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There are three side effects of acid. 
Enhanced long term memory, 
decreased short term memory, 
and I forget the third.

- Timothy Leary 1

Structure of a DBMS

Query Optimization
and Execution

Relational Operators

Access Methods

Buffer Management

Disk Space Management

Customer accounts 
stored on disk

Query in:
e.g. “Select min(account balance)” Data out:

e.g. 2000Database app

These layers
must consider
concurrency
control and
recovery
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Transactions

• A transaction is a collection of operations treated as a 
single logical operation 
§ Typically carried out by a single user or an application 

program 
§ Reads or updates the contents of a database 

• A transaction can have one of two outcomes: 
§ Success - transaction commits and database reaches a 

new consistent state. 
§ Failure - transaction aborts, and database must be 

restored to a consistent state before it started. 
• Such a transaction is rolled back or undone. 

• Committed transaction cannot be aborted.
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Transactions

• Concurrent execution essential for good performance.
§ Because disk accesses are frequent, and relatively 

slow, it is important to keep the CPU humming by 
working on several user programs concurrently.

§ Trends are towards lots of cores and lots of disks.
• e.g., IBM Watson has 2880 processing cores

• Tegra K1, latest GPU from NVidia, has 192 processing cores

• A program may carry out many operations, but the 
DBMS is only concerned about what data is 
read/written from/to the database.

• A transaction is the DBMS’s abstract view of a user 
program:  a sequence of reads and writes.
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Atomicity of Transactions

• A transaction might commit after completing all its 
actions, or it could abort (or be aborted by the DBMS) 
after executing some actions.

• Atomic Transactions: a user can think of a transaction 
as always either executing all its actions, or not 
executing any actions at all.
§ One approach: DBMS logs all actions so that it can 

undo the actions of aborted transactions.

§ Another approach: Shadow Pages
§ Logs approach won because of need for audit trail and 

for efficiency reasons.
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Transactions in SQL 
• Commit makes permanent any database changes you 

made during the current transaction. Until you commit 
your changes, other users cannot see them. 

• Rollback ends the current transaction and undoes any 
changes made since the transaction began. 
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Transaction – Example 

UPDATE accounts SET balance = balance -
100.00 WHERE name = 'Alice'; 

UPDATE branches SET balance = balance -
100.00 WHERE name = (SELECT branch_name
FROM accounts WHERE name = 'Alice');

UPDATE accounts SET balance = balance + 
100.00 WHERE name = 'Bob'; 

UPDATE branches SET balance = balance + 
100.00 WHERE name = (SELECT branch_name
FROM accounts WHERE name = 'Bob');

BEGIN;    --BEGIN TRANSACTION

COMMIT;    --COMMIT WORK 7

Transaction Example (with Savepoint)

BEGIN;
UPDATE accounts SET balance = balance - 100.00

WHERE name = 'Alice';

SAVEPOINT my_savepoint;
UPDATE accounts SET balance = balance + 100.00

WHERE name = 'Bob’;

-- oops ... forget that, and use Wally's 
Account ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = 'Wally';

COMMIT;
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Transactions in MySQL

• START TRANSACTION or BEGIN
§ start a new transaction.

• COMMIT
§ commits the current transaction, making its changes permanent.

• ROLLBACK
§ rolls back the current transaction, canceling its changes.

• SET  autocommit = {0 | 1}
§ disables or enables the default autocommit mode for the current session.
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Transactions in MySQL

• To disable autocommit mode implicitly for a single 
series of statements, use the START 
TRANSACTION statement
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The ACID properties of Transactions

• Atomicity: All actions in the transaction happen, or 
none happen.

• Consistency: If each transaction is consistent, and the 
DB starts consistent, it ends up consistent.

• Isolation: Execution of one transaction is isolated from 
that of all others.

• Durability: If a transaction commits, its effects persist.
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Transaction Consistency

• Data in DBMS is accurate in modeling real world, 
follows integrity constraints
§ User must ensure transaction consistent by itself
§ If DBMS is consistent before transaction, it will be 

after also.
• System checks ICs and if they fail, the transaction rolls 

back (i.e., is aborted).
§ DBMS enforces some ICs, depending on the ICs 

declared in CREATE TABLE statements.
§ Beyond this, DBMS does not understand the 

semantics of the data.  (e.g., it does not understand 
how the interest on a bank account is computed).
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Isolation (Concurrency)

• Multiple users can submit transactions.
• Each transaction executes as if it was running by itself.

