
Relational Query
Optimization

CS 375, Fall 2019

It is safer to accept any chance
that offers itself, and extemporize
a procedure to fit it, than to get a
good plan matured, and wait
for a chance of using it.

Thomas Hardy (1874)
in Far from the Madding Crowd

Overview of Query Evaluation

• Plan: Tree of R.A. ops, with choice of alg for each
op.

– Each operator typically implemented using a `pull’
interface: when an operator is `pulled’ for the next output
tuples, it `pulls’ on its inputs and computes them.

• Two main issues in query optimization:
– For a given query, what plans are considered?

• Algorithm to search plan space for cheapest (estimated) plan.
– How is the cost of a plan estimated?

• Ideally: Want to find best plan.
• Practically: Avoid worst plans!

Some Common Techniques

• Algorithms for evaluating relational operators use
some simple ideas extensively:
– Indexing: Can use WHERE conditions to retrieve small set of

tuples (selections, joins)
– Iteration: Sometimes, faster to scan all tuples even if there

is an index. (And sometimes, we can scan the data entries in
an index instead of the table itself.)

– Partitioning: By using sorting or hashing, we can partition
the input tuples and replace an expensive operation by
similar operations on smaller inputs.

Watch for these techniques as we discuss query evaluation!

Statistics and Catalogs

• Need information about the relations and indexes
involved. Catalogs typically contain at least:

– # tuples (NTuples) and # pages (NPages) for each relation.
– # distinct key values (NKeys) and NPages for each index.
– Index height, low/high key values (Low/High) for each tree index.

• More detailed information (e.g., histograms of the
values in some field) are sometimes stored.

• Catalogs updated periodically.
– Updating whenever data changes is too expensive; lots of

approximation anyway, so slight inconsistency ok.

Histogram

Avoid using
unclustered index in

this range

Access Paths

• An access path is a method of retrieving tuples:
– File scan, or index that matches a selection (in the query)

• A tree index matches (a conjunction of) terms that
involve only attributes in a prefix of the search key.

– Example: Tree index on <a, b, c> matches the selection a=5
AND b=3, and a=5 AND b>6, but not b=3.

• A hash index matches (a conjunction of) terms that has a
term attribute = value for every attribute in the search
key of the index.

– Example: Hash index on <a, b, c> matches a=5 AND b=3 AND
c=5; but it does not match b=3, or a=5 AND b=3, or a>5 AND
b=3 AND c=5.

A Note on Complex Selections

• Selection conditions are first converted to
conjunctive normal form (CNF):

(day<8/9/94 OR bid=5 OR sid=3) AND (rname=‘Paul’ OR bid=5 OR sid=3)

• We only discuss case with no ORs; see text if you
are curious about the general case.

(day<8/9/94 AND rname=‘Paul’) OR bid=5 OR sid=3

One Approach to Selections
• Find the most selective access

path, retrieve tuples using it,
and apply any remaining terms
that don’t match the index:

– Most selective access path: An index
or file scan that we estimate will
require the fewest page I/Os.

– Terms that match this index reduce
the number of tuples retrieved; other
terms are used to discard some
retrieved tuples, but do not affect
number of tuples/pages fetched.

Database

Access
Path

Other
terms

Fewest
I/O’s

No additional
I/O’s

One Approach to Selections -
Example

Consider day<8/9/94 AND
bid=5 AND sid=3.

§ A B+ tree index on day can
be used; then, bid=5 and
sid=3 must be checked for
each retrieved tuple.

§ Similarly, a hash index on
<bid, sid> could be used;
day<8/9/94 must then be
checked.

Database

B+ tree
on day

Check
bid & sid

Fewest
I/O’s

No additional
I/O’s

Using an Index for Selections
• Cost depends on #qualifying tuples, and

clustering.

Cost = Cost(finding qualifying data entries)
+ Cost(retrieving record)

Example: Assuming uniform distribution of names, about
5% of tuples qualify (say 100 pages, 10,000 tuples).
§ With a clustered index, cost is little more than 100 I/Os;
§ if unclustered, up to 10,000 I/Os!

SELECT *
FROM Reserves R
WHERE R.rname LIKE ‘C%’

Typically small

Could be large
w/o clustering

Duplicates Elimination Using Sorting
• The expensive part is removing duplicates.

SQL systems don’t remove duplicates unless the
keyword DISTINCT is specified in a query.

• Sorting Approach: Sort on <sid, bid> and remove
duplicates. (Can optimize this by dropping unwanted
attributes while sorting.)

