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Today’s Agenda
§ Flynn’s taxonomy
§ Classification based on the memory arrangement
§ Classification based on communication
§ Classification based on the kind of parallelism 
–Data-parallel 
– Function-parallel 
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Flynn’s Taxonomy
§ The most universally excepted method of classifying 

computer systems (1966)
§ Any computer can be placed in one of 4 broad

categories
–SISD: Single instruction stream, single data stream
–SIMD: Single instruction stream, multiple data streams
–MIMD: Multiple instruction streams, multiple data streams
–MISD: Multiple instruction streams, single data stream
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SISD
§ At one time, one instruction operates on one data
§ Traditional sequential architecture
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SIMD
§ At any given time, one 

instruction operates on many  
data
–Data parallel architecture
– Vector architecture has similar 

characteristics but achieve the 
parallelism with pipelining.

§ Array processors
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SIMD Architectures
§ Fine-grained
– Image processing application
– Large number of PEs
– Minimum complexity PEs
– Programming language is a simple extension of a sequential 

language

§ Coarse-grained
– Each PE is of higher complexity and it is usually built with 

commercial devices
– Each PE has local memory
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SSE / SSE2 SIMD on Intel
§ SSE2 data types: anything that fits into 16 bytes, e.g.,

§ Instructions perform add, multiply etc. on all the data in this 16-byte register in parallel

§ Challenges:
– Need to be contiguous in memory and aligned
– Some instructions to move data around from one part of register to another

§ Similar on GPUs, vector processors (but many more simultaneous operations)

16x bytes

4x floats

2x doubles
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MIMD
§ Multiple instruction streams 

operating on multiple data 
streams
–Classical distributed memory or 

SMP architectures
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MISD
§ Not commonly seen.
§ Systolic array is one example of 

an MISD architecture.
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Flynn Taxonomy
§ Advantages
–Universally accepted
–Compact Notation
– Easy to classify a system

§ Disadvantages
– Very coarse-grain differentiation among machine systems
–Comparison of different systems is limited
– Interconnections, I/O, memory not considered in the scheme
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Parallel Architecture Types
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Shared Memory Multiprocessor 
(SMP)
◦ Shared memory address space
◦ Bus-based memory system

◦ Interconnection network

Parallel Architecture Types
Uniprocessor
◦ Scalar processor

◦ Vector processor

◦ Single Instruction Multiple Data 
(SIMD)
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Shared-Memory Multiprocessors
§ Uniform Memory Access (UMA)
§ Non-Uniform Memory Access (NUMA)
§ Cache-only Memory Architecture (COMA)

§ Memory is common to all the processors.
§ Processors easily communicate by means of shared 

variables. 
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Shared-Memory Multiprocessors
§ Shared memory parallel computers vary widely, but 

generally have in common the ability for all 
processors to access all memory as global address 
space. 

§ Multiple processors can operate independently but 
share the same memory resources. 

§ Changes in a memory location effected by one 
processor are visible to all other processors. 

§ Shared memory machines can be divided into two 
main classes based upon memory access times: 
UMA and NUMA. 
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The UMA Model
§ Tightly-coupled systems (high degree of resource 

sharing)
§ Suitable for general-purpose and time-sharing 

applications by multiple users.
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The NUMA Model
§ The access time varies with the 

location of the memory word.
§ Shared memory is distributed to 

local memories.
§ COMA - Cache-only Memory 

Architecture  
§ All local memories form a global 

address space accessible by all 
processors

Access time: Cache, Local memory, Remote memory
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Shared Memory : UMA vs. NUMA
§ Uniform Memory Access (UMA): 
– Most commonly represented today by Symmetric Multiprocessor (SMP) machines 
– Identical processors 
– Equal access and access times to memory 
– Sometimes called CC-UMA - Cache Coherent UMA. Cache coherent means if one 

processor updates a location in shared memory, all the other processors know about 
the update. Cache coherency is accomplished at the hardware level. 

§ Non-Uniform Memory Access (NUMA): 
– Often made by physically linking two or more SMPs 
– One SMP can directly access memory of another SMP 
– Not all processors have equal access time to all memories 
– Memory access across link is slower 
– If cache coherency is maintained, then may also be called CC-NUMA - Cache Coherent 

NUMA 
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Shared Memory: Pro and Con
§ Advantages
– Global address space provides a user-friendly programming perspective to 

memory 
– Data sharing between tasks is both fast and uniform due to the proximity of 

memory to CPUs 

§ Disadvantages: 
– Primary disadvantage is the lack of scalability between memory and CPUs. 

Adding more CPUs can geometrically increase traffic on the shared memory-
CPU path, and for cache coherent systems, geometrically increase traffic 
associated with cache/memory management. 

– Programmer responsibility for synchronization constructs that insure "correct" 
access of global memory. 

– Expense: it becomes increasingly difficult and expensive to design and produce 
shared memory machines with ever increasing numbers of processors.
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Distributed Memory Multiprocessor
◦ Message passing between nodes

◦ Massively Parallel Processor (MPP)
◦ Many, many processors

Cluster of SMPs
◦ Shared memory addressing within SMP 

node
◦ Message passing between SMP nodes

◦ Can also be regarded as MPP if 
processor number is large
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Distributed Memory
§ Distributed memory systems vary widely but share a 

common characteristic 
– Require a communication network to connect inter-processor 

memory. 

§ Processors have their own local memory. 
– No concept of global address space across all processors. 

§ Each processor operates independently of other 
processors

– Hence, the concept of cache coherency does not apply. 

§ When a processor needs access to data in another 
processor, it is usually communicated via messaging

– Communication and Synchronization are the programmer’s 
responsibility! 

§ The network "fabric" used for data transfer varies widely
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Interconnection Networks
§ Static networks

§ Dynamic networks
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Distributed Memory: Pros and Cons
§ Advantages
– Memory is scalable with number of processors. Increase the number of 

processors and the size of memory increases proportionately. 
– Each processor can rapidly access its own memory without interference and 

without the overhead incurred with trying to maintain cache coherency. 
– Cost effectiveness: can use commodity, off-the-shelf processors and 

networking. 

§ Disadvantages
– The programmer is responsible for many of the details associated with data 

communication between processors. 
– It may be difficult to map existing data structures, based on global memory, to 

this memory organization. 
– Non-uniform memory access (NUMA) times
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Multicore SMP+GPU Cluster 
◦ Shared memory addressing within 

SMP node
◦ Message passing between SMP 

nodes
◦ GPU accelerators attached

r Multicore
¦ Multicore processor

¦ GPU accelerator

¦ “Fused” processor accelerator
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Multi-core Processors
§ All cores which exist in a die are exactly identical
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Accelerators
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GPU Accelerators
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