§ Concurrency is achieved by DBMS, which interleaves 
actions (reads/writes of DB objects) of various 
transactions.

• Many techniques have been developed.  Fall into two 
basic categories:
§ Pessimistic – don’t let problems arise in the first place

§ Optimistic – assume conflicts are rare, deal with them 
after they happen.
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Durability - Recovering From a Crash

• System Crash - short-term memory lost (disk okay)
§ This is the case we will handle.

• Disk Crash - “stable” data lost
§ ouch --- need back ups; raid-techniques can help avoid this.

• There are 3 phases in ARIES recovery (and most others):
• ARIES = Algorithms for Recovery and Isolation Exploiting Semantics

§ Analysis:  Scan the log forward (from the most recent checkpoint) to 
identify all Xacts that were active, and all dirty pages in the buffer pool 
at the time of the crash.

§ Redo:  Redoes all updates to dirty pages in the buffer pool, as needed, 
to ensure that all logged updates are in fact carried out.

§ Undo:  The  writes of all Xacts that were active at the crash are undone 
(by restoring the before value of the update, as found in the log), 
working backwards in the log.  

• At the end, all committed updates and only those updates are reflected 
in the database.
§ Some care must be taken to handle the case of a crash occurring during 

the recovery process!
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Plan of attack (ACID properties)

• First we will deal with “I”, by focusing on concurrency 
control.

• Then will address “A” and “D” by looking at recovery.

• What about “C”?
• Well, if you have the other three working, and you set up 

your integrity constraints correctly, then you get this for 
free (!?).
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Transaction A (Add Josh)

INSERT INTO students 
VALUES ('Josh', 3.5);

Transaction B (Improve
Grade)

UPDATE students SET grade 
= grade + 0.5;

name grade

Tyler 3.2

Grant 3.4

Original Table "students"

name grade

Tyler 3.7

Grant 3.9

Josh 4.0

A then B

name grade

Tyler 3.7

Grant 3.9

Josh 3.5

B then A

Which is the correct final table?
Both are Okay!



Transaction A (Add 
Students)

INSERT INTO students 
VALUES ('Josh', 3.5);
INSERT INTO students 
VALUES ('Charles', 2.2);

Transaction B (Improve
Grade)

UPDATE students SET grade 
= grade + 0.5;

name grade

Tyler 3.7

Grant 3.9

Josh 4.0

Charles 2.7

A then B

name grade

Tyler 3.7

Grant 3.9

Josh 3.5

Charles 2.2

B then A

name grade

Tyler 3.2

Grant 3.4

Original Table "students"

name grade

Tyler 3.7

Grant 3.9

Josh 4.0

Charles 2.2

A(1) then B then A(2)

This is bad! Josh got an improved grade, but 
Charles didn't. This violates the ACID test!

Another Example …

T1: BEGIN   A=A+100,   B=B-100   END
T2: BEGIN   A=1.06*A,   B=1.06*B   END

Transfer $100 
from B’s 

account  to A’s 
account

Crediting both 
accounts with a 

6% interest 
payment

v Consider two transactions (Xacts):

v There is no guarantee that T1 will execute before T2 or 
vice-versa, if both are submitted together.  However, the 
net effect must be equivalent to these two transactions 
running serially in some order.
v Assume at first A and B each have $1000.  What are the 

legal outcomes of running T1 and T2???

v $2000 *1.06 = $2120 18



Example  (Contd.)

• Legal outcomes: A=1166,B=954 or A=1160,B=960
• Consider a possible interleaving (schedule):

T1: A=A+100,   B=B-100   
T2: A=1.06*A,  B=1.06*B

v This is OK.  But what about:

T1: A=A+100,   B=B-100   
T2: A=1.06*A, B=1.06*B

v The DBMS’s view of the second schedule:

T1: R(A), W(A),   R(B), W(B)
T2: R(A), W(A), R(B), W(B)

The $100 transfer 
amount is given 

interest payment twice

• Result: A=1166, B=960; A+B = 2126, bank loses $6
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Scheduling Transactions

• Serial schedule: A schedule that does not interleave the 
actions of different transactions.
§ i.e., you run the transactions serially (one at a time)

• Equivalent schedules: For any database state, the effect (on 
the set of objects in the database) and output of executing 
the first schedule is identical to the effect of executing the 
second schedule.