• Sorting Data Entries: If there is an index with both
R.sid and R.bid in the search key, may be cheaper to
sort data entries!

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

Duplicates Elimination Using Hashing

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

H1

H2
Memory

B1B1B1B1B1B2

B1.1 B1.2 B1.3 B1.3

What is the I/O cost ?

Eliminate duplicatesH1 & H2 are
hash functions

Join: Index Nested Loops (1)

• If there is an index on the join column of one relation
(say S), can make it the inner and exploit the index.

– Cost: M + ((M*pR) ´ cost of finding matching S tuples)

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

1
2

M

.

.

.

R

1 Index

1
2

N

.

.

.

S

pr tuples/page

Fetch into
memory

Join: Index Nested Loops (2)
vFor each R tuple, cost of probing S index (i.e., finding

data entry) is about 1.2 for hash index, 2-4 for B+ tree.
vCost of then finding S tuples (assuming Alt. (2) or (3) for

data entries) depends on clustering.
§ Clustered index: 1 I/O (typical),
§ Unclustered: upto 1 I/O per matching S tuple.

1
2

M

.

.

.

R

1 Index

1
2

N

.

.

.

S

pr tuples/page

Fetch into
memory

Examples of Index Nested Loops (1)
• Hash-index (Alt. 2) on sid of Sailors (as inner):

– Scan Reserves: 1,000 page I/Os, 100*1,000 tuples.
– For each Reserves tuple: 1.2 I/Os to get data entry in index,

plus 1 I/O to get (the exactly one) matching Sailors tuple.

– Total: 1,000 + (100´1,000) ´ (1.2 +1) » 220,000 I/Os.

Load Reserves
pages

of Reserves
tuples

Cost of finding all
matching Sailors

tuples

Find the
matching

Sailors tuple

Examples of Index Nested Loops
vHash-index (Alt. 2) on sid of Reserves (as inner):

§ Scan Sailors: 500 page I/Os, 80´500 tuples.

§ Assuming uniform distribution, 2.5 reservations per sailor,
there are (80´500)´2.5 = 100,000 matching Reserves tuples.

§ For each Sailors tuple: 1.2 I/Os to find index page with data
entries, plus cost of retrieving matching Reserves tuples.

§ COST = 500 + (80´500)´1.2 + Cost(Fetching 100,000
matching Reserves tuples)

Load Sailors
pages Find matching

data entries Cost of finding each match is
1/2.5 or 1 I/Os depending on

whether the index is clustered

Join: Sort-Merge (R S)
Sort R and S on the join column, then
scan them to do a ``merge’’ (on join
col.), and output result tuples.

– Advance scan of R until current R-tuple >=
current S tuple, then advance scan of S until
current S-tuple >= current R tuple; do this
until current R tuple = current S tuple.

– At this point, all R tuples with same value in
Ri (current R group) and all S tuples with
same value in Sj (current S group) match;
output <r, s> for all pairs of such tuples.

– Then resume scanning R and S.

!"i=j

SC
AN

SC
AN

SC
AN SC

AN

RelationR RelationS

COST: R is scanned once;
each S group is scanned
once per matching R tuple.

Often fits
in one page

Example of Sort-Merge Join

Cost: M log M + N log N + (M+N)
§ The cost of scanning, M+N, could be M*N (very unlikely!)

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

Merger Sort
O

rig
in

al
 re

la
tio

n Sorted relation
In-memory sorting

Merging two
sorted lists

Log28 passes

Each pass
requires 2

rounds of I/Os

Highlights of System R Optimizer

• Impact:
– Most widely used currently; works well for < 10 joins.

• Cost estimation: Approximate art at best.
– Statistics, maintained in system catalogs, used to estimate

cost of operations and result sizes.

– Considers combination of CPU and I/O costs.

• Plan Space: Too large, must be pruned.
– Only the space of left-deep plans is considered.

• Left-deep plans allow output of each operator to be pipelined into
the next operator without storing it in a temporary relation.

– Cartesian products avoided.

Query Block
vAn SQL query is parsed into a collection of query

blocks and then passed on to the query
optimizer

vA query block is an SQL query with no nesting
SELECT S.sid, MIN(R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.sid=R.sid AND R.bid-B.bid AND

B.colr=‘red’ AND
S.rating = (SELECT MAX (S2.rating)

FROM Sailors S2)
GROUP BY S.sid
HAVING COUNT(*)>1

SELECT S.sid, MIN(R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.sid=R.sid AND R.bid-B.bid AND

B.colr=‘red’ AND
S.rating = Reference to nested

block
GROUP BY S.sid
HAVING COUNT(*)>1

SELECT MAX (S2.rating)
FROM Sailors S2

The query optimizer considers each
query block and chooses a query
evaluation plan for that block.

