
CSC	443:	Web	Programming
LECTURE	19:	WEB	SECURITY

Our	current	view	of	security
• until	now,	we	have	assumed:

• valid	user	input

• non-malicious	users

• nothing	will	ever	go	wrong

• this	is	unrealistic!

The	real	world
• in	order	to	write	secure	code,	we	must	assume:

• invalid	input

• evil	users

• incompetent	users

• everything	that	can	go	wrong,	will	go	wrong

• everybody	is	out	to	get	you

• botnets,	hackers,	script	kiddies,	KGB,	etc.	are	out	there

• the	security	mindset: assume	nothing;	trust	no	one

Attackers'	goals
• Why	would	an	attacker	target	my	site?
• Read	private	data (user	names,	passwords,	credit	card	

numbers,	grades,	prices)
• Change	data (change	a	student's	grades,	prices	of	products,	

passwords)
• Spoofing (pretending	to	be	someone	they	are	not)
• Damage	or	shut	down	the	site,	so	that	it	cannot	be	

successfully	used	by	others
• Harm	the	reputation	or	credibility of	the	organization	running	

the	site
• Spread	viruses and	other	malware

Tools	that	attackers	use
Assume	that	the	attacker	knows	about	web	dev and	has	the	
same	tools	you	have:

• Firebug

• extensions	e.g. Web	Dev Toolbar

• port	scanners,	e.g. nmap

• network	sniffers,	e.g. Wireshark, EtherDetect, Firesheep

Some	kinds	of	attacks
• Denial	of	Service	(DoS):	Making	a	server	unavailable	by	bombarding	it	with	requests.
• Social	Engineering:	Tricking	a	user	into	willingly	compromising	the	security	of	a	site	(e.g.	

phishing).
• Privilege	Escalation:	Causing	code	to	run	as	a	"privileged"	context	(e.g.	"root").
• Information	Leakage:	Allowing	an	attacker	to	look	at	data,	files,	etc.	that	he/she	should	not	be	

allowed	to	see.
• Man-in-the-Middle:	Placing	a	malicious	machine	in	the	network	and	using	it	to	intercept	

traffic.
• Session	Hijacking:	Stealing	another	user's	session	cookie	to	masquerade	as	that	user.
• Cross-Site	Scripting	(XSS) or	HTML	Injection:	Inserting	malicious	HTML	or	JavaScript	content	

into	a	web	page.
• SQL	Injection:	Inserting	malicious	SQL	query	code	to	reveal	or	modify	sensitive	data.

Information	leakage
when	the	attacker	can	look	at	data,	files,	etc.	that	he/she	should	not	be	allowed	to	see

• files	on	web	server	that	should	not	be	there
• or	have	too	generous	of	permissions	(read/write	to	all)

• directories	that	list	their	contents	(indexing)
• can	be	disabled	on	web	server

• guess	the	names	of	files,	directories,	resources
• see loginfail.php,	try loginsuccess.php
• see user.php?id=123,	try user.php?id=456
• see /data/public,	try /data/private

Man-in-the-middle	attack
when	the	attacker	listens	on	your	network	and	reads	and/or	modifies	your	data

• works	if	attacker	can	access	and	compromise	any	
server/router	between	you	and	your	server

• also	works	if	you	are	on	the	same	local	area	
network	as	the	attacker

• often,	the	attacker	still	sends	your	info	back	and	
forth	to/from	the	real	server,	but	he	silently	logs	
or	modifies	some	of	it	along	the	way	to	his	own	
benefit

• e.g.	listens	for	you	to	send	your	user	name	/	
password	/	credit	card	number	/	...

Secure	HTTP	(HTTPS)
• HTTPS:	encrypted	version	of	HTTP	protocol

• all	messages	between	client	and	server	are	
encrypted	so	men	in	the	middle	cannot	
easily	read	them

• servers	can	have certificates that	verify	their	
identity

Session	hijacking
when	the	attacker	gets	a	hold	of	your	session	ID	and	masquerades	as	you

• exploit	sites	that	use	HTTPS	for	only	the	initial	login:
• HTTPS:	browser	→	server	(POST	login.php)
• HTTPS:	browser	←	server	(login.php + PHPSESSID	

cookie)
• HTTP:	browser	→	server	(GET	whatever.php

+ PHPSESSID	cookie)
• HTTP:	browser	←	server	(whatever.php + PHPSESSID	

cookie)
• attacker	can	listen	to	the	network,	get	your	session	ID	

cookie,	and	make	requests	to	the	same	server	with	that	
same	session	ID	cookie	to	masquerade	as	you!
• example: Firesheep

HTML	injection
a	flaw	where	a	user	is	able	to	inject	arbitrary	HTML	content	into	your	page

• This	flaw	often	exists	when	a	page	accepts	user	input	and	inserts	it	bare	into	the	
page.