• Serializable schedule:  A serializable schedule is a schedule 
that is equivalent to some serial execution of the 
transactions.
§ Intuitively: with a serializable schedule you only see things 

that could happen in situations where you were running 
transactions one-at-a-time.
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Serial Schedule

• Actual transaction does have the whole database to 
itself 

• This is not a solution for the real world
§ Cannot overlap I/O operations and computation

§ Multiple cores or processors are sitting idle

§ Workload may just be really heavy

§ Response times get long as well as variable

§ Short transactions must wait for long ones to finish 
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A schedule that does not interleave the actions of different 
transactions. i.e., you run the transactions serially (one at 
a time)

Is this a Serializable Schedule?

T1 T2

R(A)
W(A)

R(B)

W(B)

R(C)
W(C)

Commit

Commit

Yes, the two transactions do not have 
operations on the same data item, so the 
schedule is serializable. 



Is this a Serializable Schedule?

T1 T2

R(A)
W(A)

R(B)

W(B)

Commit
R(B)
W(B)

Commit

Yes, because it is equivalent to the serial schedule 
T2, T1. The results are equivalent to T2 running 
first in it’s entirety, then T1 running.

Is this a Serializable Schedule?

T1 T2

R(A)
R(B)

W(A)

W(B)

Commit
R(B)
W(B)

Commit

Yes, this is still equivalent to the serial schedule 
T2, T1



Is this a Serializable Schedule?
T1 T2

R(A)

W(A)
R(A)

W(A)

R(B)
W(B)

Commit

R(B)
W(B)

Commit

Two possibilities: the schedule cannot be T2, T1 because 
T2 is reading the result of T1’s write. The schedule 
cannot be T1, T2 because T1 is reading the result of 
T2’s write. So the schedule is not serializable

Reading uncommitted data (called a dirty read) 

Serializable Schedule

26

A schedule that is equivalent to some 
serial execution of the transactions.

In other words, a serializable schedule 
is an alternative to simple serial 
schedule



Non-serializable schedule

• Not all schedules are serializable.
• Non-serializable schedules can produce states / effects 

on the database that would not have occurred if 
transactions weren't interweaved.

• This violates the Isolation principle in ACID.

Characterizing Schedules Based on Serializability

• A serializable schedule  is not the same as a serial schedule
• Being serializable implies that the schedule is a correct

schedule.
§ It will leave the database in a consistent state. 

§ The interleaving is appropriate and will result in a state as if 
the transactions were serially executed, yet will achieve 
efficiency due to concurrent execution.

• Serializability is hard to check.
§ Interleaving of operations occurs in an operating system 

through some scheduler

§ Difficult to determine beforehand how the operations in a 
schedule will be interleaved. 
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Concurrency Control

• Process of managing simultaneous operations on the 
database without having them interfere with one another. 

• Concurrent execution of user programs is essential for good 
DBMS performance.
§ Since disk accesses are frequent and relatively slow, it is 

important to keep the CPU humming by working on several 
user programs concurrently.

• Interleaving actions of different user programs can lead to 
inconsistency: e.g., check is cleared while account balance is 
being computed.

• Transaction processing ensures such problems do not arise:
users can pretend they are using a single-user system.

Anomalies with Interleaved Execution

• Reading Uncommitted Data (WR Conflicts, “dirty reads”):

• Problem
§ T1 may write some value into A that makes the database 

inconsistent
§ As long as T1 overwrites this value with a 'correct' value of 

A before committing, no harm is done if T1 and T2 run in 
some serial order, because T2 would then not see the 
(temporary) inconsistency

§ On the other hand, interleaved execution can expose this 
inconsistency and lead to an inconsistent final database 
state

30

T1: R(A), W(A),   R(B), W(B), Abort
T2: R(A), W(A), C



Anomalies with Interleaved Execution

• Unrepeatable Reads (RW Conflicts):

• Transaction T2 changes the value of an object A that 
has been read by a transaction T1, while T1 is still in 
progress

T1: R(A),  R(A), W(A), C
T2: R(A), W(A), C

Unrepeatable read

31

Anomalies: Overwriting Uncommitted Data

• Overwriting Uncommitted Data (WW Conflicts, blind 
writes):