Query Processor

SQL Query

Query Parser

Plan
Generator

Plan Cost
Estimator

Catalog
Manager

Query Plan Evaluator

Evaluation
plan

Cost Estimation

For each plan considered, must estimate cost:
– Must estimate cost of each operation in plan tree.

• Depends on input cardinalities.
• We’ve already discussed how to estimate the cost of

operations (sequential scan, index scan, joins, etc.)

– Must also estimate size of result for each operation
in tree!

• Use information about the input relations.
• For selections and joins, assume independence of

predicates.

Size Estimation and Reduction Factors

• Maximum # tuples in result is the product of the
cardinalities of relations in the FROM clause.

• Reduction factor (RF) associated with each term
reflects the impact of the term in reducing result size.

Result cardinality = Max # tuples ´ product of all RF’s
Þ Implicit assumption that terms are independent!

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Consider a query block:

Size Estimation and Reduction Factors

Result cardinality = Max # tuples ´ product of all RF’s
•Term col=value has RF 1/NKeys(I), given index I on col

EXAMPLE: If the number of distinct key values is 100,
size(result) = 1%*size(operand relation)

•Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))
OBSERVATION:
– The smaller the numbers of distinct key values, the bigger the size

of the result due to more matches between the two operand
relations.

– If Nkeys(I1)=Nkeys(I2)=1, RF=1 and size(R1 R2) = size(R1´R2)

•Term col>value has RF (High(I)-value)/(High(I)-Low(I))
– RF is the percentage of the tuples that satisfy the term

!"

Schema for Examples

• Similar to old schema; rname added for variations.

• Reserves:
– Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.

• Sailors:
– Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Plan Generation (1)

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5

Õsname(ssid=sid Ù bid=100 Ù rating>5 (R´S))
= Õsname(sbid=100 Ù rating>5 (ssid=sid (R´S)))

= Õsname(sbid=100 Ù rating>5 (R S))!"

FROM clause WHERE clause SELECT clause

Plan Generation (2)

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5 Reserves Sailors

sid=sid

bid=100 rating > 5

snameRA Tree:

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)Plan:
Õsname(sbid=100 Ù rating>5 (R S))

On-the-fly Þ Save I/O

!"

Motivating Example

• Cost: 500 + 500´1000 I/Os

• By no means the worst plan!

• Misses several opportunities:
selections could have been
`pushed’ earlier, no use is made
of any available indexes, etc.

• Goal of optimization: To find
more efficient plans that compute
the same answer.

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

snameRA Tree:

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)Plan:

Alternative Plans 1
(No Indexes)

• Main difference: push selects.
• With 5 buffer pages, cost of plan:

– Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats,
uniform distribution Þ RF=1%).

– Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings
Þ RF=5/10).

– Sort T1 (2´2´10), sort T2 (2´6´250), merge (10+250)
– Total: 5,060 page I/Os.

Reserves Sailors

sid=sid

bid=100

sname(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Need 6 passes
Each pass requires 2 rounds of I/Os

Alternative Plans 1
(No Indexes)

• Main difference: push selects.
• With 5 buffer pages, cost of plan:

– TotalCost(using sort-merge join) = 5,060 page I/Os.

• If we used Block Nested Loop join, join cost = 10 + 4´250,
total cost = 2770.

• If we `push’ projections, T1 has only sid, T2 only sid and
sname:

– T1 fits in 3 pages, cost of BNL drops to about 250 pages, total < 2000.

Reserves Sailors

sid=sid

bid=100

sname(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(BNL Join)

Scan T2 for every
3 pages of T1
Þneed to scan T2
é10/3ù or four times

Alternative Plans 2
with Indexes

• With clustered index on bid of
Reserves, we get 100,000/100 = 1000
tuples on 1000/100 = 10 pages.

• INL with pipelining (outer is not
materialized, i.e., not written to disk).

! Decision not to push rating > 5 before the join is based on
availability of sid index on Sailors.

! Cost: Selection of Reserves tuples (10 I/Os); for each,
must get matching Sailors tuple (1000´1.2); total 1210 I/Os.

! Join column sid is a key for Sailors.
–At most one matching tuple, unclustered index on sid OK.

