
CSC 447: Parallel Programming for
Multi-Core and Cluster Systems
W h y P a r a l l e l P r o g r a m m i n g ?

H a i d a r M . H a r m a n a n i
S p r i n g 2 0 2 1

Today’s Agenda

§ Why Parallel Programming
§ Doing parallel Programming

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 2Spring 2021

Why Parallel Programming?

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 3Spring 2021

Why Parallel Programming Now?
§ All major processor vendors

are producing multicore
chips
§ All machines have become

parallel computers!
§ Artificial intelligence and

machine learning in
addition to the classical
applications
§ Autonomous cars
§ Natural Language

Processing
§ Medical Applications
§ Drug Development

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 4Spring 2021

Why Parallel Computing Now?
§ Researchers have been using parallel computing for decades:

§ Mostly used in computational science and engineering
§ Problems too large to solve on one computer; use 100s or 1000s

Nature

Observation

Theory
Physical

Experimentation
Numerical
Simulation

Classical
Science

Modern Scientific
Method

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 5Spring 2021

Improving Performance

§ There are 3 ways to improve performance:
§ Work Harder
§ Work Smarter
§ Get Help

§ Computer Analogy
§ Using faster hardware
§ Optimized algorithms and techniques used to solve

computational tasks
§ Multiple computers to solve a particular task

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 6Spring 2021

Technology Trends: Microprocessor Capacity

Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor
density of semiconductor chips would double roughly every 18 months.

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 7Spring 2021

Technology Trends: Microprocessor Capacity

Microprocessors have become smaller, denser, and more powerful.

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 8Spring 2021

CPUs 1 Million Times Faster

§ Faster clock speeds
§ Greater system concurrency

§ Multiple functional units
§ Concurrent instruction execution
§ Speculative instruction execution

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 9Spring 2021

Systems 1 Billion Times Faster

§ Processors are 1 million times faster
§ Combine thousands of processors
§ Parallel computer

§ Multiple processors
§ Supports parallel programming

§ Parallel computing = Using a parallel computer to execute a
program faster

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 10Spring 2021

Microprocessor
Transistors and
Clock Rate

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 11Spring 2021

Moore’s Law is
alive and well!

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 12Spring 2021

Why bother with parallel
programming? Just wait
a year or two…

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 13Spring 2021

Limit #1: Power density

4004
8008
8080

8085

8086

286 386
486

Pentium®
P6

1

10

100

1000

10000

1970 1980 1990 2000 2010
Year

P
ow

er
 D

en
si

ty
 (W

/c
m
2)

Hot Plate

Nuclear
Reactor

Rocket
Nozzle

Sun’s
Surface

Scaling clock speed (business as usual) will not work

Intel VP Patrick
Gelsinger (ISSCC 2001):
“If scaling continues at
present pace, by 2005,
high speed processors
would have power
density of nuclear
reactor, by 2010, a
rocket nozzle, and by
2015, surface of sun.”

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 14Spring 2021

Parallelism Saves Power
§ Exploit explicit parallelism for reducing power

§ Using additional cores
§ Increase density (= more transistors = more capacitance)
§ Can increase cores (2x) and performance (2x)
§ Or increase cores (2x), but decrease frequency (1/2): same performance

at ¼ the power
§ Additional benefits

§ Small/simple cores à more predictable performance

Power = C * V2 * F Performance = Cores * F

C= Capacitance, V = Voltage , F = Frequency

Power = 2C * V2 * F Performance = 2Cores * FPower = 2C * V2/4 * F/2 Performance = 2Cores * F/2Power = (C * V2 * F)/4 Performance = (Cores * F)*1

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 15Spring 2021

Limit #2: Hidden Parallelism Tapped Out
§ Superscalar designs provided many forms of parallelism not

visible to programmer
§ Multiple instruction issue
§ Dynamic scheduling: hardware discovers parallelism between

instructions
§ Speculative execution: look past predicted branches
§ Non-blocking caches: multiple outstanding memory ops

§ Unfortunately, these sources have been used up

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 16Spring 2021

Limit #3: Manufacturing costs and yield problems limit use of density

§ Moore’s (Rock’s) 2nd law:
fabrication costs go up

§ Yield (% usable chips) drops
§ Parallelism can help

§ Smaller, simpler processors are
easier to design and validate

§ Can use partially working
chips:

§ E.g., Cell processor (PS3) is
sold with 7 out of 8 “on” to
improve yield

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 17Spring 2021

Limit #4: Speed of Light (Fundamental)
§ Consider the 1 Tflop/s

sequential machine:
§ Data must travel some distance,

r, to get from memory to CPU.
§ To get 1 data element per

cycle, this means 1012 times
per second at the speed of
light, c = 3x108 m/s.
§ Thus r < c/1012 = 0.3 mm.

§ Now put 1 Tbyte of storage in
a 0.3 mm x 0.3 mm area:
§ Each bit occupies about 1

square Angstrom, or the size of
a small atom.

§ No choice but parallelism

r = 0.3 mm
1 Tflop/s, 1 Tbyte
sequential machine

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 18Spring 2021

So what is the problem?

