on the shared memory-
CPU path, and for cache coherent systems, geometrically increase traffic
associated with cache/memory management.

– Programmer responsibility for synchronization constructs that insure "correct"
access of global memory.

– Expense: it becomes increasingly difficult and expensive to design and produce
shared memory machines with ever increasing numbers of processors.

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 18

Distributed Memory Multiprocessor
◦ Message passing between nodes

◦ Massively Parallel Processor (MPP)
◦ Many, many processors

Cluster of SMPs
◦ Shared memory addressing within SMP

node
◦ Message passing between SMP nodes

◦ Can also be regarded as MPP if
processor number is large

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP

…

…

network
interface

Parallel Architecture Types

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 19

Distributed Memory
§ Distributed memory systems vary widely but share a

common characteristic
– Require a communication network to connect inter-processor

memory.

§ Processors have their own local memory.
– No concept of global address space across all processors.

§ Each processor operates independently of other
processors

– Hence, the concept of cache coherency does not apply.

§ When a processor needs access to data in another
processor, it is usually communicated via messaging

– Communication and Synchronization are the programmer’s
responsibility!

§ The network "fabric" used for data transfer varies widely

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 20

Interconnection Networks
§ Static networks

§ Dynamic networks

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 21

Distributed Memory: Pros and Cons
§ Advantages
– Memory is scalable with number of processors. Increase the number of

processors and the size of memory increases proportionately.
– Each processor can rapidly access its own memory without interference and

without the overhead incurred with trying to maintain cache coherency.
– Cost effectiveness: can use commodity, off-the-shelf processors and

networking.

§ Disadvantages
– The programmer is responsible for many of the details associated with data

communication between processors.
– It may be difficult to map existing data structures, based on global memory, to

this memory organization.
– Non-uniform memory access (NUMA) times

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 22

Multicore SMP+GPU Cluster
◦ Shared memory addressing within

SMP node
◦ Message passing between SMP

nodes
◦ GPU accelerators attached

r Multicore
¦ Multicore processor

¦ GPU accelerator

¦ “Fused” processor accelerator

memory

C C C C
m m m m

processor

memory

PCI

… …

… …

…

…

interconnection network

MM

MM

PP P P

PPPP

processor

memory

cores can be
hardware
multithreaded
(hyperthread)

Parallel Architecture Types

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 23

Multi-core Processors
§ All cores which exist in a die are exactly identical

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 24

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 25

Accelerators

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 26

GPU Accelerators

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 27

