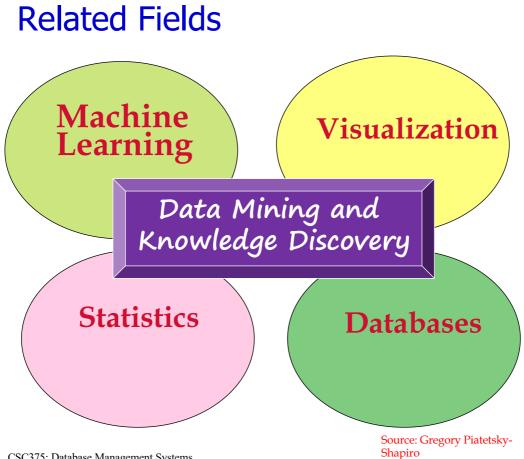
Data Mining, Big Data and **Analytics**


CSC 375 Fall 2019

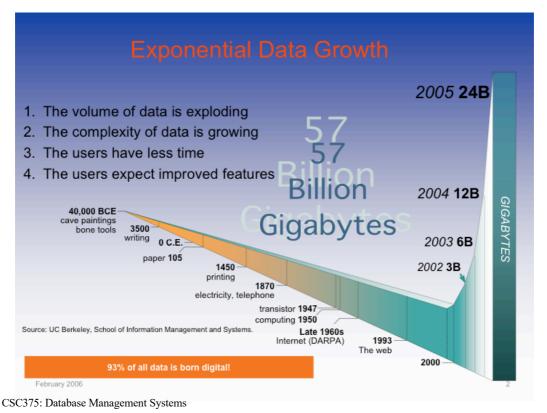
Data Minina Conference

Is this the place to learn about mining?

"To find signals in data, we must learn to reduce the noise ~ not just the noise that resides in the data, but also the noise that resides in us. It is nearly impossible for noisy minds to perceive anything but noise in data."

- Stephen Few

Introduction


- Big Data
 - Data that exist in very large volumes and many different varieties (data types) and that need to be processed at a very high velocity (speed).
- Analytics
 - Systematic analysis and interpretation of data typically using mathematical, statistical, and computational tools—to improve our understanding of a real-world domain.

Big Data and Databases: Famous Quotes

"640K ought to be enough for anybody."

Bill Gates, 1981

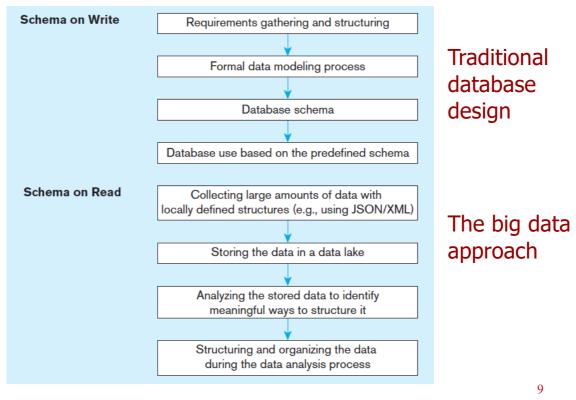
Digitization of Everything: the Zettabytes are coming

Characteristics of Big Data

• The Five Vs of Big Data

- Volume much larger quantity of data than typical for relational databases
- Variety lots of different data types and formats
- Velocity data comes at very fast rate (e.g. mobile sensors, web click stream)
- Veracity traditional data quality methods don't apply; how to judge the data's accuracy and relevance?
- Value big data is valuable to the bottom line, and for fostering good organizational actions and decisions

Characteristics of Big Data


- Schema on Read, rather than Schema on Write
 - Schema on Write– preexisting data model, how traditional databases are designed (relational databases)
 - Schema on Read data model determined later, depends on how you want to use it (XML, JSON)
 - Capture and store the data, and worry about how you want to use it later
- Data Lake
 - A large integrated repository for internal and external data that does not follow a predefined schema
 - Capture everything, dive in anywhere, flexible access

