PN AU

S L)

CSC 447: Parallel Programming for
Multi-Core and Cluster Systems

Why Parallel Programming?

Haidar M. Harmanani
Spring 2021

Today’s Agenda

= Why Parallel Programming
= Doing parallel Programming

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Why Parallel Programming?

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Why Parallel Programming Now?

= All major processor vendors
are producmg multicore 200 pertormance
chips 120

= All machines have become 160
parallel computers!

= Artificial mtelllgence and
machine | earnmgi

addition to the classical 100

applications

= Autonomous cars

» Natural Language
Processing

= Medical Applications |
= Drug Development — price.

15008 1600$ 18008

140

120

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Why Parallel Computing Now?

= Researchers have been using parallel computing for decades:
= Mostly used in computational science and engineering
= Problems too large to solve on one computer; use 100s or 1000s

Nature

Observation
Modern Scientific Classical
Method Science

Physical
Experimentation Theory

-~

Numerical
Simulation

N~ /

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Improving Performance

= There are 3 ways to improve performance:
= Work Harder

= Work Smarter
= Get Help

= Computer Analogy
= Using faster hardware

= Optimized algorithms and techniques used to solve
computational tasks

= Multiple computers to solve a particular task

CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Spring 2021

Technology Trends: Microprocessor Capacity

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

Moore’s Law

2,600,000,000
1,000,000,000 intel co-founde
ansistors on a piece of iid die
<—an insight later dubbed “Moore's L
5= 3
100,000,000 S y
pemss” = wnan oid true, 88 ever-shrinking transistor sz,
OB wih in the number of transistors
c irve shows Ir e AMD J
€ 100000 e
3 o years 1rore's Law is now a betss
® olies its principles i
2 1,000,000 wise " p
=
©
= ey,
100,000 e
reooe ® w185
e wiss
10,000
o
wccse
2,300~ woie o rue
1971 1980 1990 2000 2011

Date of introduction

Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor
density of semiconductor chips would double roughly every 18 months.

Spring 2021 CSC 447: Parallel Programming for

Technology Trends: Microprocessor Capacity

Shrinking chips

. 2019/2020 2021/2022
Number and length of transistors bought per $

16nm
2014* 2015*

*Forecast Sourc:Linly Group

[]
[]
[]
[]
- nd:
o u = Node
- Fin No.
s Dummy Gate Metal
i Tracks
E— Active Gate
64 45
- = = - Cell Outline Gote (NN |
B MetalTracks Pitch N

Nanometres (m)

2002

Microprocessors have become smaller, denser, and more powerful.

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

CPUs 1 Million Times Faster

= Faster clock speeds

= Greater system concurrency
= Multiple functional units
= Concurrent instruction execution
= Speculative instruction execution

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Systems 1 Billion Times Faster

Processors are 1 million times faster

Combine thousands of processors

Parallel computer
= Multiple processors
= Supports parallel programming

Parallel computing = Using a parallel computer to execute a
program faster

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

StUttermg [1 Chipintroduction
@ Transistors per chip, ‘000 @ Clock speed (max), MHz ® Thermal design power*, w dates, selected

Transistors bought per $, m
20

- Log scale
15 Pentium III 107

I Pentium 4 | l Xeon | |Core2Duo|

5

Pentium
T T T T T I T 0 105
200204 06 08 10 12 15 486
| 8085 | | 386 |
103
/ .
Microprocessor
Transistors and
10!
T | T T T T T T T T T T T T T T T
CIOCk Rate 1970 75 80 85 90 95 2000 05 10 15
Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist *Maximum safe power consumption

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

StUttermg [1 Chipintroduction
@ Transistors per chip, ‘000 @ Clock speed (max), MHz ® Thermal design power*, w dates, selected

Transistors bought per $, m I Pentium 4 | | Xeon | |Core 2 Duo|

20
Log scale
:
:
T T T T T T T 0 105
200204 06 08 10 12 15 486
| 8085 | | 386 |
10°
/ .
Moore’s Law is
alive and well!
T 1()-‘1
1970 75 80 85 90 95 2000 05 10 15
Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist *Maximum safe power consumption

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Why bother with parallel
programming? Just wait
a year or two...

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Limit #1: Power density

Scaling clock speed (business as usual) will not work
10000

Intel VP Patrick

Gelsinger (ISSCC 2001):

“If scaling continues at
Nuclear present pace, by 2005,
Reactor high speed processors

would have power
Hot Plate density of nuclear
reactor, by 2010, a
Pentium® rocket nozzle, and by
2015, surface of sun.”

Power Density (W/cm?)

4

1980 1990 2000
Year

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Parallelism Saves Power

= Exploit explicit parallelism for reducing power
I4 1
C=Capacitance, V = Voltage, F = Frequency

= Using additional cores
= Increase density (= more transistors = more capacitance)
= Can increase cores (2x) and performance (2x)
= Or increase cores (2x), but decrease frequency (1/2): same performance
at ¥4 the power
= Additional benefits
= Small/simple cores = more predictable performance

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Limit #2: Hidden Parallelism Tapped Out

= Superscalar designs provided many forms of parallelism not
visible to programmer
= Multiple instruction issue

= Dynamic scheduling: hardware discovers parallelism between
instructions

= Speculative execution: look past predicted branches
= Non-blocking caches: multiple outstanding memory ops

= Unfortunately, these sources have been used up

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Limit #3: Manufacturing costs and yield problems limit use of density

| Moorels (ROCI(’S) znd |aW wg.zc;st of semiconductor factories in millions of 1995 dollars
fabrication costs go up ’ P

= Yield (% usable chips) drops

. 1,000
= Parallelism can help }/

= Smaller, simpler processors are

ratlo scale)

LI = U

T G

easier to design and validate 100} =
= Can use partially working E .
chlps ¢ //'
., Cell processor (PS3) is e
sold with 7 out of 8 “on” to ;
improve yield *
1'66 ‘74 ‘82 ‘90 ‘98

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Limit #4: Speed of Light (Fundamental)

= Consider the 1 Tflop/s
sequential machine:
= Data must travel some distance,
r, to get from memory to CPU

= To get 1 data element per
cycle, this means 1012 tlm?s
Per second at the speed o
ght, ¢ = 3x108 m/s.
= Thusr<c/1012 = 0.3 mm.