–Projecting out unnecessary fields from outer doesn’t help.

Reserves

Sailors

sid=sid

bid=100

sname(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

There are
100 boats

Use
unclustered
index on sid

Summary

• There are several alternative evaluation algorithms for each
relational operator.

• A query is evaluated by converting it to a tree of operators
and evaluating the operators in the tree.

• Must understand query optimization in order to fully
understand the performance impact of a given database
design (relations, indexes) on a workload (set of queries).

• Two parts to optimizing a query:
– Consider a set of alternative plans.

• Must prune search space; typically, left-deep plans only.

– Must estimate cost of each plan that is considered.
• Must estimate size of result and cost for each plan node.
• Key issues: Statistics, indexes, operator implementations.

Query Optimization Overview

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

• Query are converted to an intermediate format such as
relational algebra

• Rel. Algebra converted to tree, joins as branches
• Each operator has implementation choices
• Operators can also be applied in different order!

p(sname)s(bid=100 Ù rating > 5) (Reserves !" Sailors)

Iterator Interface (pull from the top)

• Recall:
•Relational operators at nodes support
uniform iterator interface:

Open(), get_next(), close()
•Unary Ops – On Open() call Open()
on child.

•Binary Ops – call Open() on left child
then on right.

•By convention, outer is on left.
Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Alternative is pipelining (i.e. a “push”-based approach).

Can combine push & pull using special operators.

Query Optimization Overview (cont)

• Logical Plan: Tree of R.A. ops
• Physical Plan: Tree of R.A. ops, with choice of

algorithm for each operator.

• Two main issues:
– For a given query, what plans are considered?

• Algorithm to search plan space for cheapest (estimated) plan.
– How is the cost of a plan estimated?

• Ideally: Want to find best plan.

• Reality: Avoid worst plans!

Cost-based Query Sub-System

Query Parser

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Query Plan Evaluator

Catalog Manager

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Schema Statistics

Select *
From Blah B
Where B.blah = blah

Queries

Schema for Examples

• As seen in previous lectures…
• Reserves:

– Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
– Let’s say there are 100 boats.

• Sailors:
– Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
– Let’s say there are 10 different ratings.

• Assume we have 5 pages in our buffer pool.

Sailors (sid: integer, sname: string, rating: integer, age: real)

Reserves (sid: integer, bid: integer, day: dates, rname: string)

Motivating Example

• Cost: 500+500*1000 I/Os
• By no means the worst plan!
• Misses several opportunities: selections

could have been `pushed’ earlier, no use
is made of any available indexes, etc.

• Goal of optimization: To find more
efficient plans that compute the same
answer.

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5

Sailors Reserves

sid=sid

bid=100 rating > 5

sname

(Page-Oriented
Nested loops)

(On-the-fly)

(On-the-fly)Plan:

500,500 IOs

Alternative Plans – Push Selects
(No Indexes)

Sailors Reserves

sid=sid

bid=100 rating > 5

sname

(Page-Oriented
Nested loops)

(On-the-fly)

(On-the-fly)

Sailors

Reserves

sid=sid

rating > 5

sname

(Page-Oriented
Nested loops)

(On-the-fly)

(On-the-fly)

bid=100 (On-the-fly)

250,500 IOs

Alternative Plans – Push Selects
(No Indexes)

Sailors

Reserves

sid=sid

rating > 5

sname

(Page-Oriented
Nested loops)

(On-the-fly)

(On-the-fly)

bid=100 (On-the-fly)

Sailors Reserves

sid=sid

bid = 100

sname

(Page-Oriented
Nested loops)

(On-the-fly)

rating > 5

(On-the-fly)(On-the-fly)

250,500 IOs250,500 IOs

Sailors

Reserves

sid=sid

rating > 5

sname

(Page-Oriented
Nested loops)

(On-the-fly)

(On-the-fly)

bid=100 (On-the-fly)

6000 IOs

Sailors

Reserves

sid=sid

rating > 5

sname

(Page-Oriented
Nested loops)

(On-the-fly)

(On-the-fly)

bid=100

(On-the-fly)

250,500 IOs

Alternative Plans – Push Selects
(No Indexes)

SailorsReserves

sid=sid

rating > 5

sname

(Page-Oriented
Nested loops)

(On-the-fly)

bid=100
(Scan &
Write to
temp T2)(On-the-fly)

6000 IOs

Sailors

Reserves

sid=sid

rating > 5

sname

(Page-Oriented
Nested loops)

(On-the-fly)

(On-the-fly)

bid=100

(On-the-fly)