• Transaction T2 overwrites the value of an object A, 
which has already been modified by a transaction T1 
while T1 is still in progress

T1: W(A),  W(B), C
T2: W(A), W(B), C

32

Blind writes (write without reading) 



Detecting anomalies systematically

• Schedules can be checked automatically for conflict
serializability by means of a precedence graph

• Conflict serializable graphs are also serializable
• Locking protocols can guarantee conflict serializable

schedules
• However, locking may introduce deadlocks, which can 

be detected with waits-for graphs
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Conflict Serializable Schedules

• Two operations a1 and a2 are said to conflict, iff
§ They belong to different transactions 

§ Both read or write the same object, e.g. A 

§ And either a1 or a2 is a write operation 

• Two schedules are conflict equivalent iff:
They involve the same actions of the same transactions, 

and
every pair of conflicting actions is ordered the same way
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Conflict Serializable Schedules

• If a schedule S can be transformed into a schedule S’ by 
a series of swaps of nonconflicting instructions, we say 
that S and S are conflict equivalent

• Schedule S is conflict serializable if S is conflict 
equivalent to some serial schedule.
§ Note, some “serializable” schedules are NOT conflict 

serializable.
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Dependency Graph

• Dependency graph:  One node per Xact; edge from Ti to Tj if 
an operation of Ti conflicts with an operation of Tj and Ti’s 
operation appears earlier in the schedule than the 
conflicting operation of Tj.

• It follows that a dependency graph is a graph whose edges 
Ti →Tj meet one of the following three conditions:
§ Ti executes write(A) before Tj executes read(A).
§ Ti executes read(A) before Tj executes write(A).
§ Ti executes write(A) before Tj executes write(A).

• Theorem: Schedule is conflict serializable if and only if its 
dependency graph is acyclic
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Example

• A schedule that is not conflict serializable:

• The cycle in the graph reveals the problem. 
The output of T1 depends on T2, and vice-
versa.

T1 T2
A

B

Dependency graph

T1: R(A), W(A),   R(B), W(B)
T2:
T1: R(A), W(A),   R(B), W(B)
T2: R(A), W(A), R(B), W(B)
T1: R(A), W(A),   R(B), W(B)
T2: R(A), W(A), R(B), W(B)
T1: R(A), W(A),   R(B), W(B)
T2: R(A), W(A), R(B), W(B)
T1: R(A), W(A),   R(B), W(B)
T2: R(A), W(A), R(B), W(B)
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Example

• A schedule that is conflict serializable:

• No Cycle Here!

T1 T2
A

Dependency graph

T1: R(A), W(A),   R(B), W(B)
T2: R(B),R(A), 

R(B), W(B), 

B

W(A), W(B)
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Locks

• We use “locks” to control access to items.

• Shared (S) locks – multiple transactions can hold these 
on a particular item at the same time.

• Exclusive (X) locks – only one of these and no other 
locks,  can be held on a particular item at a time.

S X

S Ö –

X – –

Lock
Compatibility
Matrix
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Scheduling Concurrent Transactions

DBMS ensures that execution of {T1, ... , Tn} is equivalent to 
some serial execution T1, ... Tn.

§ Before reading/writing an object, a transaction requests a 
lock on the object, and waits till the DBMS gives it the lock.

§ All locks are released at the end of the transaction.  (Strict 2-
Phase locking protocol)

X T1T2 RW

I have 
the lock

I wait

X T1T2 W

I am 
done

I can lock 
now



Two-Phase Locking (2PL)

1) Each transaction must obtain: 
• a S (shared) or an X (exclusive) lock on object before reading, 
• an X (exclusive) lock on object before writing.

2) A transaction can not request additional locks once it 
releases any locks.

Thus, each transaction has a “growing phase” followed 
by a “shrinking phase”.

0

1

2

3

4

1 3 5 7 9 11 13 15 17 19

#
 L

o
ck

s 
H

e
ld

Time

Growing
Phase

Shrinking
Phase

Lock Point!
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Two-Phase Locking (2PL)

• 2PL on its own is sufficient to guarantee conflict 
serializability.