Writing (fast) parallel
programs is hard!

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 19Spring 2021

Parallel Programming Workflow

§ Identify compute intensive parts of an application
§ Adopt scalable algorithms
§ Optimize data arrangements to maximize locality
§ Performance Tuning
§ Pay attention to code portability and maintainability

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 20

Principles of Parallel Computing

§ Finding enough parallelism (Amdahl’s Law)
§ Granularity
§ Locality
§ Load balance
§ Coordination and synchronization
§ Performance modeling

All of these make parallel programming even harder
than sequential programming.

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 21Spring 2021

Finding Enough Parallelism
§ Suppose only part of an application seems parallel
§ Amdahl’s law

§ let s be the fraction of work done sequentially, so (1-s) is fraction
parallelizable

§ P = number of processors

§ Even if the parallel part speeds up perfectly performance is
limited by the sequential part

Speedup(P) = Time(1)/Time(P)

<= 1/(s + (1-s)/P)

<= 1/s

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 22Spring 2021

Finding Enough Parallelism (Amdahl’s Law)

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 23Spring 2021

Granularity

§ Parallelism is not free. Overhead includes:
§ Cost of starting a thread or process
§ Cost of communicating shared data
§ Cost of synchronizing
§ Extra (redundant) computation

§ Each of these can be in the range of milliseconds (=millions
of flops) on some systems

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 24Spring 2021

Tradeoff: Algorithm needs sufficiently large units of work to run
fast in parallel (I.e. large granularity), but not so large that there is
not enough parallel work

Load Balance/Imbalance

§ Load imbalance is the time that some processors in the
system are idle due to
§ insufficient parallelism (during that phase)
§ unequal size tasks

§ Examples of the latter
§ adapting to “interesting parts of a domain”
§ tree-structured computations
§ fundamentally unstructured problems

§ Algorithm needs to balance load

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 25Spring 2021

Load Balance

good bad!

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 26Spring 2021

Synchronization

§ Need to manage the sequence of work and the tasks
performing

§ Often requires "serialization" of segments of the program
§ Various types of synchronization maybe involved

§ Locks/Semaphores
§ Barrier
§ Synchronous Communication Operations

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 27Spring 2021

Performance Modeling

§ Analyzing and tuning parallel program performance is more
challenging than for serial programs.

§ There is a need for parallel program performance analysis
and tuning.

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 28

So how do we do parallel computing?

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 29Spring 2021

Strategy 1: Extend Compilers
§ Focus on making sequential programs parallel
§ Parallelizing compiler

§ Detect parallelism in sequential program
§ Produce parallel executable program

§ Advantages
§ Can leverage millions of lines of existing serial programs
§ Saves time and labor
§ Requires no retraining of programmers
§ Sequential programming easier than parallel programming

§ Disadvantages
§ Parallelism may be irretrievably lost when programs written in sequential languages
§ Performance of parallelizing compilers on broad range of applications still up in air

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 30Spring 2021

Strategy 2: Extend Language
§ Add functions to a sequential language

§ Create and terminate processes
§ Synchronize processes
§ Allow processes to communicate

§ Advantages
§ Easiest, quickest, and least expensive
§ Allows existing compiler technology to be leveraged
§ New libraries can be ready soon after new parallel computers are

available
§ Disadvantages

§ Lack of compiler support to catch errors
§ Easy to write programs that are difficult to debug

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 31Spring 2021

Strategy 3: Add a Parallel Programming Layer

§ Lower layer
§ Core of computation
§ Process manipulates its portion of data to produce its portion of

result

§ Upper layer
§ Creation and synchronization of processes
§ Partitioning of data among processes

§ A few research prototypes have been built based on these
principles

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 32Spring 2021

Strategy 4: Create a Parallel Language
§ Develop a parallel language “from scratch” or add parallel

constructs to an existing language
§ Fortran 90
§ High Performance Fortran
§ C*

§ Advantages
§ Allows programmer to communicate parallelism to compiler
§ Improves probability that executable will achieve high performance

§ Disadvantages
§ Requires development of new compilers
§ New languages may not become standards
§ Programmer resistance

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 33Spring 2021

Conclusion: Three Options

§ Good: “Accelerate” Legacy Codes
§ Recompile/Run
§ => good work for domain scientists (minimal CS required)

§ Better: Rewrite / Create new codes
§ Opportunity for clever algorithmic thinking
§ => good work for computer scientists (minimal domain knowledge

required)
§ Best: Rethink Numerical Methods & Algorithms

§ Potential for biggest performance advantage
§ => Interdisciplinary: requires CS and domain insight
§ => Exciting time to be a computational scientist

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 34Spring 2021

Think, Understand… then, Program

§ Think about the problem you are trying to solve
§ Understand the structure of the problem
§ Apply mathematical techniques to find solution
§ Map the problem to an algorithmic approach
§ Plan the structure of computation

§ Be aware of in/dependence, interactions, bottlenecks
§ Plan the organization of data

§ Be explicitly aware of locality, and minimize global data
§ Finally, write some code! (this is the easy part J)

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 35Spring 2021