Alternative Plans – Push Selects
(No Indexes)

4250 IOs
1000 + 500+ 250 + (10 * 250)

ReservesSailors

sid=sid

bid=100

sname

(Page-Oriented
Nested loops)

(On-the-fly)

rating>5
(Scan &
Write to
temp T2)(On-the-fly)

Alternative Plans – Push Selects
(No Indexes)

4010 IOs
500 + 1000 +10 +(250 *10)

SailorsReserves

sid=sid

rating > 5

sname

(Page-Oriented
Nested loops)

(On-the-fly)

bid=100
(Scan &
Write to
temp T2)(On-the-fly)

4250 IOs

Alternative Plans 1
(No Indexes)

• Main difference: Sort Merge
Join

• With 5 buffers, cost of plan:
– Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats,

uniform distribution).
– Scan Sailors (500) + write temp T2 (250 pages, if have 10 ratings).
– Sort T1 (2*2*10), sort T2 (2*4*250), merge (10+250)
– Total: 4060 page I/Os. (note: T2 sort takes 4 passes with B=5)

• If use BNL join, join = 10+4*250, total cost = 2770.
• Can also `push’ projections, but must be careful!

– T1 has only sid, T2 only sid, sname:
– T1 fits in 3 pgs, cost of BNL under 250 pgs, total < 2000.

Reserves Sailors

sid=sid

bid=100

sname(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Alt Plan 2: Indexes
• With clustered hash index on

bid of Reserves, we get
100,000/100 = 1000 tuples
on 1000/100 = 10 pages.

• INL with outer not
materialized.

! Decision not to push rating>5 before the join is based on
availability of sid index on Sailors.

! Cost: Selection of Reserves tuples (10 I/Os); then, for each,
must get matching Sailors tuple (1000*1.2); total 1210 I/Os.

! Join column sid is a key for Sailors.
At most one matching tuple, unclustered index on sid OK.

– Projecting out unnecessary fields
from outer doesn’t help.

(On-the-fly)

(Use hash
Index, do
not write
to temp)

Reserves

Sailors

sid=sid

bid=100

sname

rating > 5

(Index Nested Loops,
with pipelining)

(On-the-fly)

What is needed for optimization?

• Iterator Interface
• Cost Estimation
• Statistics and Catalogs
• Size Estimation and Reduction Factors

Summary so far

• Query optimization is an important task in a relational
DBMS.

• Must understand optimization in order to understand
the performance impact of a given database design
(relations, indexes) on a workload (set of queries).

• Two parts to optimizing a query:
1. Consider a set of alternative plans.

• Must prune search space; typically, left-deep plans only.

2. Must estimate cost of each plan that is considered.
• Must estimate size of result and cost for each plan node.
• Key issues: Statistics, indexes, operator implementations.

Query Blocks: Units of Optimization

• An SQL query is parsed into a collection of query blocks,
and these are optimized one block at a time.

• Inner blocks are usually treated as subroutines
• Computed:

– once per query (for uncorrelated sub-queries)
– or once per outer tuple (for correlated sub-queries)

SELECT S.sname
FROM Sailors S
WHERE S.age IN

(SELECT MAX (S2.age)
FROM Sailors S2
GROUP BY S2.rating) Nested block

Outer block

Translating SQL to Relational Algebra

SELECT S.sid, MIN (R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = “red”
AND S.rating = (SELECT MAX (S2.rating) FROM Sailors S2)
GROUP BY S.sid
HAVING COUNT (*) >= 2

For each sailor with the highest rating (over all
sailors), and at least two reservations for red boats,
find the sailor id and the earliest date on which the
sailor has a reservation for a red boat.

Translating SQL to Relational Algebra

SELECT S.sid, MIN (R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = “red”
AND S.rating = (SELECT MAX (S2.rating) FROM Sailors S2)
GROUP BY S.sid
HAVING COUNT (*) >= 2

p
S.sid, MIN(R.day)

(HAVING COUNT(*)>2 (
GROUP BY S.Sid (

B.color = “red” ÙS.rating = (Sailors Reserves Boats))))s

Inner Block

val

Relational Algebra Equivalences
• Allow us to choose different operator orders and to `push’ selections and

projections ahead of joins.
• Selections:

(Cascade)() ()()s s sc cn c cnR R1 1Ù Ù º... . . .

s c1 s c2 R()()º s c2 s c1 R()() (Commute)

! Projections:

pa1 R()º pa1 ... pan R()()() (Cascade)

These two mean we can do joins in any order.

