
1/9/19

1

CSC 447: Parallel Programming for Multi-
Core and Cluster Systems
I nt r o du c t i o n a nd Adm i ni s t r i v i a

Ha i da r M . Ha r m a na ni

Spr i ng 2 0 1 9

Course Introduction
§ Lectures
� TTh, 11:00-12:15 from January 15, 2019 until April 24, 2019
� Prerequisites
o Know how to program
o Data Structures
o Computer Architecture would be helpful but not required.

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 2

1/9/19

2

Grading and Class Policies
§ Grading
� Midterm (1-2): 30%
� Final: 40%
� Labs [6-8]: 20%
� Two milestones projects (OpenMP and CUDA): 10%

§ Exams Details
� Exams are closed book, closed notes

§ All assignments must be your own original work.
� Cheating/copying/partnering will not be tolerated

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 3

Teaching Methodology
§ We will use multiple choice questions to initiate

discussions and reinforce learning

§ We will also use a a flipped-classroom methodology
for one part of the course

4Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

1/9/19

3

Lab Assignments
§ All assignments and handouts will be communicated via
piazza
� Make sure you enable your account

§ Use piazza for questions and inquiries
� No questions will be answered via email

§ All assignments must be submitted via github
� git is a distributed version control system
� git or its variations have become a universal standard for developing

and sharing code
� Make sure you get a private repo
o Apply for a free account: https://education.github.com/discount_requests/new

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 5

Policy on Assignments and
Independent Work
§ With the exception of laboratories and assignments (projects and HW) that explicitly permit you

to work in groups, all homework and projects are to be YOUR work and your work ALONE.

§ It is NOT acceptable to copy solutions from other students.
§ It is NOT acceptable to copy (or start your) solutions from the Web.

§ PARTNER TEAMS MAY NOT WORK WITH OTHER PARTNER TEAMS

§ You are encouraged to help teach other to debug. Beyond that, we don’t want you sharing
approaches or ideas or code or whiteboarding with other students, since sometimes the point
of the assignment is the “algorithm” and if you share that, they won’t learn what we want them
to learn). We expect that what you hand in is yours.

§ It is NOT acceptable to leave your code anywhere where an unscrupulous student could find
and steal it (e.g., public GITHUBs, walking away while leaving yourself logged on, leaving
printouts lying around,etc)

§ The first offense is a zero on the assignment and an F in the course the second time

§ Both Giver and Receiver are equally culpable and suffer equal penalties

6Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

https://education.github.com/discount_requests/new

1/9/19

4

Architecture of a typical Lecture

7

At
te

nt
io

n

Time (minutes)
10 30 35 72 75

Administrivia “And in
conclusion…”

Full

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems

Contact Information
§ Haidar M. Harmanani
�Office: Block A, 810
�Hours: TTh 9:00-10:30 or by appointment.
� Email: haidar@lau.edu.lb

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 8

mailto:haidar@lau.edu.lb

1/9/19

5

Topics
§ Introduction to parallel programming

§ Parallel programming performance

§ Programming using pThreads, OpenMP, and GPUs

§ Introduction to Neural Networks and Deep Learning
using cuDNN and Python

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 9

Course Materials

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 10Spring 2019

Required

Optional

Optional

Optional

1/9/19

6

Computers/Programming
§ You will be using:
� The lab or your own machines for MPI and OpenMP
� The lab or your own machines for Pthreads and OpenMP
� The Computer Science Lab for CUDA and GPU

Programming, or your own machine if you have a CUDA-
capable GPU

� The Cloud for GPU Tutorial Labs
o Access will be provided in due time
o There will be a 5% bonus for completing at least four labs

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 11

Administrative Questions?

1/9/19

7

Definitions
§ Parallel computing
�Using parallel computer to solve single problems faster

§ Parallel computer
�A computer with multiple processors that supports parallel

programming

§ Parallel programming
� Programming in a language that supports concurrency

explicitly

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 13

Parallel Processing – What is it?
§ A parallel computer is a computer system that uses multiple

processing elements simultaneously in a cooperative manner to
solve a computational problem

§ Parallel processing includes techniques and technologies that
make it possible to compute in parallel
� Hardware, networks, operating systems, parallel libraries, languages,

compilers, algorithms, tools, …

§ Parallel computing is an evolution of serial computing
� Parallelism is natural
� Computing problems differ in level / type of parallelism

§ Parallelism is all about performance! Really?