CSC375: Database Management Systems

Examples of JSON and XML

JSON Example	
{"products": [{"number": 1, "name": "Zoom X", "P {"number": 2, "name": "Wheel Z", "F {"number": 3, "name": "Spring 10",]}	rice": 7.50},
XML Example	eXtensible Markup
<products></products>	Language
<product></product>	
<number>1</number> <nar< td=""><th>e>Zoom X <price>10.00</price></th></nar<>	e>Zoom X <price>10.00</price>
<product></product>	
<number>2</number> <nar< td=""><th>e>Wheel Z<price>7.50</price></th></nar<>	e>Wheel Z <price>7.50</price>
<product></product>	
<number>3</number> <nan< td=""><th>e>Spring 10<price>12.75</price></th></nan<>	e>Spring 10 <price>12.75</price>

Schema on write vs. schema on read

CSC375: Database Management Systems

NoSQL

- NoSQL = Not Only SQL
- A category of recently introduced data storage and retrieval technologies not based on the relational model
- Scaling out rather than scaling up
- Natural for a cloud environment
- Supports schema on read
- Largely open source
- Not ACID compliant!
- BASE basically available, soft state, eventually consistent

NoSQL Classifications

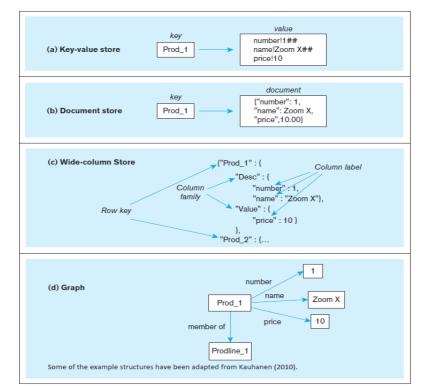
• Key-value stores

 A simple pair of a key and an associated collection of values. Key is usually a string. Database has no knowledge of the structure or meaning of the values.

Document stores

 Like a key-value store, but "document" goes further than "value". Document is structured so specific elements can be manipulated separately.

Wide-column stores


 Rows and columns. Distribution of data based on both key values (records) and columns, using "column groups/families"

Graph-oriented database

 Maintain information regarding the relationships between data items. Nodes with properties, Connections between nodes (relationships) can also have properties.

CSC375: Database Management Systems

Four-part figure illustrating NoSQL databases

NoSQL Comparison

- Redis Key-value store DBMS
- MongoDB document store DBMS
- Apache Cassandra wide-column store DBMS
- Neo4j graph DBMS

CSC375: Database Management Systems

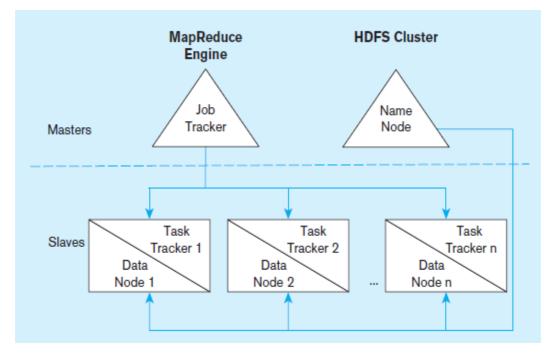
NoSQL Comparison

	Key-Value Store	Document Store	Column Oriented	Graph
Performance	high	high	high	variable
Scalability	high	variable/high	high	variable
Flexibility	high	high	moderate	high
Complexity	none	low	low	high
Functionality	variable	variable (low)	minimal	graph theory

Source: http://www.slideshare.net/bscofield/nosql-codemash-2010

Courtesy of Ben Scofield.

