
CSC 443: Web Programming
Haidar Harmanani
Department of Computer Science and Mathematics
Lebanese American University
Byblos, 1401 2010 Lebanon

1

Introduction
• NodeJS is a complete software platform for scalable

server-side and networking applications
−open-source under the MIT license
−comes bundled with a JavaScript interpreter
− runs on Linux, Windows, Mac OS & most other major

operating systems

2009
Created by Ryan Dahl
Version 1 in 2009 to revolutionize web applications
Inspired by Ruby Mongrel web server

2010 Joyent sponsors Node.js development

2011

• First released version of Node.js available to the public
• Initial version only available for Linux.

Microsoft partners with Joyent to provide Windows support

2012 • Complete rewrite of central libraries

...

2014
• Latest release v0.10.26
• Still several improvements away from a stable v0.12

and a finalized v1.0

• Current stable release v9.1.0

How does Node.js Work?
• Uses an event-driven, non-blocking I/O model that

makes it lightweight and efficient, perfect for data-
intensive real-time applications that run across
distributed devices

• Built on Chrome's V8 JavaScript runtime for easily
building fast, scalable network applications

• Two major components:
−Main core, written in C and C++
−Modules, such as Libuv library and V8 runtime engine, also

written in C++

What is Node.JS made of?

JS

JS / C++

C/C++

node standard library
http(s), net, stream, fs, events, buffer

node bindings

V8
JavaScript VM

libuv
thread pool
event loop
async I/O

c-ares
async DNS

http_parser
OpenSSL
zlib, etc.

What is so good about Node.js?
• An event driven programming model
• Highly scalable
• Uses asynchronous, event-driven I/O (input/output),

rather than threads or separate processes
• Ideal for web applications that are frequently

accessed but computationally simple

Recall: How does Apache Work?
• A traditional web server such as Apache creates a

thread each time a web resource is requested

−Typically quick response time

−Cleans up after the request

• The approach may tie up a lot of resources, especially
when dealing with popular web applications

−May have serious performance issues.

Major Features
• Single threaded
• Event Loop
• Non-blocking I/O

Asynchronous Approach for Web
Servers
• Node doesn’t create a new thread or process for

every request

−Server listens for specific events

−When the event happens, server responds accordingly.

• Node doesn’t block any other request while waiting
for the event to complete

• Events are handled—first come, first served—in a
relatively uncomplicated event loop

Thread Pool Model

responsesrequest queue

thread pool

thread 1

thread 2

thread 3

thread 4

thread n

concurrency = # threads (or processes)

Efficiency of a Worker Thread

wait… wait… wait…

route, parse request
form db query

parse db result
form web service query

process results

form response

db query web service
query

log to disk

wait… wait… wait…

wait… wait… wait…
wait… wait… wait…

1. HTTP Node.js
Request

Single threadMobile
Client Web

Server

3.
Data

2. Async
Data Query

4. Response in
JSON format via
callback

Database

A simple example: accessing data from a database

* Here Node.js, acknowledges the request right away before writing
any data to the database.

How to start?
• Node applications are created with JavaScript
−The same as the client-side applications with one major

difference: developers have to set up a development
environment

• Grab a package installer for your favorite OS
−The brave hearts can grab the source and compile it!

• Node is available for all major OSes
−Linux
−Windows (WebMatrix)
−Mac OS

helloworld.js in Node.js
// load http module
var http = require('http');

// create http server
http.createServer(function (req, res) {

// content header
res.writeHead(200, {'content-type': 'text/plain'});

// write message and signal communication is complete
res.end("Hello, World!\n");

}).listen(8124);

console.log('Server running on 8124');

helloworld.js in Node.js
• To run the application, from the command line in Linux,

the Terminal window in Mac OS, or the Command
window in Windows, type:
> node helloworld.js

• The following is printed to the screen:
>Server running at 8124

• Access the site using any browser
− Type localhost:8124 (assuming you are running the

application locally) or the the URL of the remote site with the
8124 port (if it’s running remotely).

− A web page with the words “Hello, World!” is displayed

The Anatomy of a Node Application…
• Most Node functionality is provided through external

applications and libraries called modules
• Load the HTTP module and assign it to a local

variable
−var http = require('http');

• The HTTP module provides basic HTTP functionality,
enabling network access of the application.

