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DBMS vs. OS File System
OS does disk space & buffer mgmt: why not let 
OS manage these tasks?

• Some limitations, e.g., files can’t span disks.

§ Note, this is changing --- OS File systems are getting 
smarter (i.e., more like databases!)

• Buffer management in DBMS requires ability to:

§ pin a page in buffer pool, force a page to disk & order writes 
(important for implementing CC & recovery)

§ adjust replacement policy, and pre-fetch pages based on 
access patterns in typical DB operations.

• Q: Compare DBMS Buffer Mgmt to OS Virtual 
Memory? to Processor Cache?

Files of Records
• Blocks interface for I/O, but…

• Higher levels of DBMS operate on records, and 

files of records.

• FILE: A collection of pages, each containing a 

collection of records. Must support:

insert/delete/modify record
fetch a particular record (specified using record id)
scan all records (possibly with some conditions on 

the records to be retrieved)

• Note: typically                                                       

page size = block size = frame size.



Data Dictionary Storage 

• The Data dictionary (also called system catalog) 
stores metadata; that is, data about data, such as: 

• Information about relations

§ names of relations
§ names, types and lengths of attributes of each relation
§ names and definitions of views
§ integrity constraints 

• User and accounting information, including 
passwords 

• Statistical and descriptive data

§ number of tuples in each relation 
• Physical file organization information

§ How relation is stored (sequential/hash/...)
§ Physical location of relation 

“MetaData” - System Catalogs
• How to impose structure on all those bytes??

• MetaData:  “Data about Data”

• For each relation:
§ name, file location, file structure (e.g., Heap file)
§ attribute name and type, for each attribute
§ index name, for each index
§ integrity constraints

• For each index:

§ structure (e.g., B+ tree) and search key fields
• For each view:

§ view name and definition
• Plus statistics, authorization, buffer pool size, 

etc.

! Q: But how to store the catalogs????



Catalogs are Stored as Relations!

 

 

attr_name rel_name type position 

attr_name Attribute_Cat string 1 

rel_name Attribute_Cat string 2 

type Attribute_Cat string 3 

position Attribute_Cat integer 4 

sid Students string  1 

name Students string 2 

login Students string 3 

age Students integer 4 

gpa Students real 5 

fid Faculty string 1 

fname Faculty string 2 

sal Faculty real 3 

 

Attr_Cat(attr_name, rel_name, type, position)

It’s a bit more complicated…



File Organization 

• The database is stored as a collection of files. 

Each file is a sequence of records. A record is a 

sequence of fields. 

• One approach:

§ Assume record size is fixed
§ Each file has records of one particular type only
§ Different files are used for different relations 

• This case is easiest to implement; will consider 

variable length records later. 

Record Formats:  Fixed Length

• Information about field types same for all 

records in a file; stored in system catalogs.

• Finding i’th field done via arithmetic.

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

• Simple approach: 

§ Store record i starting from byte n ∗ (i – 1), where n is 
the size of each record. 



Record Formats: Variable Length

• Variable-length records arise in database systems 
in several ways: 

§ Storage of multiple record types in a file. 
§ Record types that allow variable lengths for one or 

more fields such as strings (varchar) 
§ Record types that allow repeating fields (used in some 

older data 
• Variable length attributes represented by fixed size 

(offset, length), with actual data stored after all 
fixed length attributes

• Null values represented by null-value bitmap 

Record Formats: Variable Length
• Two alternative formats (# fields is fixed):

! Second offers direct access to i’th field, efficient storage 
of nulls (special don’t know value); small directory overhead. 

$ $ $ $
Fields Delimited by Special Symbols

F1                    F2                   F3                    F4

F1             F2             F3             F4

Array of Field Offsets



How to Identify a Record?
• The Relational Model doesn’t expose 

“pointers”, but that doesn’t mean that the 

DBMS doesn’t use them internally.

• Q: Can we use memory addresses to “point” to 

records?

• Systems use a “Record ID” or “RecID”

Page Formats: Fixed Length Records

!Record id = <page id, slot #>. 

!Moving records for free space management changes 
rid; may not be acceptable.

Slot 1
Slot 2

Slot N

. . .

N

PACKED

Free
Space

number 
of records

Records stored in the first n slots

Records located by offset calculation 

Free space contiguous at the end 

When a record is deleted, 
the last one is moved to empty slot 

Problem if rid contains slot number 



Page Formats: Fixed Length Records

!Record id = <page id, slot #>

. . .

M10. . .
M  ...    3  2  1

UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M
11

number
of slots

Bit array tells which slots are 
free 

Records located by offset 
calculation 

Scanning all records requires
bit array scan + offset 
calculation 

Insertion of record requires
bit array scan + offset 
calculation 

When a record is deleted, 
corresponding bit is turned off 

“Slotted Page” for Variable Length Records

• Slot contains: [offset (from start of page), length]
§ in bytes

• Record id = <page id, slot #>
• Page is full when data space and slot array meet.