Hadoop


- Hadoop is an open source implementation framework of MapReduce
- MapReduce is an algorithm for massive parallel processing of various types of computing tasks
- Hadoop Distributed File System (HDFS) is a file system designed for managing a large number of potentially very large files in a highly distributed environment
- Hadoop is the most talked about Big-Data data management product today
- Hadoop is a good way to take a big problem and allow many computers to work on it simultaneously

CSC375: Database Management Systems

Hadoop Distributed File System (HDFS)

- A file system, not a DBMS, not relational
- Breaks data into blocks and distributes them on various computers (nodes) throughout a Hadoop cluster
- Each cluster consists of a NameNode (master server) and some DataNodes (slaves)
- Overall control through YARN ("yet another resource allocator")
- No updates to existing data in files, just appending to files
- "Move computation to the data", not vice versa

Four part figure illustrating NoSQL databases

CSC375: Database Management Systems

MapReduce

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay@google.com

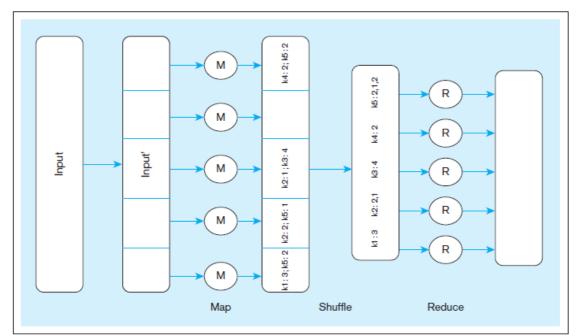
Google, Inc.

Abstract

ce is a programming model and an associentation for processing and generating large ers specify a *map* function that processes a ir to generate a set of intermediate key/value *educe* function that merges all intermediate ated with the same intermediate key. Many sks are expressible in this model, as shown given day, etc. Most such computations a ally straightforward. However, the input da large and the computations have to be distri hundreds or thousands of machines in orde a reasonable amount of time. The issues of allelize the computation, distribute the data failures conspire to obscure the original sir tation with large amounts of complex code these issues.

Google 2004

Build search index Compute PageRank


Hadoop: Opensource at Yahoo, Facebook

MapReduce

- Enables parallelization of data storage and computational problem solving in an environment consisting of a large number of commodity servers
- Programmers don't have to be experts at parallel processing
- Core idea divide a computing task so that a multiple nodes can work on it at the same time
- Each node works on local data doing local processing.
- Two stages:
 - Map stage divide for local processing
 - Reduce stage integrate the results of the individual map processes

CSC375: Database Management Systems

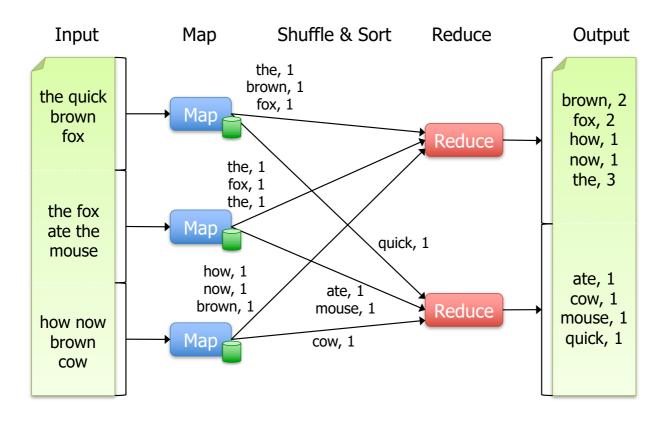
Schematic representation of MapReduce

MapReduce: Simplified Data Processing on Large Clusters, Jeff Dean, Sanjay Ghemawat, Google, Inc.,http:// research.google.com/archive/mapreduce-osdi04-slides/index-auto-0007.html.Courtesy of the authors. 20 CSC375: Database Management Systems