§ Doesn‘t allow dependency cycles! (note: see 
“Deadlock” discussion a few slides hence)

§ Schedule of conflicting transactions is conflict 
equivalent to a serial schedule ordered by “lock 
point”.

44

The two phase locking rule can be summarized as: 
never acquire a lock after a lock has been released



Lock_X(A)   <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Unlock(A) <granted>

Read(A)

Unlock(A)

Lock_S(B) <granted>

Lock_X(B)

Read(B)

<granted> Unlock(B)

PRINT(A+B)

Read(B)

B := B +50

Write(B)

Unlock(B)

Ex 1: A= 1000, B=2000, Output =?

Is it a 2PL schedule? No, and it is not serializable.45

Lock_X(A)  <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B)  <granted>

Unlock(A) <granted>

Read(A)

Lock_S(B)

Read(B)

B := B +50

Write(B)

Unlock(B) <granted>

Unlock(A)

Read(B)

Unlock(B)

PRINT(A+B)

Ex 2: A= 1000, B=2000, Output =?

Is it a 2PL schedule? Yes: so it is serializable.46



Avoiding Cascading Aborts – Strict 2PL

• Solution: Strict Two-phase Locking (Strict 2PL):
§ Same as 2PL, except:
§ All locks held by a transaction are released 

only when the transaction completes

• Problem with 2PL:  Cascading Aborts
• Example: rollback of T1 requires rollback of T2!

T1: R(A), W(A),   R(B), W(B)         Q: is it
T2: R(A), W(A)                                      2PL?
T1: R(A), W(A),   R(B), W(B), Abort
T2: R(A), W(A)
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Strict 2PL

• Strict Two-phase Locking (Strict 2PL) Protocol:
§ Each Xact must obtain a S (shared) lock on object 

before reading, and an X (exclusive) lock on object 
before writing.

§ All locks held by a transaction are released when the 
transaction completes

§ If a Xact holds an X lock on an object, no other Xact
can get a lock (S or X) on that object.



Strict 2PL (continued)

All locks held by a transaction are released 
only when the transaction completes

• Like 2PL, Strict 2PL allows only schedules 
whose precedence graph is acyclic, but it is 
actually stronger than needed for that 
purpose.

• In effect, “shrinking phase” is delayed until:

a) Transaction has committed (commit log record 
on disk), or

b) Decision has been made to abort the transaction 
(then locks can be released after rollback).
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Strict 2PL (Papadimitrou) 
• Strict Two-phase Locking (Strict 2PL) Protocol:

§ Each Xact must obtain a S (shared) lock on object before
reading, and an X (exclusive) lock on object before writing.

§ All locks held by a transaction are released when the 
transaction completes (abort or commit)

§ A Xact cannot lock the same object if one of its locks is a 
write lock held by another transaction

§ A Xact cannot lock an object with a write lock if a read lock 
on that Xact is held by another Xact

• Read locks can be held by several transactions.
• If a write lock has been set, no read lock can be set and vice 

versa.
• Strict 2PL allows only schedules whose precedence graph is 

acyclic è it enforces conflict serializable schedules
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Lock_X(A) <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B) <granted>

Read(B)

B := B +50

Write(B)

Unlock(A)

Unlock(B) <granted>

Read(A)

Lock_S(B)  <granted>

Read(B)

PRINT(A+B)

Unlock(A)

Unlock(B)

Ex 3: A= 1000, B=2000, Output =?

Is it a 2PL schedule? Strict 2PL? 51

Lock_X(A)  <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B)  <granted>

Unlock(A) <granted>

Read(A)

Lock_S(B)

Read(B)

B := B +50

Write(B)

Unlock(B) <granted>

Unlock(A)

Read(B)

Unlock(B)

PRINT(A+B)

Ex 2: Revisited

Is it Strict 2PL? No: Cascading Abort Poss.52



Lock Management

• Lock and unlock requests are handled by the Lock 
Manager.

• LM contains an entry for each currently held lock.
• Lock table entry:

§ Ptr. to list of transactions currently holding the lock
§ Type of lock held (shared or exclusive)
§ Pointer to queue of lock requests

• When lock request arrives see if anyone else holds a 
conflicting lock.
§ If not, create an entry and grant the lock.
§ Else, put the requestor on the wait queue

• Locking and unlocking have to be atomic operations
• Lock upgrade: transaction that holds a shared lock can be 

upgraded to hold an exclusive lock
§ Can cause deadlock problems

53

Lock_X(A)  <granted>

Lock_S(B)   <granted>

Read(B)

Lock_S(A)

Read(A)

A: = A-50

Write(A)

Lock_X(B)

Ex 4: Output = ?