(
i
f
a
n
i
n
c

! Joins: R (S T) (R S) T (Associative)

(R S) (S R) (Commute)

More Equivalences
• A projection commutes with a selection that only uses

attributes retained by the projection.

• Selection between attributes of the two arguments of
a cross-product converts cross-product to a join.

• Selection Push: selection on R attrs commutes with
R S: s(R S) º s(R) S

• Projection Push: A projection applied to R S can be
pushed before the join by retaining only attributes of
R (and S) that are needed for the join or are kept by
the projection.

The “System R” Query Optimizer

• Impact:
– Inspired most optimizers in use today
– Works well for small-med complexity queries (< 10 joins)

• Cost estimation:
– Very inexact, but works ok in practice.
– Statistics, maintained in system catalogs, used to estimate cost

of operations and result sizes.
– Considers a simple combination of CPU and I/O costs.
– More sophisticated techniques known now.

• Plan Space: Too large, must be pruned.
– Only the space of left-deep plans is considered.
– Cartesian products avoided.

Cost Estimation

• To estimate cost of a plan:
– Must estimate cost of each operation in plan tree and sum them

up.
• Depends on input cardinalities.

– So, must estimate size of result for each operation in tree!
• Use information about the input relations.
• For selections and joins, assume independence of

predicates.

• In System R, cost is boiled down to a single number
consisting of #I/O ops + factor * #CPU instructions

Q: How does “cost” relate to estimated “run time”?

Statistics and Catalogs
• Need information about the relations and indexes involved. Catalogs

typically contain at least:
– # tuples (NTuples) and # pages (NPages) per rel’n.
– # distinct key values (NKeys) for each index.
– low/high key values (Low/High) for each index.
– Index height (IHeight) for each tree index.
– # index pages (INPages) for each index.

• Stats in catalogs updated periodically.
– Updating whenever data changes is too expensive; lots of approximation

anyway, so slight inconsistency ok.

• More detailed information (e.g., histograms of the values in some field)
are sometimes stored.

Size Estimation and Reduction Factors

• Consider a query block:

• Reduction factor (RF) associated with each term reflects
the impact of the term in reducing result size.

• RF is usually called “selectivity”.
• How to predict size of output?

– Need to know/estimate input size
– Need to know/estimate RFs
– Need to know/assume how terms are related

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Result Size Estimation for Selections
• Result cardinality (for conjunctive terms) =

input tuples * product of all RF’s.
Assumptions:

1. Values are uniformly distributed and terms are independent!
2. In System R, stats only tracked for indexed columns

(modern systems have removed this restriction)
• Term col=value

RF = 1/NKeys(I)
• Term col1=col2 (This is handy for joins too…)

RF = 1/MAX(NKeys(I1), NKeys(I2))
• Term col>value

RF = (High(I)-value)/(High(I)-Low(I))

• Note, In System R, if missing indexes, assume 1/10!!!

Reduction Factors & Histograms

• For better RF estimation, many systems use
histograms:

equiwidthNo. of Values 2 3 3 1 8 2 1
Value 0-.99 1-1.99 2-2.99 3-3.994-4.99 5-5.99 6-6.99

No. of Values 2 3 3 3 3 2 4
Value 0-.99 1-1.99 2-2.99 3-4.05 4.06-4.67 4.68-4.99 5-6.99

equidepth

Result Size estimation for joins

• Q: Given a join of R and S, what is the range of
possible result sizes (in #of tuples)?

(R,S = schema for reln R,S; i.e, attributes of R,S)
– Hint: what if attr RÇS = Æ?
– RÇS is a key for R (and a Foreign Key in S)?

• General case: RÇS = {A} (and A is key for neither)
– estimate each tuple r of R generates NTuples(S)/NKeys(A,S)

result tuples, so…
NTuples(R) * NTuples(S)/NKeys(A,S)

– but can also consider it starting with S, yielding:
NTuples(R) * NTuples(S)/NKeys(A,R)

– If these two estimates differ, take the lower one!
• Q: Why?

Enumeration of Alternative Plans

• There are two main cases:
– Single-relation plans (unary ops) and Multiple-relation plans

• For unary operators:
– For a scan, each available access path (file scan / index) is

considered, and the one with the least estimated cost is chosen.

– consecutive Scan, Select, Project and Aggregate operations
can be essentially carried out together

(e.g., if an index is used for a selection, projection is done for each
retrieved tuple, and the resulting tuples are pipelined into the
aggregate computation).

