
CSC 447: Parallel Programming for Multi-
Core and Cluster Systems
A d m i n i s t r i v i a a n d I n t r o d u c t i o n

H a i d a r M . H a r m a n a n i

Sp r i n g 2 0 2 1

Today’s Agenda
§ Administrivia

§ Course Introduction

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 2

Today’s Agenda: Administrivia

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 3

Course Introduction
§ Lectures
– TTh, 11:00-12:15 from January 18, 2021 until April 29, 2021
– Prerequisites
o Competency in a high-level programming language, preferably C
o CSC 310, Data Structures and Algorithms
o CSC320, Computer Organization

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 4

Grading and Class Policies
§ Grading
– One Midterm: 25%
– Final: 30%
– Short Quizzes [4-6]: 10%
– Short Labs [on your own]: 15%
– Three milestones projects: 20%
o OpenMP: 6%
o OpenACC: 7%
o CUDA: 7%

§ Exams Details
– Midterm exam will be face to face.
– Final exam will be online.

§ All assignments must be your own original work.
– Cheating/copying/partnering will not be tolerated

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 5

Programming Assignments
§ All assignments and handouts will be communicated via
Google Classroom
– Make sure you enable your account

§ Use Google Classroom for questions and inquiries
– No course questions will be answered via email
– Use email only for private issues

§ All assignments must be submitted via github
– git is a distributed version control system
– git or its variations have become a universal standard for developing

and sharing code
– Make sure you get a private repo
o Apply for a free account: https://education.github.com/discount_requests/new

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 6

Policy on Independent Work
§ With the exception of laboratories and assignments (projects and HW) that explicitly permit you

to work in groups, all homework and projects are to be YOUR work and your work ALONE.

§ It is NOT acceptable to copy solutions from other students.

§ It is NOT acceptable to copy (or start your) solutions from the Web.

§ PARTNER TEAMS MAY NOT WORK WITH OTHER PARTNER TEAMS

§ You are encouraged to help teach other to debug. Beyond that, we don’t want you sharing
approaches or ideas or code or whiteboarding with other students, since sometimes the point
of the assignment is the “algorithm” and if you share that, they won’t learn what we want them
to learn). We expect that what you hand in is yours.

§ It is NOT acceptable to leave your code anywhere where an unscrupulous student could find
and steal it (e.g., public GITHUBs, walking away while leaving yourself logged on, leaving
printouts lying around,etc)

§ The first offense is a zero on the assignment and an F in the course the second time

§ Both Giver and Receiver are equally culpable and suffer equal penalties

7Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Contact Information
§ Haidar M. Harmanani
–Office: Block A, 810
–Hours: M 4:00-6:30pm or by appointment.
– Email: haidar@lau.edu.lb

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 8

Topics and Tools
§ Introduction to parallel programming
§ Parallel programming performance
§ Programming using Pthreads, OpenMP, OpenACC, and CUDA
§ Introduction to Neural Networks and Deep Learning using
Python

§ You will be using:
– The lab or your own machines for Pthreads and OpenMP
– The Computer Science Lab for OpenACC and CUDA Programming, or

your own machine if you have a CUDA-capable GPU
– The Cloud for GPU Tutorial Labs

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 9

Course Materials

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 10Spring 2021

Required

Optional

Optional

Optional

Supercomputing/Parallel Architecture Timeline
§ Phase 1 (1950s): sequential instruction execution
§ Phase 2 (1960s): sequential instruction issue
– Pipeline execution, reservations stations
– Instruction Level Parallelism (ILP)

§ Phase 3 (1970s): vector processors
– Pipelined arithmetic units
– Registers, multi-bank (parallel) memory systems

§ Phase 4 (1980s): SIMD and SMPs
§ Phase 5 (1990s): MPPs and clusters
– Communicating sequential processors

§ Phase 6 (>2000): many cores, accelerators, scale, …

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 11Spring 2021

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 12

Administrative Questions?