Is it a 2PL schedule? Strict 2PL? 54



Deadlocks

• Deadlock: Cycle of transactions waiting for locks to be 
released by each other.

• Two ways of dealing with deadlocks:

§ Deadlock prevention

§ Deadlock detection

• Many systems just punt and use Timeouts

55

Deadlock Prevention

• Assign priorities based on timestamps. Assume Ti 
wants a lock that Tj holds. Two policies are possible:
§ Wait-Die: If Ti is older, Ti waits for Tj; otherwise Ti 

aborts

§ Wound-wait: If Ti is older, Tj aborts; otherwise Ti waits

• If a transaction re-starts, make sure it gets its original 
timestamp

56



Deadlock Detection

• Alternative is to allow deadlocks to happen but to 
check for them and fix them if found.

• Create a waits-for graph:
§ Nodes are transactions

§ There is an edge from Ti to Tj if Ti is waiting for Tj to 
release a lock

• Periodically check for cycles in the waits-for graph

• If cycle detected – find a transaction whose removal 
will break the cycle and kill it.

57

Deadlock Detection (Continued)

• Example:

• T1:  S(A), S(D), S(B)

• T2: X(B)   X(C)
• T3: S(D), S(C), X(A)

• T4: X(B)

T1 T2

T4 T3
58



The “Phantom” Problem

• With Insert and Delete, even Strict 2PL (on individual 
items) will not assure serializability:

• Consider T1 – “Find oldest sailor”
§ T1 locks all records, and finds oldest sailor (age = 71).

§ Next, T2 inserts a new sailor; age = 96 and commits.

§ T1 (within the same transaction) checks for the oldest 
sailor again and finds sailor aged 96!!

• The sailor with age 96 is a “phantom tuple” from T1’s 
point of view --- first it’s not there then it is.

• No serial execution where T1’s result could happen!
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The “Phantom” Problem – example 2

• Consider T3 – “Find oldest sailor for each rating”
§ T3 locks all pages containing sailor records with rating

= 1, and finds oldest sailor (say, age = 71).

§ Next, T4 inserts a new sailor; rating = 1, age = 96.

§ T4 also deletes oldest sailor with rating = 2 (and, say, 
age = 80), and commits.

§ T3 now locks all pages containing sailor records with 
rating = 2, and finds oldest (say, age = 63).

• T3 saw only part of T4’s effects!
• No serial execution where T3’s result could happen!

60



The Problem

• T1 and T3 implicitly assumed that they had locked the 
set of all sailor records satisfying a predicate.
§ Assumption only holds if no sailor records are added 

while they are executing!

§ Need some mechanism to enforce this assumption.  
(Index locking and predicate locking.)

• Examples show that conflict serializability on reads 
and writes of individual items guarantees serializability
only if the set of objects is fixed!

61

Solution:
Index Key Value
Locking

• Locking Predicates directly is computationally hard

§ Need to calculate overlap of arbitrary predictates

• If there is a dense index on the rating field using 
Alternative (2), T3 should lock the index page containing 
the data entries with rating = 1.

§ If there are no records with rating = 1, T3 must lock 
the index page where such a data entry would be, if it 
existed!

• If there is no suitable index, T3 must lock all pages, and 
lock the file/table to prevent new pages from being 
added, to ensure that no records with rating = 1 are 
added or deleted.

r=1

Data
Index

62



Multiple-Granularity Locks

• Hard to decide what granularity to lock (tuples vs. 
pages vs. tables).

• Shouldn’t have to make same decision for all 
transactions!

• Data “containers” are nested: 

Tuples

Tables

Pages

Database

contains

63

Solution: New Lock Modes, Protocol

• Allow Xacts to lock at each level, but with a special 
protocol using new “intention” locks:

• Still need S and X locks, but before locking an item, 
Xact must have proper intension locks on all its 
ancestors in the granularity hierarchy.

! IS – Intent to get S lock(s) at 
finer granularity.

! IX – Intent to get X lock(s) 
at finer granularity.