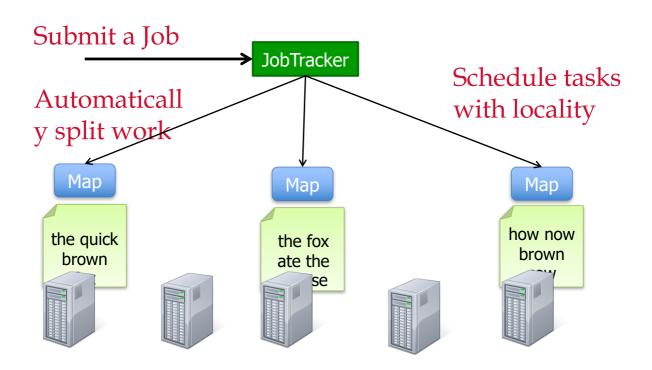
MapReduce Programming Model

Data type: Each record is (key, value)

Map function: $(K_{in}, V_{in}) \rightarrow \text{list}(K_{inter}, V_{inter})$

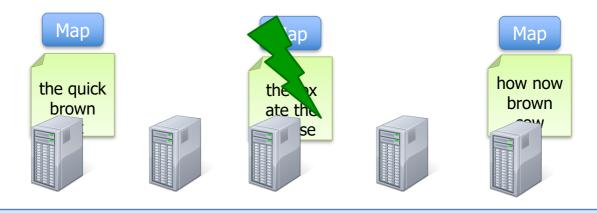

Reduce function: $(K_{inter} | list(V_{inter})) \rightarrow list(K_{out}, V_{out})$

Example: Word Count


def mapper(line):
for word in line.split():
 output(word, 1)

def reducer(key, values):
output(key, sum(values))

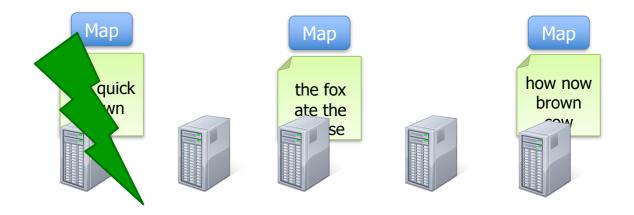
Word Count Execution


Word Count Execution

Fault Recovery

If a task crashes:

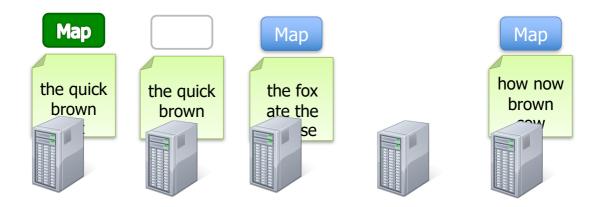
- Retry on another node
- If the same task repeatedly fails, end the job



Requires user code to be **deterministic**

Fault Recovery

If a node crashes:


- Relaunch its current tasks on other nodes
- Relaunch tasks whose outputs were lost

Fault Recovery

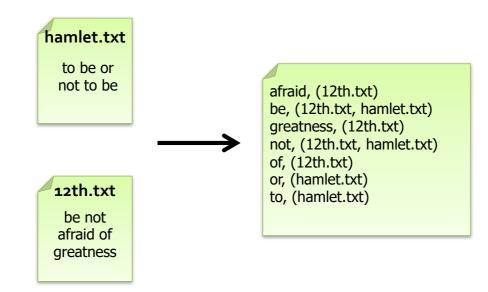
If a task is going slowly (straggler):

- Launch second copy of task on another node
- Take the output of whichever finishes first

Applications

1. Search

Input: (lineNumber, line) records Output: lines matching a given pattern


Map:

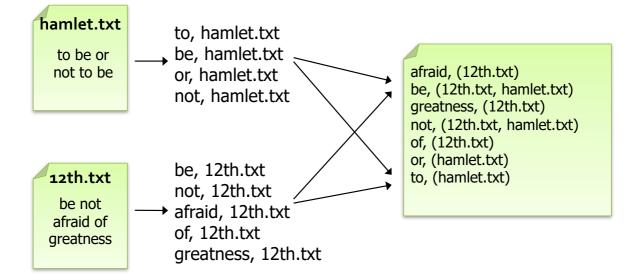
if(line matches pattern):
output(line)