The Anatomy of a Node Application…
• Create a new server with createServer, and an anonymous function is passed as

the parameter to the function call.
− http.createServer(function (req, res) { ...

• The requestListener function has two parameters:
− A server request (http.ServerRequest)
− A server response (http.ServerResponse).

• Within the anonymous function, we have the following line:

• The line res.writeHead(200, {'content-Type': 'text/plain'}) within
the anonymous function uses the method writeHead to send a response header with
the response status code (200), as well as provides the content-type of the response
− The method writeHead belonsg to the http.ServerResponse object

• The second, optional parameter to writeHead is a reasonPhrase, which is a
textual description of the status code.

The Anatomy of a Node Application…
• The application next writes the “Hello, World!” message:
• res.end("Hello, World!\n");
• The http.ServerResponse.end method signals that the communication

is finished
− All headers and the response body have been sent.
− The method must be used with every http.ServerResponse object

• The end method has two optional parameters:
− A chunk of data, which can be either a string or a buffer.
− If the chunk of data is a string, the second parameter specifies the encoding.

• The second parameter is required only if the encoding of the string is anything
other than utf8, which is the default.

• An alternative approach would have been as follows:
− res.write("Hello, World!\n");

• and then:
− res.end();

The Anatomy of a Node Application…
• The anonymous function and the createServer

function are both finished on the next line in the code:
−}).listen(8124);

• The http.Server.listen method chained at the
end of the createServer method listens for
incoming connections on a given port—in this case,
port 8124.

• Optional parameters are a hostname and a callback
function.

• If a hostname isn’t provided, the server accepts
connections to web addresses

The Anatomy of a Node Application…
• The listen method is asynchronous
−The application doesn’t block program execution, waiting

for the connection to be established

−Whatever code following the listen call is processed, and
the listen callback function is invoked when the listening
event is fired—when the port connection is established.

• The last line of code uses the console object from the
browser world in order to provide a way to output text
to the command line (or development environment),
rather than to the client
−console.log('Server running on 8124/');

Programming Models
• Processing in traditional programming blocking models cannot

continue until an operation finishes
− Derives from time sharing systems
− Needed to isolate users from one another
− Model does not scale especially with the emergence of networks and the

Internet
• Multi-threading is an alternative to the above programming model.
− A thread is a of lightweight process that shares memory with every other

thread within the same process
• Threads are created as an ad hoc extension in order to accommodate several concurrent

threads of execution.
− When one thread is waiting for an I/O operation, another thread can take over

the CPU.
− When the I/O operation finishes, that thread can wake up
− Threads can be interrupted and resumed later
− Some systems allow threads to execute in parallel in different CPU cores.

Asynchronous Functions and the Node
Event Loop
• One of the fundamental design issues behind Node is that an

application is executed on a single thread (or process), and all
events are handled asynchronously.

• A typical web server, such as Apache has two different
approaches to how it handles incoming requests
− The first assigns each request to a separate process until the request is

satisfied
− The second spawns a separate thread for each request.

• The first approach is known as the prefork multiprocessing
model while the second is known as worker multiprocessing
model

• Both approaches respond to requests in parallel
− If five people access a web application at the exact same time, and

the server is set up accordingly, the web server handles all five
requests simultaneously

Prefork Multiprocessing Model
• The prefork multiprocessing model, or prefork MPM

can create as many child processes as specified in an
Apache configuration file.

• The advantage to creating a separate process is that
applications accessed via the request, such as a PHP
application, don’t have to be thread-safe.

• The disadvantage is that each process is memory
intensive and doesn’t scale very well.

Worker Multiprocessing Model
• The worker multiprocessing model implements a

hybrid process-thread approach
−Each incoming request is handled via a new thread.

• It’s more efficient from a memory perspective
• Requires that all applications be thread-safe.
• Although PHP is thread-safe, there’s no guarantee

that the many different libraries used with it are also
thread-safe.

Event-Driven Programming
• A Node application is created on a single thread of

execution.
− It waits for an application to make a request

−When Node gets a request, no other request can be processed
until it’s finished processing the code for the current one.

• It does not sound very efficient, does it?
− It wouldn’t be except for one thing: Node operates

asynchronously, via an event loop and callback functions.