! SIX mode: Like S & IX at 
the same time. Why useful?

IS IX SIX

IS

IX
SIX

S X

S

X

Ö

ÖÖ Ö Ö -
Ö
Ö

Ö

-

--

-
--

Ö -
-
-
-

---
-
-

Tuples

Tables

Pages

Database
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Multiple Granularity Lock 
Protocol

• Each Xact starts from the root of the          hierarchy.
• To get S or IS lock on a node, must hold IS or IX on parent 

node.
§ What if Xact holds SIX on parent? S on parent?

• To get X or IX or SIX on a node, must hold IX or SIX on 
parent node.

• Must release locks in bottom-up order.

Protocol is correct in that it is equivalent to directly setting
locks at the leaf levels of the hierarchy.

Tuples

Tables

Pages

Database
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Examples – 2 level hierarchy
• T1 scans R, and updates a few tuples:

§ T1 gets an SIX lock on R, then get X lock on 
tuples that are updated.

• T2 uses an index to read only part of R:

§ T2 gets an IS lock on R, and repeatedly               
gets an S lock on tuples of R.

• T3 reads all of R:

§ T3 gets an S lock on R. 
§ OR, T3 could behave like T2; can                                      

use lock escalation to decide which.
§ Lock escalation dynamically asks for              

courser-grained locks when too many                
low level locks acquired

IS IX SIX

IS
IX
SIX

Ö
Ö
Ö

Ö Ö
Ö

S X

ÖS
X

Ö

Ö
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Isolation Levels

• SQL standard offers several isolation levels
§ Each transaction can have level set separately
§ Problematic definitions, but in best practice done with 

variations in lock holding
• Serializable

§ (ought to be default, but not so in practice)
§ Traditionally done with Commit-duration locks on data and 

indices (to avoid phantoms)
• Repeatable Read

§ Commit-duration locks on data
§ Phantoms can happen

• Read Committed
§ short duration read locks, commit-duration write locks
§ non-repeatable reads possible

• Read Uncommitted
§ no read locks, commit-duration write locks
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Optimistic CC (Kung-Robinson)

Locking is a conservative approach in which 
conflicts are prevented. Disadvantages:

• Lock management overhead.
• Deadlock detection/resolution.
• Lock contention for heavily used objects.

• Locking is “pessimistic” because it assumes 
that conflicts will happen.

• If conflicts are rare, we might get better 
performance by not locking, and instead 
checking for conflicts at commit.
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Kung-Robinson Model

• Xacts have three phases:

§ READ:  Xacts read from the database, but 
make changes to private copies of objects.

§ VALIDATE:  Check for conflicts.
§ WRITE: Make local copies of changes 

public.

ROOT

old

new
modified
objects
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Validation

• Test conditions that are sufficient to ensure 
that no conflict occurred.

• Each Xact is assigned a numeric id.
§ Just use a timestamp (call it Ti).

• Timestamps are assigned at end of READ 
phase, just before validation begins. 

• ReadSet(Ti): Set of objects read by Xact Ti
• WriteSet(Ti): Set of objects modified by Ti 70



Test 1 – non-overlapping

• For all i and j such that Ti < Tj, check that Ti 
completes before Tj begins.

Ti
Tj

R V W

R V W
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Test 2 – No Write Phase Conflict

• For all i and j such that Ti < Tj, check that:

Ti completes before Tj begins its Write phase 

and WriteSet(Ti) Ç ReadSet(Tj)  is empty.

Ti

Tj
R V W

R V W

Does Tj read dirty data? Does Ti overwrite Tj’s writes?
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Test 3 – Overlapping Write 
Phases

• For all i and j such that Ti < Tj, check that:

Ti completes Read phase before Tj does + 

WriteSet(Ti) Ç ReadSet(Tj)  is empty +

WriteSet(Ti) Ç WriteSet(Tj)  is empty.
Ti

Tj
R V W

R V W

Does Tj read dirty data? Does Ti overwrite Tj’s writes?
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Applying Tests 1 & 2: Serial Validation

• To validate Xact T:  

valid = true;
// S = set of Xacts that committed after Begin(T)
//    (above defn implements Test 1)
//The following is done in critical section
< foreach Ts in S do {

if ReadSet(T) intersects WriteSet(Ts)
then valid = false;

}
if valid then { install updates; // Write phase

Commit T } >
else Restart T

start
of 
critical 
section

end of critical section
74



Comments on Serial Validation

• Applies Test 2, with T playing the role of Tj and each 
Xact in Ts (in turn) being Ti.

