Information Retrieval

CSC 375, Fall 2019

An information retrieval system will tend not to be used whenever it is more painful and troublesome for a customer to have information than for him not to have it.

Zator Technical Bulletin, 136, "Mooers' Law; or why some retrieval systems are used and others are not", Zator Company, 1959

Slides slightly modified from Ramez Elmasri and Shamkant Navathe (2011)

Information Retrieval (IR) Concepts

- Information retrieval
 - Process of retrieving documents from a collection in response to a query by a user
- Introduction to information retrieval
 - What is the distinction between structured and unstructured data?
 - Information retrieval defined
 - "Discipline that deals with the structure, analysis, organization, storage, searching, and retrieval of information"

Information Retrieval (IR) Concepts (cont'd.)

- User's information need expressed as a free-form search request
 - Keyword search query
 - Query
- IR systems characterized by:
 - Types of users
 - Types of data
 - Types of information needed
 - Levels of scale

Information Retrieval

Information Retrieval (IR) Concepts (cont'd.)

- High noise-to-signal ratio
- Enterprise search systems
 - IR solutions for searching different entities in an enterprise's intranet
- Desktop search engines
 - Retrieve files, folders, and different kinds of entities stored on the computer

Information Retrieval Systems

- Information retrieval (IR) systems use a simpler data model than database systems
 - Information organized as a collection of documents
 - Documents are unstructured, no schema
- Information retrieval locates relevant documents, on the basis of user input such as keywords or example documents
 - e.g., find documents containing the words "database systems"
- Can be used even on textual descriptions provided with non-textual data such as images
- Web search engines are the most familiar example of IR systems

Information Retrieval

5

Information Retrieval Systems (Cont.)

- Differences from database systems
 - IR systems don't deal with transactional updates (including concurrency control and recovery)
 - Database systems deal with structured data, with schemas that define the data organization
 - IR systems deal with some querying issues not generally addressed by database systems
 - Approximate searching by keywords
 - Ranking of retrieved answers by estimated degree of relevance

Databases and IR Systems: A Comparison

Table 27.1 A Comparison of Databases and IR Systems

Databases

- Structured data
- Schema driven
- Relational (or object, hierarchical, and network) model is predominant
- Structured query model
- Rich metadata operations
- Query returns data
- Results are based on exact matching (always correct)

IR Systems

- Unstructured data
- No fixed schema; various data models (e.g., vector space model)
- Free-form query models
- Rich data operations
- Search request returns list or pointers to documents
- Results are based on approximate matching and measures of effectiveness (may be imprecise and ranked)

Brief History of IR

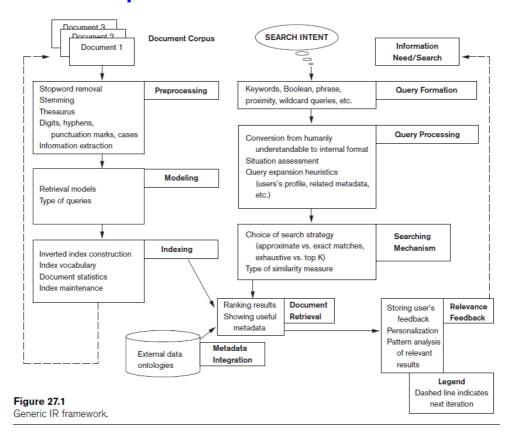
- Inverted file organization
 - Based on keywords and their weights
 - SMART system in 1960s
- Text Retrieval Conference (TREC)
- Search engine
 - Application of information retrieval to largescale document collections
 - Crawler
 - Responsible for discovering, analyzing, and indexing new documents

Modes of Interaction in IR Systems

- Query
 - Set of terms
 - Used by searcher to specify information need
- Main modes of interaction with IR systems:
 - Retrieval
 - Extraction of information from a repository of documents through an IR query
 - Browsing
 - User visiting or navigating through similar or related documents

Information Retrieval

Modes of Interaction in IR Systems (cont'd.)


- Hyperlinks
 - Used to interconnect Web pages
 - Mainly used for browsing
- Anchor texts
 - Text phrases within documents used to label hyperlinks
 - Very relevant to browsing

Modes of Interaction in IR Systems (cont'd.)

- Web search
 - Combines browsing and retrieval
- Rank of a Webpage
 - Measure of relevance to query that generated result set

Information Retrieval

Generic IR Pipeline

Generic IR Pipeline (cont'd.)