Reduce: Identity function

- Alternative: no reducer (map-only job)

2. Inverted Index

2. Inverted Index


Input: (filename, text) records Output: list of files containing each word Map:

foreach word in text.split():
output(word, filename)

Reduce:

def reduce(word, filenames):
output(word, unique(filenames))

2.Inverted Index

MPI Versus MapReduce

MPI

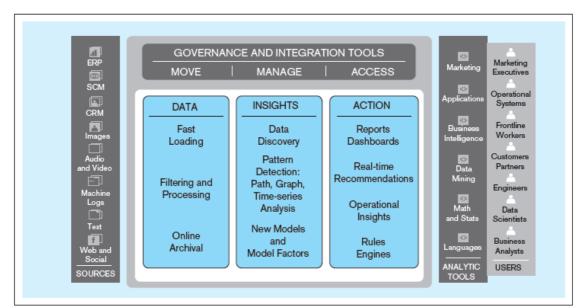
- Parallel process model
- Fine grain control
- High Performance

MapReduce

- High level dataparallel
- Automate locality, data transfers
- Focus on fault tolerance

Other Hadoop Components

- Pig
 - A tool that integrates a scripting language and an execution environment intended to simplify the use of MapReduce
 - Useful development tool
- Hive
 - An Apache project that supports the management and querying of large data sets using HiveQL, an SQL-like language that provides a declarative interface for managing data stored in Hadoop.
 - Useful for ETL tasks
- HBase
 - A wide-column store database that runs on top of HDFS
 - Not as popular as Cassandra


Integrated Analytics and Data Science Platforms

- Some vendors are bringing together traditional data warehousing and big data capabilities
- Examples
 - HP HSAVEn Hewlett Packard technologies combined with Hadoop open source and an analytics engine
 - Teradata Aster integrate SQL, graph analysis, MapReduce, R
 - IBM Big Data Platform combine IBM technologies with Hadoop, JSON Query Language (JAQL),DB2, Netezza

CSC375: Database Management Systems

35

Integrated Data Architecture

UNIFIED DATA ARCHITECTURE, 10.14, EB 7805, http://www.teradata.com/Resources/White-Papers/Teradata-Unified-Data-Architecture-in-Action. Courtesy of Teradata Corporation

Teradata Unified Data Architecture - logical view

Integrated Data Architecture

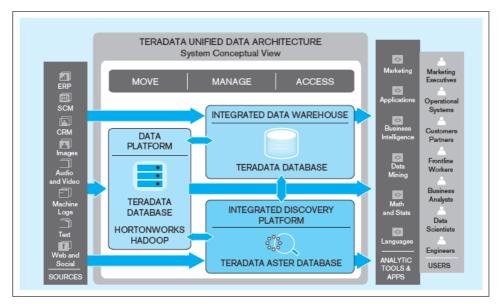
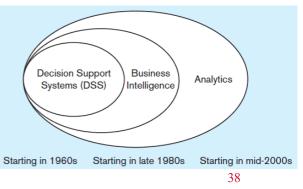


FIGURE 11-9 Teradata Unified Data Architecture – system conceptual view UNIFIED DATA ARCHITECTURE, 10.14, EB 7805, http://www.teradata.com/Resources/White-Papers/Teradata-Unified-Data-Architecture-in-Action. Courtesy of Teradata Corporation

Teradata Unified Data Architecture – system conceptual view

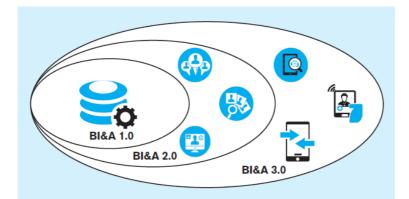
CSC375: Database Management Systems


37

Analytics

- Historical precedents to analytics:
 - Management information systems (MIS) → Decision Support Systems (DSS) → Executive Information Systems (EIS)
 - DSS idea evolved into Business Intelligence (BI)
- Business Intelligence a set of methodologies, processes, architectures, and technologies that transform raw data into meaningful and useful information.