Today’s Agenda: Course Introduction

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 14

Definitions
§ What is parallel?
–Webster: “An arrangement or state that permits several

operations or tasks to be performed simultaneously rather
than consecutively”

§ Parallel programming
– Programming in a language that supports explicit

concurrency
–An evolution of serial programming

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 15

Parallel Programming
§ “Performance Programming”
§ Parallel programming involves

exposing an algorithm’s ability to
execute in parallel

§ This may involve breaking a large
operation into smaller tasks (task
parallelism)

§ Or doing the same operation on
multiple data elements (data
parallelism)

§ Parallel execution enables better
performance on modern hardware

A + B + C + D
Sequential Parallel

A B C D A B C D

3 Steps

2 Steps

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 16

Parallel Programming
§ A parallel computer is a computer system that uses

multiple processing elements simultaneously in a
cooperative manner to solve a computational
problem

§ Parallelism is all about performance! Really?

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 17

Concurrent Programming
§ Concurrency is fundamental to computer science
–Operating systems, databases, networking, …

§ Multiple executing tasks are concurrent with respect
to each other if
– They can execute asynchronously
– Implies that there are no dependencies between the tasks

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 18

Concurrent Programming
§ Two threads can run asynchronously on the same core

by interleaving instructions

§ Dependencies
– If a task requires results produced by other tasks in order to

execute correctly, the task’s execution is dependent
– Some form of synchronization must be used to enforce

(satisfy) dependencies

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 19

Concurrency and Parallelism
§ Concurrent is not the same as parallel!
§ Parallel execution
–Concurrent tasks actually execute at the same time
–Multiple (processing) resources have to be available

§ Parallelism = concurrency + “parallel” hardware
–Both are required
– Find concurrent execution opportunities
–Develop application to execute in parallel
– Run application on parallel hardware

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 20

Concurrency vs. Parallelism
–Concurrency: two or more threads are in progress at the

same time:

– Parallelism: two or more threads are executing at the same
time

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 21

Thread 1
Thread 2

Thread 1
Thread 2

Spring 2021

Parallel Programming: Example
§ A professor and his 3 teaching assistants (TA) are

grading 1,000 student exams
§ This exam has 8 questions on it
§ Let’s assume it takes 1 minute to grade 1 question

on 1 exam
§ To maintain fairness, if someone grades a question

(for example, question #1) then they must grade
that question on all other exams

§ The following is a sequential version of exam
grading

Prof TA

x1000
8 questions per exam

1 minute per question

8,000 questions in total

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 22

Grade Exams 1-1000 : Questions #1, 2, 3, 4, 5, 6, 7, 8 : 8000m

8000 m

Sequential Solution

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 23

Sequential Solution
Exams 1-1000
: Q #1 : 1000m

Exams 1-1000
: Q #2 : 1000m

Exams 1-1000
: Q #3 : 1000m

Exams 1-1000
: Q #4 : 1000m

Exams 1-1000
: Q #5 : 1000m

Exams 1-1000
: Q #6 : 1000m

Exams 1-1000
: Q #7 : 1000m

Exams 1-1000
: Q #8 : 1000m

8000+ m

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 24

Sequential Solution
Exams 1-1000 : Q #1, 2 :

2000m

Exams 1-1000 : Q #3, 4 :
2000m

Exams 1-1000 : Q #5, 6 :
2000m

Exams 1-1000 : Q #7, 8 :
2000m

8000+ m

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 25

Parallel Solution
Exams 1-250 : Q #1, 2 :