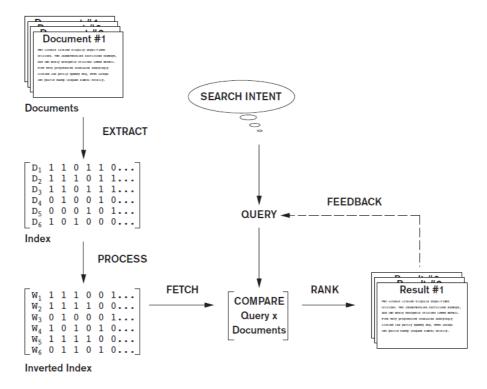


Figure 27.2
Simplified IR process pipeline.
Information Retrieval

13

Retrieval Models

- Three main statistical models
 - Boolean
 - Vector space
 - Probabilistic
- Semantic model

Boolean Model

- Documents represented as a set of terms
- Form queries using standard Boolean logic set-theoretic operators
 - AND, OR and NOT
- Retrieval and relevance
 - Binary concepts
- Lacks sophisticated ranking algorithms

Information Retrieval

Vector Space Model

- Documents
 - Represented as features and weights in an ndimensional vector space
- Query
 - Specified as a terms vector
 - Compared to the document vectors for similarity/relevance assessment

Vector Space Model (cont'd.)

- Different similarity functions can be used
 - Cosine of the angle between the query and document vector commonly used
- TF-IDF
 - Statistical weight measure
 - Used to evaluate the importance of a document word in a collection of documents
- Rocchio algorithm
 - Well-known relevance feedback algorithm

Information Retrieval 17

Relevance Ranking Using Terms

- TF-IDF (Term frequency/Inverse Document frequency) ranking:
 - Let n(d) = number of terms in the document d
 - n(d, t) = number of occurrences of term t in the document d.
 - Relevance of a document d to a term t

$$TF(d, t) = log \left(1 + \frac{n(d, t)}{n(d)}\right)$$

The log factor is to avoid excessive weight to frequent terms

Relevance of document to query Q

$$r(d, Q) = \sum_{t \in Q} \frac{TF(d, t)}{n(t)}$$

18

Similarity Based Retrieval

- Similarity based retrieval retrieve documents similar to a given document
 - Similarity may be defined on the basis of common words
 - E.g. find k terms in A with highest TF (d, t) / n (t) and use these terms to find relevance of other documents.
- Relevance feedback: Similarity can be used to refine answer set to keyword query
 - User selects a few relevant documents from those retrieved by keyword query, and system finds other documents similar to these
- Vector space model: define an n-dimensional space, where n is the number of words in the document set.
 - Vector for document d goes from origin to a point whose ith coordinate is TF (d,t) / n (t)
 - The cosine of the angle between the vectors of two documents is used as a measure of their similarity.

Information Retrieval 19

Probabilistic Model

- Probability ranking principle
 - Decide whether the document belongs to the relevant set or the nonrelevant set for a query
- Conditional probabilities calculated using Bayes' Rule
- BM25 (Best Match 25)
 - Popular probabilistic ranking algorithm
- Okapi system

Semantic Model

- Include different levels of analysis
 - Morphological
 - Syntactic
 - Semantic
- Knowledge-based IR systems
 - Based on semantic models
 - Cyc knowledge base
 - WordNet

Information Retrieval 21

Types of Queries in IR Systems

- Keywords
 - Consist of words, phrases, and other characterizations of documents
 - Used by IR system to build inverted index
- Queries compared to set of index keywords
- Most IR systems
 - Allow use of Boolean and other operators to build a complex query

Keyword Queries

- Simplest and most commonly used forms of IR queries
- Keywords implicitly connected by a logical AND operator
- Remove stopwords
 - Most commonly occurring words
 - a, the, of
- IR systems do not pay attention to the ordering of these words in the query

Information Retrieval 23

Boolean Queries

- AND: both terms must be found
- OR: either term found
- NOT: record containing keyword omitted
- (): used for nesting
- +: equivalent to and
- Boolean operators: equivalent to AND NOT
- Document retrieved if query logically true as exact match in document

Phrase Queries

- Phrases encoded in inverted index or implemented differently
- Phrase generally enclosed within double quotes
- More restricted and specific version of proximity searching

Information Retrieval 25

Proximity Queries

- Accounts for how close within a record multiple terms should be to each other
- Common option requires terms to be in the exact order
- Various operator names
 - NEAR, ADJ(adjacent), or AFTER
- Computationally expensive