I/O Cost Estimates for Single-Relation
Plans
• Index I on primary key matches selection:

– Cost is Height(I)+1 for a B+ tree, about 1.2 for hash index
• Clustered index I matching one or more selects:

– (NPages(I)+NPages(R)) * product of RF’s of matching selects.
• Non-clustered index I matching one or more

selects:
– (NPages(I)+NTuples(R)) * product of RF’s of matching selects.

• Sequential scan of file:
– NPages(R).

– Note: Must also charge for duplicate elimination if requried

Schema for Examples

• Reserves:
– Each tuple is 40 bytes long, 100 tuples per page, 1000

pages. 100 distinct bids.

• Sailors:
– Each tuple is 50 bytes long, 80 tuples per page, 500

pages. 10 Ratings, 40,000 sids.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Example

• If we have an index on rating:
– Cardinality: (1/NKeys(I)) * NTuples(S) = (1/10) * 40000

tuples retrieved.
– Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(S)) =

(1/10) * (50+500) = 55 pages are retrieved.
– Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(S)) =

(1/10) * (50+40000) = 4005 pages are retrieved.

• If we have an index on sid:
– Would have to retrieve all tuples/pages. With a clustered

index, the cost is 50+500, with unclustered index,
50+40000. No reason to use this index! (see below)

• Doing a file scan:
– We retrieve all file pages (500).

SELECT S.sid
FROM Sailors S
WHERE S.rating=8

Cost-based Query Sub-System

Query Parser

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Query Plan Evaluator

Catalog Manager

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Schema Statistics

Select *
From Blah B
Where B.blah = blah

Queries

System R - Plans to Consider

For each block, plans considered are:

• All available access methods, for each
relation in FROM clause.

• All left-deep join trees
• i.e., all ways to join the relations one-
at-a-time, considering all relation
permutations and join methods.

(note: system R originally only

had NL and Sort Merge)

BA

C

D

Highlights of System R Optimizer
• Impact:

– Most widely used currently; works well for < 10 joins.

• Cost estimation:
– Very inexact, but works ok in practice.
– Statistics, maintained in system catalogs, used to estimate cost of

operations and result sizes.
– Considers combination of CPU and I/O costs.

• For simplicity we ignore CPU costs in this discussion
– More sophisticated techniques known now.

• Plan Space: Too large, must be pruned.
– Only the space of left-deep plans is considered.
– Cartesian products avoided.

Queries Over Multiple Relations

• Fundamental decision in System R: only
left-deep join trees are considered.

– As the number of joins increases, the number of alternative
plans grows rapidly; we need to restrict the search space.

– Left-deep trees allow us to generate all fully pipelined plans.
• Intermediate results not written to temporary files.
• Not all left-deep trees are fully pipelined (e.g., SM join).

BA

C

D

BA

C

D

C DBA

Enumeration: Dynamic Programming
• Plans differ by: order of the N relations, access method

for each relation, and the join method for each join.
– maximum possible orderings = N! (but delay X-products)

• Enumerated using N passes

• For each subset of relations, retain only:
– Cheapest plan overall (possibly unordered), plus
– Cheapest plan for each interesting order of the tuples.

Enumeration: Dynamic Programming

• Pass 1: Find best 1-relation plans for each relation.

• Pass 2: Find best ways to join result of each 1-relation
plan as outer to another relation. (All 2-relation plans.)

consider all possible join methods & inner access paths

• Pass N: Find best ways to join result of a (N-1)-rel’n
plan as outer to the N’th relation. (All N-relation plans.)

consider all possible join methods & inner access paths

Interesting Orders

• An intermediate result has an “interesting order” if
it is returned in order of any of:

– ORDER BY attributes
– GROUP BY attributes
– Join attributes of other joins

System R Plan Enumeration (Contd.)

• An N-1 way plan is not combined with an additional
relation unless there is a join condition between them,
unless all predicates in WHERE have been used up.

– i.e., avoid Cartesian products if possible.

• ORDER BY, GROUP BY, aggregates etc. handled as a
final step, using either an `interestingly ordered’ plan
or an additional sorting operator.

• In spite of pruning plan space, this approach is still
exponential in the # of tables.

• COST = #IOs + (inst_per_IO * CPU Inst)

Pass1:
Reserves: Clustered B+ tree on bid matches bid=100, and is

cheaper than file scan
Sailors: B+ tree matches rating>5, not very selective, and index is

unclustered, so file scan w/ select is likely cheaper. Also,
Sailors.rating is not an interesting order.