Analytics encompasses more than BI


- Umbrella term that includes BI
- Transform data to useful form
- Infrastructure for analysis
- Data cleanup processes
- User interfaces

Types of Analytics

- Descriptive analytics describes the past status of the domain of interest using a variety of tools through techniques such as reporting, data visualization, dashboards, and scorecards
- Predictive analytics applies statistical and computational methods and models to data regarding past and current events to predict what might happen in the future
- Prescriptive analytics –uses results of predictive analytics along with optimization and simulation tools to recommend actions that will lead to a desired outcome

Generations of Business Intelligence and Analytics

Adapted from Chen et al., 2012

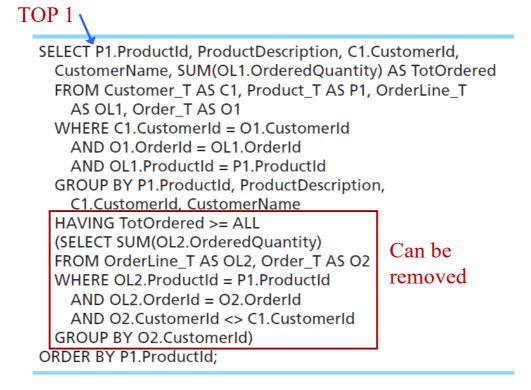
BI&A 1.0

BI&A 2.0

BI&A 2.0

Focus on structured quantitative data largely from relational databases Include data from the Web (web interaction logs, customer reviews, social media) Include data from mobile devices, (location, sensors, etc.) as well as Internet of Things 40

Use of Descriptive Analytics


- Descriptive analytics was the original emphasis of BI
- Reporting of aggregate quantitative query results
- Tabular or data visualization displays
- Dashboard a few key indicators
- Scorecard like a dashboard, but broader range
- OLAP online analytical processing

CSC375: Database Management Systems

SQL OLAP Querying

- SQL is generally not an analytic language, but it can be used for analysis.
- However, OLAP extensions to SQL make this easier.
- OLAP queries should support:
 - Categorization e.g. group data by dimension characteristics
 - Aggregation e.g. create averages per category
 - Ranking e.g. find customer in some category with highest average monthly sales

Regular SQL Query

CSC375: Database Management Systems

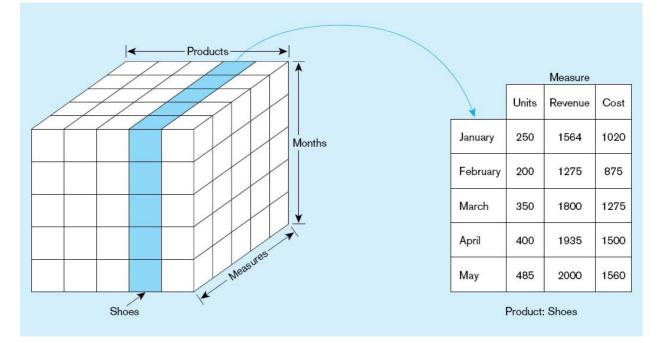
43

OLAP SQL Query

Consider a SalesHistory table (columns TerritoryID, Quarter, and Sales) and the desire to show a three-quarter moving average of sales.