• What	kinds	of	silly	or	malicious	content	can	we	inject	into	the	page?	Why	is	this	
bad?

Injecting	HTML	content
8ball.php?question=lololol

• injected	content	can	lead	to:
• annoyance	/	confusion
• damage	to	data	on	the	server
• exposure	of	private	data	on	the	server
• financial	gain/loss
• end	of	the	human	race	as	we	know	it

• why	is	HTML	injection	bad?	It	allows	others	to:
• disrupt	the	flow/layout	of	your	site
• put	words	into	your	mouth
• possibly	run	malicious	code	on	your	users'	

computers

Cross-site	scripting	(XSS)
a	flaw	where	a	user	is	able	to	inject	and	execute	arbitrary	JavaScript	code	in	your	page

8ball.php?question=<script type='text/javascript'>alert('pwned');</script>

• JavaScript	is	often	able	to	be	injected	because	of	a	previous	HTML	injection
• masquerade	as	the	original	page	and	trick	the	user	into	entering	sensitive	data
• steal	the	user's	cookies
• masquerade	as	the	user	and	submit	data	on	their	behalf	(submit	forms,	click	

buttons,	etc.)
• ...

Securing	against	HTML	injection	/	XSS
• one	idea:	disallow	harmful	characters

• HTML	injection	is	impossible	without	<	>
• can	strip	those	characters	from	input,	or	reject	the	entire	request	if	they	are	

present
• another	idea:	allow	them,	but escape them

htmlspecialchars returns	an	HTML-escaped	version	of	a	string

$text = "<p>hi 2 u & me</p>";
$text = htmlspecialchars($text); # "<p>hi 2 u & me</p>"

Another	XSS	example
• example:	Lab	4,	Buy-a-Grade	(buyagrade.html)

• Recall	that	the	user	submits	his	name,	section,	
and	credit	card	number	to	the	server,	which	are	
then	displayed	on	the	page.

• How	can	we	inject	HTML/JavaScript	into	the	
page?	Be	creative...

• What	could	we	do	to	steal	the	user's	sensitive	
information?

SQL	injection
a	flaw	where	the	user	is	able	to	inject	arbitrary	SQL	into	your	query

• This	flaw	often	exists	when	a	page	accepts	user	
input	and	inserts	it	bare	into	the	query.

• What	kinds	of	SQL	can	we	inject	into	the	query?	
Why	is	this	bad?

A	SQL	injection	attack
• The	query	in	the	Simpsons	PHP	code	is:

$query = "SELECT * FROM students
WHERE username = '$username' AND password = '$password'"; SQL

• Are	there	malicious	values	for	the	user	name	and	password	that	we	could	enter?

• Password:
• This	causes	the	query	to	be	executed	as:$query = "SELECT * FROM students

WHERE username = '$username' AND password = '' OR '1'='1'";
• What	will	the	above	query	return?	Why	is	this	bad?

' OR '1'='1

Too	true...

• injected	SQL	can:
• change	the	query	to	output	others'	data	(revealing	private	information)
• insert	a	query	to	modify	existing	data	(increase	bank	account	balance)
• delete	existing	data	(; DROP TABLE students; --)
• bloat	the	query	to	slow	down	the	server	(JOIN a JOIN b JOIN c ...)
• ...

Securing	against	SQL	injection
• similar	to	securing	against	HTML	injection,	escape	the	string	before	you	include	it	in	

your	query
quote returns	a	SQL-escaped	version	of	a	string

$username = $db->quote($_POST["username"]);
$password = $db->quote($_POST["password"]);
$query = "SELECT name, ssn, dob FROM users
WHERE username = $username AND password = $password"; PHP

• replaces ' with \',	etc.,	and	surrounds	with	quotes