− An event loop is nothing more than functionality that basically
polls for specific events and invokes event handlers at the proper
time.

− In Node, a callback function is this event handler.

The Node Event Loop…
• Let us explain this issue further…

• When a Node application makes some request of
resources (such as a database request or file access)

−Node initiates the request, but doesn’t wait until the request
receives a response.

− It attaches instead a callback function to the request.

−When whatever has been requested is ready (or finished),
an event is emitted to that effect, triggering the associated
callback function to do something with either the results of
the requested

The Node Event Loop…
• If five people access a Node application at the exact

same time, and the application needs to access a
resource from a file, Node attaches a callback
function to a response event for each request.

• As the resource becomes available for each, the
callback function is called, and each person’s request
is satisfied in turn

• In the meantime, the Node application can be
handling other requests, either for the same
applications or a different application

Simple Socket Server
var net = require('net')

var server =
net.createServer(function(socket) {

socket.write('hello\n')
socket.end()

})

server.listen(9898)

Events –Listeners and Emitters
var server = net.createServer(function(socket) {

socket.on('data', function(data) {
console.log(data.toString())

})

socket.on('end', function() {
console.log('client disconnected')

})

}).listen(9898)

Making HTTP Requests
var http = require('http')

var req = http.request({
host: 'jssaturday.com',
path: '/sofia'

}, function(res) {
console.log(res.statusCode)
res.on('data', function(data) {

console.log(data.toString())
})

})

req.end()

Simple HTTP Forwarding Proxy
• How difficult would it be to write a local forwarding

proxy?

Simple HTTP Forwarding Proxy
var http = require('http')

http.createServer(function(req, res) {
req.pipe(http.request({

host: req.headers.host,
path: req.url,
headers: req.headers

}, function(xRes) {
res.writeHead(xRes.statusCode,

xRes.headers)
xRes.pipe(res)

}))
}).listen(8080)

Reading a File Asynchronously
// load http module
var http = require('http');
var fs = require('fs');

// create http server
http.createServer(function (req, res) {

// open and read in helloworld.js
fs.readFile('helloworld.js', 'utf8', function(err, data) {

res.writeHead(200, {'Content-Type': 'text/plain'});
if (err)

res.write('Could not find or open file for reading\n');
else

// if no error, write JS file to client
res.write(data);

res.end();
});

}).listen(8124, function() { console.log('bound to port 8124');});

Quick Notes on the Previous
Application
• A new module, File System (fs), that wraps standard

POSIX file functionality, including opening up and
accessing the contents from a file is used
−The method used is readFile

• Callback functions are attached to the readFile
and to the listen methods

Challenges
• Debugging

−why is my stack trace so short

−exception handling

• Non-linear code

−Nesting

−Requires shift of programming paradigm

• Blocks on CPU

−Beware of CPU intensive tasks

−Run multiple nodes or child processes

Benefits
• Async I/O made easy
• Single-thread simplifies synchronization
• One language to rule them all
• Very active community
• Multi-platform

THE REAL WORLD

Modules

base64.js
var encoding = 'base64‘ // locals are private

exports.toBase64 = function(s) {
return new Buffer(s).toString(encoding)

}

app.js

var b64 = require('./base64')
var a = b64.toBase64('JSSaturday')

Node Package Management
• NPM

− install and publish packages

−upgrade, search, versioning

• npmjs.org

−browse popular packages

−publish your own

Node.JS Resources
• nodejs.org
• which version to use?
−Event X: stable (0.8.x, 0.10.x)
−Odd X: unstable (0.9.x, 0.11.x)

• Documentation: nodejs.org/api
• Playing with the command line REPL
• Build from source: github.com/joyent/node

ExpressJS: Web app Framework
• Node.JS is powerful
− full control over HTTP server
−but most of the time you’ll use a web framework

• Web app frameworks likes ExpressJS provide
−Request Routing
−Body and Parameter Parsing
−Session and Cookie Management
−Templates
−Static File Serving, Logger and many more

ExpressJS – hit counter
var express = require('express')
var app = express();

app.use(express.cookieParser());
app.use(express.cookieSession({secret: "dG9wc2VjcmV0"}));

app.use(function(req, res) {
var sess = req.session
sess.hits = sess.hits || 0
sess.hits++

res.json({ visits: sess.hits })
});

app.listen(80)