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 14

1/9/19

8

Concurrency
§ Consider multiple tasks to be executed in a computer
§ Tasks are concurrent with respect to each if
� They can execute at the same time (concurrent execution)
� Implies that there are no dependencies between the tasks

§ Dependencies
� If a task requires results produced by other tasks in order to execute correctly,

the task’s execution is dependent
� If two tasks are dependent, they are not concurrent
� Some form of synchronization must be used to enforce (satisfy) dependencies

§ Concurrency is fundamental to computer science
� Operating systems, databases, networking, …

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 15

Concurrency and Parallelism
§ Concurrent is not the same as parallel! Why?
§ Parallel execution
� Concurrent tasks actually execute at the same time
� Multiple (processing) resources have to be available

§ Parallelism = concurrency + “parallel” hardware
� Both are required
� Find concurrent execution opportunities
� Develop application to execute in parallel
� Run application on parallel hardware

§ Is a parallel application a concurrent application?
§ Is a parallel application run with one processor parallel? Why or why not?

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 16

1/9/19

9

Why Parallel Computing Now?
§ Researchers have been using parallel

computing for decades:
� Mostly used in computational science and

engineering
� Problems too large to solve on one computer;

use 100s or 1000s

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 17

Nature

Observation

Theory
Physical

Experimentation
Numerical
Simulation

Classical
Science

Modern Scientific
Method

Why Parallel Computing Now?
§ Many companies in the 80s/90s “bet” on parallel computing and failed
� Computers got faster too quickly for there to be a large market

§ Why an undergraduate course on parallel programming?
� Because the entire computing industry has bet on parallelism
� There is a desperate need for parallel programmers

§ There are 3 ways to improve performance:
� Work Harder
� Work Smarter
� Get Help

§ Computer Analogy
� Using faster hardware
� Optimized algorithms and techniques used to solve computational tasks
� Multiple computers to solve a particular task

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 18

1/9/19

10

Technology Trends: Microprocessor
Capacity

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 19

Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor
density of semiconductor chips would double roughly every 18 months.

Technology Trends: Microprocessor
Capacity

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 20

Microprocessors have become smaller, denser, and more powerful.

Micros

Minis

Mainframes

Speed (log scale)

Time

Supercomputers

1/9/19

11

50 Years of Speed Increases

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 21

ENIAC

350 flops

Today

> 1 trillion flops

CPUs 1 Million Times Faster
§ Faster clock speeds

§ Greater system concurrency
�Multiple functional units
�Concurrent instruction execution
� Speculative instruction execution

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 22

1/9/19

12

Systems 1 Billion Times Faster
§ Processors are 1 million times faster

§ Combine thousands of processors

§ Parallel computer
�Multiple processors
� Supports parallel programming

§ Parallel computing = Using a parallel computer to
execute a program faster

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 23

Microprocessor Transistors and Clock
Rate

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 24

Why bother with parallel programming? Just wait a year or
two…

i4004

i80286
i80386

i8080

i8086

R3000
R2000

R10000
Pentium

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970 1975 1980 1985 1990 1995 2000 2005
Year

Tr
an

sis
to
rs

0.1

1

10

100

1000

1970 1980 1990 2000
Year

Cl
oc

k R
ate

 (M
Hz

)

1/9/19

13

Limit #1: Power density

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 25

4004
8008
8080

8085

8086

286 386
486

Pentium®
P6

1

10

100

1000

10000

1970 1980 1990 2000 2010
Year

Po
w

er
 D

en
sit

y
(W

/c
m

2)

Hot Plate

Nuclear
Reactor

Rocket
Nozzle

Sun�s
Surface

Scaling clock speed (business as usual) will not work

Intel VP Patrick
Gelsinger (ISSCC 2001):
�If scaling continues at
present pace, by 2005,
high speed processors
would have power
density of nuclear
reactor, by 2010, a
rocket nozzle, and by
2015, surface of sun.�

Device scaling

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 26

doping increased by a factor of
S

scale

Increasing the channel doping density decreases the depletion width
Þ improves isolation between source and drain during OFF status
Þ permits distance between the source and drain regions to be scaled

(scaled down by L)

(very idealistic NMOS transistor)

1/9/19

14

Parallelism Saves Power
§ Exploit explicit parallelism for reducing power

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 27

Power = C * V2 * F Performance = Cores * F

Capacitance Voltage Frequency

• Using additional cores
– Increase density (= more transistors = more capacitance)
– Can increase cores (2x) and performance (2x)
– Or increase cores (2x), but decrease frequency (1/2): same performance at ¼ the

power

Power = 2C * V2 * F Performance = 2Cores * FPower = 2C * V2/4 * F/2 Performance = 2Cores * F/2