SELECT TerritoryID, Quarter, Sales, AVG(Sales) OVER (PARTITION BY TerritoryID ORDER BY Quarter ROWS 2 PRECEDING) AS 3QtrAverage FROM SalesHistory;

TerritoryID	Quarter	Sales	3QtrAverage
Atlantic	1	20	20
Atlantic	2	10	15
Atlantic	3	6	12
Atlantic	4	29	15
East	1	5	5
East	2	7	6
East	3	12	8
East	4	11	10


OVER (also called WINDOW) is a special clause that provide a "sliding view" of rows from a query. PARTITION BY is like a GROUP by for OVER. 44

Online Analytical Processing (OLAP) Tools

- Online Analytical Processing (OLAP) -- the use of a set of graphical tools that provides users with multidimensional views of their data and allows them to analyze the data using simple windowing techniques
- Relational OLAP (ROLAP) OLAP tools that view the database as a traditional relational database in either a star schema or other normalized or denormalized set of tables
- Multidimensional OLAP (MOLAP) –OLAP tools that load data into an intermediate structure, usually a three- or higher-dimensional array.

CSC375: Database Management Systems

Slicing a data cube

Slicing, dicing, pivoting, and drill-down are useful cube operations

Example of drilldown

Brand	Package size	Sales
SofTowel	2-pack	\$75
SofTowel	3-pack	\$100
SofTowel	6-pack	\$50

Summary report

Starting with summary data, users can obtain details for particular cells.

Brand	Package size	Color	Sales
SofTowel	2-pack	White	\$30
SofTowel	2-pack	Yellow	\$25
SofTowel	2-pack	Pink	\$20
SofTowel	3-pack	White	\$50
SofTowel	3-pack	Green	\$25
SofTowel	3-pack	Yellow	\$25
SofTowel	6-pack	White	\$30
SofTowel	6-pack	Yellow	\$20

Drill-down with color added 47

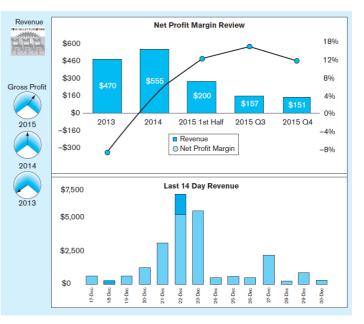
CSC375: Database Management Systems

Sample pivot table with four dimensions: Country (pages), Resort Name (rows), Travel Method, and No. of Days (columns)

Country	(All)														
Average of Price	Travel Method	No. of D	ays												
	Coach				Coach Total	Plane									Plane Total
Resort Name	4		5	7		6	7	8	10	14	16	21	32	60	
Aviemore				135	135										
Barcelona															
Black Forest	69				69										
Cork								269							269
Grand Canyon														1128	1128
Great Barrier Reef													750		750
Lake Geneva								699							699
London															
Los Angeles							295			375					335
Lyon										399					399
Malaga											234				234
Nerja						198				255					226.5
Nice							289								289
Paris-Euro Disney															
Prague			95		95										
Seville									199						199
Skiathos												429			429
Grand Total	69		95	135	99.66666667	198	292	484	199	343	234	429	750	1128	424.538461

Although the screen is only two dimensions, you can include more dimensions by combining multiple in a row or column, and by including paging 48 CSC375: Database Management Systems

Data Visualization


- Representation of data in graphical and multimedia formats for human analysis
- "A picture tells a thousand words"
- Without showing precise values, graphs and charts can depict relationships in the data
- Often used in dashboards, as shown in next slide

Business Performance Mgmt (BPM):

Sample Dashboard

BPM systems allow managers to:

- Measure,
- Monitor
- Manage key activities and processes to achieve organizational goals
- **Dashboards are** often used to provide an information system in support of BPM.

