CSC 443: Web Programming

LECTURE 19: WEB SECURITY

Our current view of security

* until now, we have assumed:
* valid user input
* non-malicious users
* nothing will ever go wrong

* this is unrealistic!

The real world

* in order to write secure code, we must assume:

invalid input
evil users
incompetent users

everything that can go wrong, will go wrong

everybody is out to get you

botnets, hackers, script kiddies, KGB, etc. are out there

* the security mindset: assume nothing; trust no one

Attackers' goals

* Why would an attacker target my site?

* Read private data (user names, passwords, credit card
numbers, grades, prices)

* Change data (change a student's grades, prices of products, W' Gimme anryour cache!!

passwords)
* Spoofing (pretending to be someone they are not)

* Damage or shut down the site, so that it cannot be
successfully used by others

* Harm the reputation or credibility of the organization running
the site

* Spread viruses and other malware

Tools that attackers use

!'@] Console HTMLv @ CSS Script D

Assume that the attacker knows about web dev and has the

same tools you have: <htmlhxm;ns-"http://wwwnﬁ3.org/1999/xhtm1">
p <head>
. b \{ <body>
° <hl>Marty's GRE Vocab Quiz</hl>
Firebug > hoodwink - verb</hts
. v <form method="post" action="quiz.php">
* extensions e.g. Web Dev Toolbar > <l et choices®>
<input type="hidden" value="hoodw
° port Scanners’ e‘g. nmap <input type="hidden" value-"100"

<input type="hidden" valuef'
"Submi

<input type="submit" value="

* network sniffers, e.g. Wireshark, EtherDetect, Firesheep i

Some kinds of attacks

* Denial of Service (DoS): Making a server unavailable by bombarding it with requests.

* Social Engineering: Tricking a user into willingly compromising the security of a site (e.g.
phishing).

* Privilege Escalation: Causing code to run as a "privileged" context (e.g. "root").

* Information Leakage: Allowing an attacker to look at data, files, etc. that he/she should not be
allowed to see.

* Man-in-the-Middle: Placing a malicious machine in the network and using it to intercept
traffic.

» Session Hijacking: Stealing another user's session cookie to masquerade as that user.

* Cross-Site Scripting (XSS) or HTML Injection: Inserting malicious HTML or JavaScript content
into a web page.

* SQL Injection: Inserting malicious SQL query code to reveal or modify sensitive data.

Information leakage

when the attacker can look at data, files, etc. that he/she should not be allowed to see

files on web server that should not be there
* or have too generous of permissions (read/write to all)
directories that list their contents (indexing)
* can be disabled on web server
guess the names of files, directories, resources
* see loginfail.php, try loginsuccess.php
see user.php?id=123, try user.php?id=456
see /data/public, try /data/private

";‘Indexof/sbepp X !-’&mu,swng:

€« https://webster.cs.washington.edu/stepp/

Index of /stepp

Name Last modified Size De

a Parent Directory

20-Apr-2009 14:38
30-May-2009 09:35
0-May-2012 1008 0
29-Mar-2012 01:30 1.7K
16-May-2012 12:29
11-May-2009 15:13
30-Mar-2009 15:17

18-May-2011 12:16
11_Ane2017 1214

[() __turnin |
S

] aboutme html
(£ animalgame/

% awesome html
e

A haar/

66

Man-in-the-middle attack

when the attacker listens on your network and reads and/or modifies your data

» works if attacker can access and compromise any victim web server
server/router between you and your server N S
* also works if you are on the same local area Sin X o
X

network as the attacker

often, the attacker still sends your info back and
forth to/from the real server, but he silently logs
or modifies some of it along the way to his own
benefit

e.g. listens for you to send your user name /
password / credit card number / ...

“’\

attacker

Secure HTTP (HTTPS)
* HTTPS: encrypted version of HTTP protocol | 3 cemflcate _1

* all messages between client and server are
encrypted so men in the middle cannot m . @x’ key > EE

easily read them « encrypted requests/responses
Y. H . 01010010110 010!00!0!10

* servers can have certificates that verify their
identity

Session hijacking

when the attacker gets a hold of your session ID and masquerades as you

eno Mozilla Firefox

» exploit sites that use HTTPS for only the initial login: o prer—
* HTTPS: browser = server (POST login.php) <) (c)»)(®
* HTTPS: browser & server (login.php + PHPSESSID Firesheep || N
facebook

(Stop Capturing

cookie)

* HTTP: browser -> server (GET whatever.php 2 ,.., . lan Gallagher
+ PHPSESSID cookie) e T8 Facebook

« HTTP: browser < server (whatever.php + PHPSESSID %"] News Feed
cookie)

» attacker can listen to the network, get your session ID
cookie, and make requests to the same server with that
same session ID cookie to masquerade as you!