• Additional benefits
– Small/simple cores à more predictable performance

Power = (C * V2 * F)/4 Performance = (Cores * F)*1

Limit #2: Hidden Parallelism Tapped Out
§ Application performance was increasing by 52% per year as measured by the SpecInt benchmarks here

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 28

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

25%/year

52%/year

??%/year

From Hennessy and Patterson, Computer Architecture: A
Quantitative Approach, 4th edition, 2006

• ½ due to transistor density
• ½ due to architecture changes, e.g., Instruction

Level Parallelism (ILP)

• VAX: 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002

1/9/19

15

Limit #2: Hidden Parallelism Tapped
Out
§ Superscalar (SS) designs were the state of the art; many forms of

parallelism not visible to programmer
� multiple instruction issue
� dynamic scheduling: hardware discovers parallelism between instructions
� speculative execution: look past predicted branches
� non-blocking caches: multiple outstanding memory ops

§ You may have heard of these in CSC320, but you haven’t needed to
know about them to write software

§ Unfortunately, these sources have been used up

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 29

Uniprocessor Performance (SPECint)
Today

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 30

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
VA

X-
11

/78
0)

25%/year

52%/year

??%/year

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer Architecture: A
Quantitative Approach, 4th edition, 2006

Þ Sea change in chip design: multiple
�cores� or processors per chip

3X

2x every 5 years?

1/9/19

16

Limit #3: Chip Yield

• Moore’s (Rock’s) 2nd law:
fabrication costs go up

• Yield (% usable chips) drops

• Parallelism can help
• More smaller, simpler processors are

easier to design and validate

• Can use partially working chips:

• E.g., Cell processor (PS3) is sold with 7
out of 8 “on” to improve yield

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 31

Manufacturing costs and yield problems limit use of density

Limit #4: Speed of Light (Fundamental)

§ Consider the 1 Tflop/s sequential machine:
� Data must travel some distance, r, to get from memory to

CPU.
� To get 1 data element per cycle, this means 1012 times per

second at the speed of light, c = 3x108 m/s.
o Thus r < c/1012 = 0.3 mm.

§ Now put 1 Tbyte of storage in a 0.3 mm x 0.3 mm
area:
� Each bit occupies about 1 square Angstrom, or the size of a

small atom.

§ No choice but parallelism

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 32

r = 0.3 mm
1 Tflop/s, 1 Tbyte
sequential machine

1/9/19

17

Revolution is Happening Now
§ Chip density is continuing

increase ~2x every 2 years
� Clock speed is not
� Number of processor cores

may double instead

§ There is little or no hidden
parallelism (ILP) to be found

§ Parallelism must be
exposed to and managed
by software

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 33

Tunnel Vision by Experts
§ “On several recent occasions, I have been asked whether parallel computing

will soon be relegated to the trash heap reserved for promising technologies
that never quite make it.”
o Ken Kennedy, CRPC Directory, 1994

§ “640K [of memory] ought to be enough for anybody.”
o Bill Gates, chairman of Microsoft,1981.

§ “There is no reason for any individual to have a computer in their home”
o Ken Olson, president and founder of Digital Equipment Corporation, 1977.

§ “I think there is a world market for maybe five computers.”
o Thomas Watson, chairman of IBM, 1943.

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 34

1/9/19

18

Why Parallelism (2018)?
§ All major processor vendors are producing multicore chips
� Every machine will soon be a parallel machine
� All programmers will be parallel programmers???

§ New software model
� Want a new feature? Hide the “cost” by speeding up the code first
� All programmers will be performance programmers???

§ Some may eventually be hidden in libraries, compilers, and high level
languages
� But a lot of work is needed to get there

§ Big open questions:
� What will be the killer apps for multicore machines
� How should the chips be designed, and how will they be programmed?

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 35

Phases of Supercomputing (Parallel)
Architecture
§ Phase 1 (1950s): sequential instruction execution
§ Phase 2 (1960s): sequential instruction issue
� Pipeline execution, reservations stations
� Instruction Level Parallelism (ILP)

§ Phase 3 (1970s): vector processors
� Pipelined arithmetic units
� Registers, multi-bank (parallel) memory systems

§ Phase 4 (1980s): SIMD and SMPs
§ Phase 5 (1990s): MPPs and clusters
� Communicating sequential processors

§ Phase 6 (>2000): many cores, accelerators, scale, …

CSC 447: Parallel Programming for Multi-Core and Cluster Systems 36Spring 2019

1/9/19

19

Spring 2019 CSC 447: Parallel Programming for Multi-Core and Cluster Systems 37