• Assignment of Xact id, validation, and the Write phase 
are inside a critical section!
§ Nothing else goes on concurrently.

§ So, no need to check for Test 3 --- can’t happen.

§ If Write phase is long, major drawback.

• Optimization for Read-only Xacts:
§ Don’t need critical section (because there is no Write 

phase).
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Overheads in Optimistic CC

• Must record read/write activity in ReadSet and 
WriteSet per Xact.
§ Must create and destroy these sets as needed.

• Must check for conflicts during validation, and must 
make validated writes ``global’’.
§ Critical section can reduce concurrency.

§ Scheme for making writes global can reduce clustering 
of objects.

• Optimistic CC restarts Xacts that fail validation.
§ Work done so far is wasted; requires clean-up.
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Snapshot Isolation (SI)

• A multiversion concurrency control mechanism was 
described in SIGMOD ’95 by  H. Berenson, P. 
Bernstein, J. Gray, J. Melton, E. O’Neil, P. O’Neil
§ Does not guarantee serializable execution!

• Supplied by Oracle DB, and PostgreSQL (before rel 
9.1), for “Isolation Level Serializable”

• Available in Microsoft SQL Server 2005 as “Isolation 
Level Snapshot”
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Snapshot Isolation (SI)

• Read of an item may not give current value
• Instead, use old versions (kept with timestamps) to 

find value that had been most recently committed at 
the time the txn started
§ Exception: if the txn has modified the item, use the 

value it wrote itself

• The transaction sees a “snapshot” of the database, at 
an earlier time
§ Intuition: this should be consistent, if the database 

was consistent before
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First committer wins (FCW)

• T will not be allowed to commit a modification to an 
item if any other transaction has committed a changed 
value for that item since T’s start (snapshot)

• Similar to optimistic CC, but only write-sets are 
checked

• T must hold write locks on modified items at time of 
commit, to install them.
§ In practice, commit-duration write locks may be set 

when writes execute. 
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Benefits of SI

• Reading is never blocked, and reads don’t block writes
• Avoids common anomalies

§ No dirty read

§ No lost update

§ No inconsistent read

§ Set-based selects are repeatable (no phantoms)

• Matches common understanding of isolation: 
concurrent transactions are not aware of one 
another’s changes

• On the downside – it turns out that it doesn’t fully 
guarantee Serializablity (but Prof. Alan Fekete & team 
have fixed this in PostgreSQL 9.1+)

80



Other Techniques

• Timestamp CC: Give each object a read-timestamp (RTS) and a 
write-timestamp (WTS), give each Xact a timestamp (TS) when it 
begins:

§ If action ai of Xact Ti conflicts with action aj of Xact Tj, 
and TS(Ti) < TS(Tj), then ai must occur before aj.  
Otherwise, restart violating Xact.

• Multiversion CC: Let writers make a “new” copy while readers use 
an appropriate “old” copy.
§ Advantage is that readers don’t need to get locks

§ Oracle and PostgreSQL use a simple form of this.
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Summary

• Correctness criterion for isolation is “serializability”.
§ In practice, we use “conflict serializability”, which is 

somewhat more restrictive but easy to enforce.
• Two Phase Locking, and Strict 2PL: Locks directly 

implement the notions of conflict.
§ The lock manager keeps track of the locks issued. 

Deadlocks can either be prevented or detected.
• Must be careful if objects can be added to or removed 

from the database (“phantom problem”).
• Index locking common, affects performance 

significantly. 
§ Needed when accessing records via index.
§ Needed for locking logical sets of records (index 

locking/predicate locking).
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Summary (Contd.)

• Multiple granularity locking reduces the overhead 
involved in setting locks for nested collections of 
objects (e.g., a file of pages);
§ should not be confused with tree index locking!

• Optimistic CC aims to allow progress when conflicts are 
rare or getting locks is expensive (e.g. distributed sys)

• Optimistic CC has its own overheads however; most 
real systems use locking or Snapshot Isolation.

• Snapshot Isolation is a practical approach that let’s 
readers run without locks, by looking at (possibly) 
older snapshots.
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