Wildcard Queries

- Support regular expressions and pattern matching-based searching
 - 'Data*' would retrieve data, database, datapoint, dataset
- Involves preprocessing overhead
- Not considered worth the cost by many Web search engines today
- Retrieval models do not directly provide support for this query type

Information Retrieval 27

Natural Language Queries

- Few natural language search engines
- Active area of research
- Easier to answer questions
 - Definition and factoid questions

Text Preprocessing

- Commonly used text preprocessing techniques
- Part of text processing task

Information Retrieval

Stopword Removal

- Stopwords
 - Very commonly used words in a language
 - Expected to occur in 80 percent or more of the documents
 - the, of, to, a, and, in, said, for, that, was, on, he, is, with, at, by, and it
- Removal must be performed before indexing
- Queries can be preprocessed for stopword removal

Stemming

- Stem
 - Word obtained after trimming the suffix and prefix of an original word
- Reduces different forms of the word formed by inflection
- Most famous stemming algorithm:
 - Martin Porter's stemming algorithm

Information Retrieval

Utilizing a Thesaurus

- Thesaurus
 - Precompiled list of important concepts and the main word that describes each
 - Synonym converted to its matching concept during preprocessing
 - Examples:
 - UMLS
 - Large biomedical thesaurus of concepts/meta concepts/relationships
 - WordNet
 - Manually constructed thesaurus that groups words into strict synonym sets

Other Preprocessing Steps: Digits, Hyphens, Punctuation Marks, Cases

- Digits, dates, phone numbers, e-mail addresses, and URLs may or may not be removed during preprocessing
- Hyphens and punctuation marks
 - May be handled in different ways
- Most information retrieval systems perform case-insensitive search
- Text preprocessing steps language specific

Information Retrieval 33

Information Extraction

- Generic term
- Extracting structured content from text
- Examples of IE tasks
- Mostly used to identify contextually relevant features that involve text analysis, matching, and categorization

Inverted Indexing

- Vocabulary
 - Set of distinct query terms in the document set
- Inverted index
 - Data structure that attaches distinct terms with a list of all documents that contains term
- Steps involved in inverted index construction

Information Retrieval 35

Document 1

This example shows an example of an inverted index.

Document 2

Inverted index is a data structure for associating terms to documents.

Document 2

Stock market index is used for capturing the sentiments of the financial market.

ID	lerm	Document: position
1.	example	1:2, 1:5
2.	inverted	1:8, 2:1
3.	index	1:9, 2:2, 3:3
4.	market	3:2, 3:13

Figure 27.4 Example of an inverted index.

Evaluation Measures of Search Relevance

- Topical relevance
 - Measures extent to which topic of a result matches topic of query
- User relevance
 - Describes "goodness" of a retrieved result with regard to user's information need
- Web information retrieval
 - Must evaluate document ranking order

Information Retrieval 37

Measuring Retrieval Effectiveness

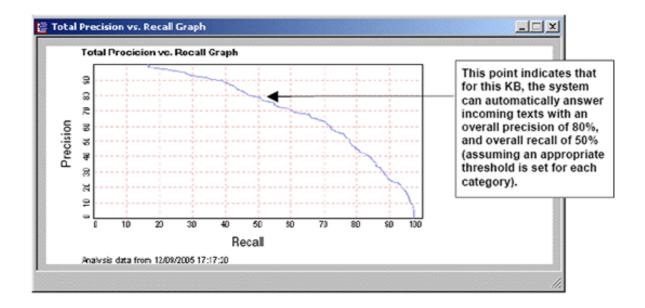
- Information-retrieval may result in:
 - false negative (false drop) some relevant documents may not be retrieved.
 - false positive some irrelevant documents may be retrieved.
 - For many applications a good index should not permit any false drops, but may permit a few false positives.
- Need relevant performance metrics

Recall and Precision

- Precision is the fraction of retrieved instances that are relevant
- Recall is the fraction of relevant instances that are retrieved
- Formally,
 - Recall
 - Fraction of the documents that are relevant to the query that are successfully retrieved.
 - Number of <u>relevant</u> documents retrieved by a search / Total number of existing relevant documents
 - Precision
 - Fraction of retrieved documents that are relevant to the search
 - Number of <u>relevant</u> documents retrieved by a search / Total number of documents retrieved by that search

Information Retrieval 39

Measuring Retrieval Effectiveness (Cont.)