500m

Exams 1-250 : Q #3, 4 :
500m

Exams 1-250 : Q #5, 6 :
500m

Exams 1-250 : Q #7, 8 :
500m

2000+ m

Exams 251-500 : Q #3, 4 :
500m

Exams 251-500 : Q #5, 6 :
500m

Exams 251-500 : Q #7, 8 :
500m

Exams 251-500 : Q #1, 2 :
500m

Exams 501-750 : Q #5, 6 :
500m

Exams 501-750 : Q #7, 8 :
500m

Exams 501-750 : Q #1, 2 :
500m

Exams 751-1000 : Q #1, 2 :
500m

Exams 751-1000 : Q #3, 4 :
500m

Exams 751-1000 : Q #7, 8 :
500m

Exams 751-1000 : Q #5, 6 :
500m

Exams 501-750 : Q #3, 4 :
500m

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 26

Pipelined Solution [CSC 320]
Q #1, 2

2m

Q #3, 4
2m

Q #7, 8
2m

Q #5, 6
2m

Q #1, 2
2m

Q #3, 4
2m

Q #7, 8
2m

Q #5, 6
2m

Q #1, 2
2m

Q #3, 4
2m

Q #7, 8
2m

Q #5, 6
2m

Q #1, 2
2m

Q #3, 4
2m

Q #7, 8
2m

Q #5, 6
2m

Q #1, 2
2m

Q #3, 4
2m

Q #5, 6
2m

Q #1, 2
2m

Q #3, 4
2m

Q #1, 2
2m

2006+ m

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 27

Pipelined Solution: Stall
Q #1, 2

2m

Q #3, 4
2m

Q #7, 8
2m

Q #5, 6
2m

Q #1, 2
2m

Q #3, 4
2m

Q #7, 8
2m

Q #5, 6
2m

Q #1, 2
2m

Q #3, 4
2m

Q #7, 8
2m

Q #5, 6
2m

Q #1, 2
2m

Q #3, 4
2m

Q #1, 2
2m

2006+ m

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 28

Grading Example Summary
§ It’s critical to understand the problem before trying to

parallelize it
o Can the work be done in an arbitrary order, or must it be done in sequential

order?
o Does each task take the same amount of time to complete? If not, it may be

necessary to “load balance.”
o In our example, the only restriction is that a single question be graded by a single

grader, so we could divide the work easily, but had to communicate periodically.
o This case study is an example of task-based parallelism. Each grader is assigned a

task like “Grade questions 1 & 2 on the first 500 tests”
o If instead each question could be graded by different graders, then we could

have data parallelism: all graders work on Q1 of the following tests, then Q2, etc.

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 29

Computational Thinking

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 30

Fundamentals of Parallel Computing
§ Parallel computing requires that
– The problem can be decomposed into sub-problems that

can be safely solved at the same time
– The programmer structures the code and data to solve these

sub-problems concurrently

§ The goals of parallel computing are
– To solve problems in less time (strong scaling), and/or
– To solve bigger problems (weak scaling), and/or
– To achieve better solutions (advancing science)

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 31

The problems must be large enough to
justify parallel computing and to
exhibit exploitable concurrency.

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 32

Parallel Programming Coding Styles – Program and Data
Models

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 33

Fork/Join

Master/Worker

SPMD

Program Models

Loop Parallelism Distributed Array

Shared Queue

Shared Data

Data Models

These are not necessarily
mutually exclusive.

Program Models
§ SPMD (Single Program, Multiple Data)
– All PE’s (Processor Elements) execute the same program in

parallel, but has its own data
– Each PE uses a unique ID to access its portion of data
– Different PE can follow different paths through the same code
– This is essentially the CUDA Grid model (also OpenCL, MPI)
– SIMD is a special case – WARP used for efficiency

§ Master/Worker
§ Loop Parallelism
§ Fork/Join

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 34

Program Models
§ SPMD (Single Program, Multiple Data)
§ Master/Worker (OpenMP, OpenACC, TBB)
– A Master thread sets up a pool of worker threads and a bag of

tasks
– Workers execute concurrently, removing tasks until done

§ Loop Parallelism (OpenMP, OpenACC, C++AMP)
– Loop iterations execute in parallel
– FORTRAN do-all (truly parallel), do-across (with dependence)

§ Fork/Join (Posix p-threads)
– Most general, generic way of creation of threads

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 35

More on SPMD
§ Dominant coding style of scalable parallel computing
– MPI code is mostly developed in SPMD style
– Many OpenMP code is also in SPMD (next to loop parallelism)
– Particularly suitable for algorithms based on task parallelism and

geometric decomposition.

§ Main advantage
– Tasks and their interactions visible in one piece of source code,

no need to correlated multiple sources

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 36

SPMD is by far the most commonly used pattern for structuring
massively parallel programs.

Typical SPMD Program Phases
§ Initialize
– Establish localized data structure and communication channels

§ Obtain a unique identifier
– Each thread acquires a unique identifier, typically range from 0 to N-1, where N is the number

of threads.
– Both OpenMP and CUDA have built-in support for this.

§ Distribute Data
– Decompose global data into chunks and localize them, or
– Sharing/replicating major data structure using thread ID to associate subset of the data to

threads

§ Run the core computation
– More details in next slide…

§ Finalize
– Reconcile global data structure, prepare for the next major iteration

Spring 2021 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 37