Charts like these are examples of data visualization, the representation of data in graphical and multimedia formats for human analysis. 50

Predictive Analytics

- Statistical and computational methods that use data regarding past and current events to form models regarding what might happen in the future
- Examples: classification trees, linear and logistic regression analysis, machine learning, neural networks, time series analysis, Bayesian modeling

Data Mining Tools

- Knowledge discovery using a sophisticated blend of techniques from traditional statistics, artificial intelligence, and computer graphics
- Goals:
 - Explanatory explain observed events or conditions
 - Confirmatory confirm hypotheses
 - Exploratory –analyze data for new or unexpected relationships
- Text mining Discovering meaningful information algorithmically based on computational analysis of unstructured textual information

Technique	Function
Regression	Test or discover relationships from historical data
Decision tree induction	Test or discover if then rules for decision propensity
Clustering and signal processing	Discover subgroups or segments
Affinity	Discover strong mutual relationships
Sequence association	Discover cycles of events and behaviors
Case-based reasoning	Derive rules from real-world case examples
Rule discovery	Search for patterns and correlations in large data sets
Fractals	Compress large databases without losing information
Neural nets	Develop predictive models based on principles modeled after the human brain

TABLE 11-4 Data-Mining Techniques

CSC375: Database Management Systems

TABLE 11-5 Typical Data-Mining Applications						
Data-Mining Application	Example					
Profiling populations	Developing profiles of high-value customers, credit risks, and credit-card fraud.					
Analysis of business trends	Identifying markets with above-average (or below-average) growth.					
Target marketing	Identifying rustomers (or customer segments) for promotional activity.					
Usage analysis	Identifying usage patterns for products and services.					
Campaign effectiveness	Comparing campaign strategies for effectiveness.					
Product affinity	Identifying products that are purchased concurrently or identifying the characteristics of shoppers for certain product groups.					
Customer retention and churn	Examining the behavior of customers who have left for competitors to prevent remaining customers from leaving.					
Profitability analysis	Determining which customers are profitable, given the total set of activities the customer has with the organization.					
Customer value analysis	Determining where valuable customers are at different stages in their life.					
Upselling	Identifying new products or services to sell to a customer based upon critical events and life-style changes.					

TABLE 11-5 Typical Data-Mining Applications

Source: Based on Dyché (2000).

54

KNIME Example of Predictive Analytics

- Credit scoring
 - Takes past financial data to produce a credit score
 - Starts with decision trees, neural networks, and support vector machine (SVM) algorithms for initial model
 - Next uses Predictive Modeling Markup Language (PMML)
- Marketing
 - Churn analysis predicting which customers will leave using clustering via k-means algorithm
 - Social media analysis using association rules

CSC375: Database Management Systems

Use of Prescriptive Analytics

- Use of optimization and simulation tools for prescribing the best action to take
- Example applications
 - Making trading decisions in securities and stock market
 - Making pricing decisions for airlines and hotels
 - Making product recommendations (e.g. Amazon and Netflix)
- Often requires predictive analytics and game theory

Analytics Data Management Infrastructure

- Important criteria: scalability, parallelism, low latency, and data optimization
- These criteria ensure speed, availability, and access

TABLE 11-6 Technologies Enabling Infrastructure Advances in Data Management						
Massively parallel processing (MPP)	Instead of relying on a single processor, MPP divides a computing task (such as query processing) between multiple processors, speeding it up significantly.					
In-memory DBMSs	In-memory DBMSs keep the entire database in primary memory, thus enabling significantly faster processing.					
In-database analytics	If analytical functions are integrated directly to the DBMS, there is no need to move large quantities of data to separate analytics tools for processing.					
Columnar DBMSs	They reorient the data in the storage structures, leading to efficiencies in many data warehousing and other analytics applications. 57					

CSC375: Database Management Systems

Big Data and Analytics Impact: Applications

- Business
- E-government and politics
- Science and technology
- Smart health and well-being
- Security and public safety

Big Data and Analytics Impact: Social Implications

- Personal privacy vs. collective benefit
- Ownership and access
- Data/algorithm quality and reuse
- Transparency and validation
- Demands for workforce capabilities and education

59

Slides adapted from: Jeff Hoffer, Ramesh Venkataraman, Heikki Topi

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.