* example: Firesheep

HTML injection

a flaw where a user is able to inject arbitrary HTML content into your page

* This flaw often exists when a page accepts user input and inserts it bare into the
page.

* What kinds of silly or malicious content can we inject into the page? Why is this
bad?

Injecting HTMIL content

8ball.php?question=lololol

* injected content can lead to:
* annoyance / confusion
* damage to data on the server
* exposure of private data on the server
* financial gain/loss
* end of the human race as we know it
* why is HTML injection bad? It allows others to:
* disrupt the flow/layout of your site
* put words into your mouth
* possibly run malicious code on your users'
computers

Cross-site scripting (XSS)

a flaw where a user is able to inject and execute arbitrary JavaScript code in your page

|8ball.php?question=<script type="'text/javascript'>alert ('pwned') ;</script>

» JavaScript is often able to be injected because of a previous HTML injection
* masquerade as the original page and trick the user into entering sensitive data
* steal the user's cookies
* masquerade as the user and submit data on their behalf (submit forms, click
buttons, etc.)

Securing against HTML injection / XSS

* one idea: disallow harmful characters
* HTML injection is impossible without < >
* can strip those characters from input, or reject the entire request if they are
present
* another idea: allow them, but escape them

htmlspecialchars |returns an HTML-escaped version of a string

Stext
Stext

"<p>hi 2 u & me</p>";
htmlspecialchars ($text) ; # "<p>hi 2 u & me< /p>"

Another XSS example

* example: Lab 4, Buy-a-Grade (buyagrade.html)

Thanks, sucker!

* Recall that the user submits his name, section, Your information has been recorded.
and credit card number to the server, which are NameR
. yan
then displayed on the page. Section

MA
Credit Card

* How can we inject HTML/JavaScript into the 1132412341254 Gica)

) .
page: Be creative... Here are all the suckers who have submitted here:

* What could we do to steal the user's sensitive e e imanrerea

Kimberly Todd;MC;7328904328904902;mastercard
Marty Stepp;MC;4444100020003000;visa

information? Ryan;1234132412341234;visa

SQL injection

a flaw where the user is able to inject arbitrary SQL into your query

* This flaw often exists when a page accepts user Springfield Elementary
input and inserts it bare into the query. P m| M| ~ In/Outl
* What kinds of SQL can we inject into the query? Grades for Bart:
Why is this bad? Course Name Grade

Computer Science 142 B-
Computer Science 143 C

A SQL injection attack

* The query in the Simpsons PHP code is:

Squery = "SELECT * FROM students
WHERE username = 'Susername' AND password = 'S$password'"; SQL

* Are there malicious values for the user name and password that we could enter?

* Password: ["OR"1=1

* This causes the query to be executed as:$query = "SELECT * FROM students
WHERE username = '$username’ AND password = '' OR '1'="1"'";
* What will the above query return? Why is this bad?

Too true...

HI, THIS 1S OH,DEARR - DID HE | DID YOU REALLY WELL, WEVE LOST THIS

YOUR SON'S SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WEREHAVING SONE | o\ o Robert!); DROP T HOPE YOURE HAPPY.

(OMPUTER TROUBLE. / TABLE Students; -~ ?

R N AND T HOPE

s N ~ OH.YES. LITTLE - YOUVE LEARNED

[BOBBY TABLES, TO SANITIZE YOUR

i} H q n WE CALL HIM. DATABASE INPUTS.

* injected SQL can:
* change the query to output others' data (revealing private information)
* insert a query to modify existing data (increase bank account balance)
* delete existing data (; DROP TABLE students; --)
* bloat the query to slow down the server (JOIN a JOIN b JOIN c ...)

Securing against SQL injection

* similar to securing against HTML injection, escape the string before you include it in
your query

|guote |returns a SQL-escaped version of a string

Susername = $db->quote($ POST["username"]);
Spassword = $db->quote ($ POST["password"]) ;
Squery = "SELECT name, ssn, dob FROM users
WHERE username = Susername AND password = Spassword"; PHP

* replaces ' with \ ', etc., and surrounds with quotes