Indexes
Reserves:
Clustered B+ tree on bid

Sailors:
Unclust B+ tree on rating

Pass 2:We consider each Pass 1 plan as the outer:

Reserves as outer (B+Tree selection on bid):
Use Sort Merge to join with Sailors as inner

Sailors as outer (File Scan w/select on rating):
Use BNL on result of selection on Reserves.bid

Select S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid

AND S.Rating > 5
AND R.bid = 100

Example (modified from book ch 15)

Example (modified from book ch 15)

Sailors:
B+ on sid

Reserves:
Clustered B+ tree on bid
B+ on sid

Boats
Clustered Hash on color

Select S.sid, COUNT(*) AS numredres
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid

AND B.color = “red”
GROUP BY S.sid

• Pass1: Best plan(s) for accessing each relation
– Sailors: File Scan; B+ on sid

– Reserves: File Scan; B+ on bid, B+ on sid

– Boats: Hash on color
(note: given selection on color, clustered Hash is likely to be cheaper than file

scan, so only it is retained)

Pass 2

• For each of the plans in pass 1, generate plans joining another
relation as the inner (avoiding cross products).

• Consider all join methods and every access path for the inner.
– File Scan Reserves (outer) with Boats (inner)
– File Scan Reserves (outer) with Sailors (inner)
– B+ on Reserves.bid (outer) with Boats (inner)
– B+ on Reserves.bid (outer) with Sailors (inner)
– B+ on Reserves.sid (outer) with Boats (inner)
– B+ on Reserves.sid (outer) with Sailors (inner)
– File Scan Sailors (outer) with Reserves (inner)
– B+Tree Sailors.sid (outer) with Reserves (inner)
– Hash on Boats.color (outer) with Reserves (inner)

• Retain cheapest plan for each pair of relations plus cheapest plan for each
interesting order.

Pass 3

• For each of the plans retained from Pass 2, taken as
the outer, generate plans for the remaining join

– e.g.
Outer= Hash on Boats.color JOIN Reserves
Inner = Sailors
Join Method = Index NL using Sailors.sid B+Tree

• Then, add the cost for doing the group by and
aggregate:

– This is the cost to sort the result by sid, unless
it has already been sorted by a previous operator.

• Then, choose the cheapest plan overall

Reserves

Sailors

sid=sid

Boats

Sid, COUNT(*)

GROUPBY sid

bid=bid

Color=red

Nested Queries
• Nested block is optimized independently,

with the outer tuple considered as providing a
selection condition.

• Outer block is optimized with the cost of
`calling’ nested block computation taken into
account.

• Implicit ordering of these blocks means that
some good strategies are not considered.
The non-nested version of the query is
typically optimized better.

SELECT S.sname
FROM Sailors S
WHERE EXISTS

(SELECT *
FROM Reserves R
WHERE R.bid=103
AND R.sid=S.sid)

Nested block to optimize:
SELECT *
FROM Reserves R
WHERE R.bid=103

AND R.sid= outer value
Equivalent non-nested query:
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

AND R.bid=103

Points to Remember

• Must understand optimization in order to understand the
performance impact of a given database design (relations,
indexes) on a workload (set of queries).

• Two parts to optimizing a query:
– Consider a set of alternative plans.

• Must prune search space; typically, left-deep plans only.

– Must estimate cost of each plan that is considered.
• Must estimate size of result and cost for each plan node.
• Key issues: Statistics, indexes, operator implementations.

Points to Remember

• Single-relation queries:
– All access paths considered, cheapest is chosen.
– Issues: Selections that match index, whether index key has all

needed fields and/or provides tuples in a desired order.

More Points to Remember

• Multiple-relation queries:
– All single-relation plans are first enumerated.

• Selections/projections considered as early as possible.

– Next, for each 1-relation plan, all ways of joining another
relation (as inner) are considered.

– Next, for each 2-relation plan that is `retained’, all ways of
joining another relation (as inner) are considered, etc.

– At each level, for each subset of relations, only best plan for
each interesting order of tuples is `retained’.

Summary
• Performance can be dramatically improved by

changing access methods, order of operators.
• Iterator interface
• Cost estimation

– Size estimation and reduction factors

• Statistics and Catalogs
• Relational Algebra Equivalences
• Choosing alternate plans
• Multiple relation queries
• We focused on “System R”-style optimizers

– New areas: Rule-based optimizers, random statistical
approaches (eg simulated annealing), adaptive/dynamic
optimization.