= Now put 1 Tbg/te of storage in
aO3mme mm area:

= Each bit occupies about 1
square Angstrom, or the size of
a small atom.

= No choice but parallelism

1 Tflop/s, 1 Tbyte

sequential machine r=0.3 mm

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

So what is the problem?

Writing (fast) parallel
programs is hard!

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Parallel Programming Workflow

= |dentify compute intensive parts of an application

= Adopt scalable algorithms

= Optimize data arrangements to maximize locality

= Performance Tuning

= Pay attention to code portability and maintainability

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Principles of Parallel Computing

Finding enough parallelism (Amdahl’s Law)

Granularity
Locality

Load balance

Coordination and synchronization

Performance modeling

SSW Al of these make parallel programming even harder
than sequential programming.

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Finding Enough Parallelism

= Suppose only part of an application seems parallel

= Amdahl’s law

= let s be the fraction of work done sequentially, so (1-s) is fraction
parallelizable

= P = number of processors
Speedup(P) = Time(1)/Time(P)
<= 1/(s + (1-s)/P)
<= 1/s

= Even if the parallel part speeds up perfectly performance is
limited by the sequential part

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Finding Enough Parallelism (Amdahl’s Law)

Amdahl’s Law
20.00 —
L
18.00 o
/ Parallel Portion
16.00 7 — 50%
/ — 75%
14.00 — 90%
/ — 95%
12.00 A
£ 1000 /
2]
8.00
6.00
400 Vi
///' u
200 1
0.00 !

- o =] N Pal = N X =) o0 2 [3ad

Number of Processors

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Granularity

= Parallelism is not free. Overhead includes:

= Cost of starting a thread or process
= Cost of communicating shared data
= Cost of synchronizing

= Extra (redundant) computation

= Each of these can be in the range of milliseconds (=millions
of flops) on some systems

Tradeoff: Algorithm needs sufficiently large units of work to run
) fast in parallel (l.e. large granularity), but not so large that there is

not enough parallel work

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Load Balance/lmbalance

* Load imbalance is the time that some processors in the
system are idle due to
= insufficient parallelism (during that phase)
= unequal size tasks

= Examples of the latter
= adapting to “interesting parts of a domain”
= tree-structured computations
= fundamentally unstructured problems

= Algorithm needs to balance load

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Load Balance

good bad!

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Synchronization

= Need to manage the sequence of work and the tasks
performing

= Often requires "serialization" of segments of the program

= Various types of synchronization maybe involved
= Locks/Semaphores
= Barrier

= Synchronous Communication Operations

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Performance Modeling

= Analyzing and tuning parallel program performance is more
challenging than for serial programs.

= There is a need for parallel program performance analysis
and tuning.

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

So how do we do parallel computing?

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Strategy 1: Extend Compilers

Focus on making sequential programs parallel

Parallelizing compiler
= Detect parallelism in sequential program
= Produce parallel executable program

Advantages
= Can leverage millions of lines of existing serial programs
= Saves time and labor
= Requires no retraining of programmers
= Sequential programming easier than parallel programming

Disadvantages

= Parallelism may be irretrievably lost when programs written in sequential languages
= Performance of parallelizing compilers on broad range of applications still up in air

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Strategy 2: Extend Language

= Add functions to a sequential language
= Create and terminate processes
= Synchronize processes
= Allow processes to communicate
= Advantages
= Easiest, quickest, and least expensive
= Allows existing compiler technology to be leveraged

. Ne\(\ll Ig?raries can be ready soon after new parallel computers are
available

= Disadvantages
= Lack of compiler support to catch errors
= Easy to write programs that are difficult to debug

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Strategy 3: Add a Parallel Programming Layer

= Lower layer
= Core of computation

= Process manipulates its portion of data to produce its portion of
result

= Upper layer
= Creation and synchronization of processes
= Partitioning of data among processes

= A few research prototypes have been built based on these
principles

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Strategy 4: Create a Parallel Language

= Develop a Parallel language “from scratch” or add parallel
constructs to an existing language

= Fortran 90

» High Performance Fortran

s C*
= Advantages

= Allows programmer to communicate parallelism to compiler

= Improves probability that executable will achieve high performance
= Disadvantages

= Requires development of new compilers

* New languages may not become standards
* Programmer resistance

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Conclusion: Three Options

» Good: “Accelerate” Legacy Codes
= Recompile/Run
= => good work for domain scientists (minimal CS required)

- Rewrite / Create new codes
= Opportunity for clever algorithmic thinking
= => good work for computer scientists (minimal domain knowledge
required)
= Best: Rethink Numerical Methods & Algorithms
= Potential for biggest performance advantage
= => |nterdisciplinary: requires CS and domain insight
= => Exciting time to be a computational scientist

Spring 2021

CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Lebane:

Think, Understand... then, Program

= Think about the problem you are trying to solve
Understand the structure of the problem

Apply mathematical techniques to find solution
Map the problem to an algorithmic approach

Plan the structure of computation
= Be aware of in/dependence, interactions, bottlenecks

Plan the organization of data
= Be explicitly aware of locality, and minimize global data

Finally, write some codel! (this is the easy part ©)

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