- Recall vs. precision tradeoff:
 - Can increase recall by retrieving many documents (down to a low level of relevance ranking), but many irrelevant documents would be fetched, reducing precision
- Measures of retrieval effectiveness:
 - Recall as a function of number of documents fetched, or
 - Precision as a function of recall
 - Equivalently, as a function of number of documents fetched
 - E.g. "precision of 75% at recall of 50%, and 60% at a recall of 75%"
- Problem: which documents are actually relevant, and which are not

Recall and Precision (cont'd.)

- Average precision
 - Useful for computing a single precision value to compare different retrieval algorithms
- Recall/precision curve
 - Usually has a negative slope indicating inverse relationship between precision and recall
- F-score
 - Single measure that combines precision and recall to compare different result sets

Information Retrieval 41

Recall/precision curve

Web Search and Analysis

- Vertical search engines
 - Topic-specific search engines
- Metasearch engines
 - Query different search engines simultaneously
- Digital libraries
 - Collections of electronic resources and services

Information Retrieval 43

Web Analysis and Its Relationship to IR

- Goals of Web analysis:
 - Improve and personalize search results relevance
 - Identify trends
- Classify Web analysis:
 - Web content analysis
 - Web structure analysis
 - Web usage analysis

Searching the Web

- Hyperlink components
 - Destination page
 - Anchor text
- Hub
 - Web page or a Website that links to a collection of prominent sites (authorities) on a common topic

Information Retrieval 45

Analyzing the Link Structure of Web Pages

- The PageRank ranking algorithm
 - Used by Google
 - Highly linked pages are more important (have greater authority) than pages with fewer links
 - Measure of query-independent importance of a page/node
- HITS Ranking Algorithm
 - Contains two main steps: a sampling component and a weight-propagation component

Web Content Analysis

- Structured data extraction
 - Several approaches: writing a wrapper, manual extraction, wrapper induction, wrapper generation
- Web information integration
 - Web query interface integration and schema matching
- Ontology-based information integration
 - Single, multiple, and hybrid

Information Retrieval 47

Web Content Analysis (cont'd.)

- Building concept hierarchies
 - Documents in a search result are organized into groups in a hierarchical fashion
- Segmenting Web pages and detecting noise
 - Eliminate superfluous information such as ads and navigation

Approaches to Web Content Analysis

- Agent-based approach categories
 - Intelligent Web agents
 - Information filtering/categorization
 - Personalized Web agents
- Database-based approach
 - Infer the structure of the Website or to transform a Web site to organize it as a database

Information Retrieval 49

Web Usage Analysis

- Typically consists of three main phases:
 - Preprocessing, pattern discovery, and pattern analysis
- Pattern discovery techniques:
 - Statistical analysis
 - Association rules
 - Clustering of users
 - Establish groups of users exhibiting similar browsing patterns
 - Clustering of pages
 - Pages with similar contents are grouped together
 - Sequential patterns
 - Dependency modeling
 - Pattern modeling

Practical Applications of Web Analysis

- Web analytics
 - Understand and optimize the performance of Web usage
- Web spamming
 - Deliberate activity to promote a page by manipulating results returned by search engines
- Web security
- Alternate uses for Web crawlers

Information Retrieval 51

Web Search Engines

- Web crawlers are programs that locate and gather information on the Web
 - Recursively follow hyperlinks present in known documents, to find other documents
 - Starting from a seed set of documents
 - Fetched documents
 - Handed over to an indexing system
 - Can be discarded after indexing, or store as a cached copy
- Crawling the entire Web would take a very large amount of time
 - Search engines typically cover only a part of the Web, not all of it
 - Take months to perform a single crawl

Web Crawling (Cont.)

- Crawling is done by multiple processes on multiple machines, running in parallel
 - Set of links to be crawled stored in a database
 - New links found in crawled pages added to this set, to be crawled later
- Indexing process also runs on multiple machines
 - Creates a new copy of index instead of modifying old index
 - Old index is used to answer queries
 - After a crawl is "completed" new index becomes "old" index
- Multiple machines used to answer queries
 - Indices may be kept in memory
 - Queries may be routed to different machines for load balancing

Information Retrieval 53

Trends in Information Retrieval

- Faceted search
 - Allows users to explore by filtering available information
 - Facet
 - Defines properties or characteristics of a class of objects
- Social search
 - New phenomenon facilitated by recent Web technologies: collaborative social search, guided participation
- Conversational search (CS)
 - Interactive and collaborative information finding interaction
 - Aided by intelligent agents

Summary

- IR introduction
 - Basic terminology, query and browsing modes, semantics, retrieval modes
- Web search analysis
 - Content, structure, usage
 - Algorithms
 - Current trends