Page iRid = <i,1>

Rid = <i,N-1>

Rid = <i,0>

Pointer
to start
of free
space

SLOT ARRAY

2             1               0
3

# slots

Data
Area 

Free 
Space

[4,20][28,16] [64,28] 92



Slotted Page (continued)
• When need to allocate:

§ If enough room in free space, use it and update 
free space pointer.

§ Else, try to compact, if successful, use the freed 
space.

§ Else, tell caller that page is full.
• Advantages:

§ Can move records around in page without 
changing their record ID

§ Allows lazy space management within the page, 
with opportunity for clean up later

0 8 16 24

Slotted page (continued)

• What’s the biggest record you can add to the above 

page?

§ Need 2 bytes for slot: [offset, length] plus record.
• What happens when a record needs to move to a 

different page?

§ Leave a “tombstone” behind, pointing to new page and slot.
§ Record id remains unchanged – no more than one hop 

needed. 

4 9 0 4 2 1
3

Pointer
to start
of free
spaceSlot directory

# of slots



So far we’ve organized:

• Fields into Records (fixed and variable length)

• Records into Pages (fixed and variable length)

Now we need to organize Pages into Files

Alternative File Organizations
Many alternatives exist, each good for some 

situations, and not so good in others:

Heap files: Unordered.  Suitable when typical access is 
a file scan retrieving all records.  Easy to maintain.

Sorted Files: Best for retrieval in search key order, or if 
only a `range’ of records is needed.   Expensive to 
maintain.

Clustered Files (with Indexes): A compromise between 
the above two extremes.



Unordered (Heap) Files
• Simplest file structure contains records in no 

particular order.

• As file grows and shrinks, pages are allocated and 

de-allocated.

• To support record level operations, we must:

§ keep track of the pages in a file
§ keep track of free space on pages
§ keep track of the records on a page

• Can organize as a list, as a directory, a tree, … 

Heap File Implemented as a List 

• The Heap file name and header page id must be stored 
persistently.

The catalog is a good place for this.

• Each page contains 2 `pointers’ plus data.

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page Pages with

Free Space

Full Pages



Cost Model for Analysis
We ignore CPU costs, for simplicity:

§ B:  The number of data blocks
§ R:  Number of records per block
§ D:  (Average) time to read or write disk block

• Measuring number of block I/O’s ignores 
gains of pre-fetching and sequential access; 
thus, even I/O cost is only loosely 
approximated. 

• Average-case analysis; based on several 
simplistic assumptions.
§ Often called a “back of the envelope” calculation.

! Good enough to show the overall trends!

Some Assumptions in the Analysis

• Single record insert and delete.

• Equality selection - exactly one match (what if 

more or less???).

• For Heap Files we’ll assume:

§ Insert always appends to end of file.
§ Delete just leaves free space in the page.
§ Empty pages are not deallocated.



Cost of 
Operations

Heap File Sorted File Clustered File

Scan all 
records

Equality 
Search
(unique key)

Range 
Search

Insert

Delete

B:  The number of data pages
R:  Number of records per page
D:  (Average) time to read or write disk page

BD

0.5 BD

BD

2D

(0.5B+1)D

Sorted Files
• Heap files are lazy on update - you end 

up paying on searches.

• Sorted files eagerly maintain the file on 
update.

§ The opposite choice in the trade-off
• Let’s consider an extreme version

§ No gaps allowed, pages fully packed always
§ Q: How might you relax these assumptions?

• Assumptions for our BotE Analysis:

§ Files compacted after deletions.
§ Searches are on sort key field(s).



Cost of 
Operations

Heap File Sorted File Clustered File

Scan all 
records

Equality 
Search
(unique key)

Range 
Search

Insert

Delete

B:  The number of data pages
R:  Number of records per page
D:  (Average) time to read or write disk page

BD

(log2 B) * D

[(log2 B) +
#match pg]*D
((log2B)+B)D
(because rd,w0.5 File)

Same cost as Insert

BD

0.5 BD

BD

2D

(0.5B+1)D

The Problem(s) with Sorted Files

1) Expensive to maintain

§ Especially if you want to keep the records packed 
tightly.

§ Q: What if you are willing to relax that 
constraint?

2) Can only sort according to a single search key

§ File will effectively be a “heap” file for access via 
any other search key.

§ e.g., how to search for a particular student id in a 
file sorted by major?



Indexes: Introduction

• Sometimes, we want to retrieve records by 
specifying values in one or more fields, e.g.,

§ Find all students in the “CS” department
§ Find all students with a gpa > 3.0
§ Find all students in CS with a gpa > 3.0

• An index on a file is a disk-based data 
structure that speeds up selections on some 
search key fields.

§ Any subset of the fields of a relation can be the 
search key for an index on the relation.

§ Search key is not the same as key
§ e.g., Search key doesn’t have to be unique.

Indexes: Overview

• An index contains a collection of data entries, 

and supports efficient retrieval of all records

with a given search key value k. 

§ Typically, index also contains auxiliary information 
that directs searches to the desired data entries

• Many indexing techniques exist:

§ B+ trees, hash-based structures, R trees, …

• Can have multiple (different) indexes per file.

§ E.g. file sorted by age, with a hash index on salary
and a B+tree index on name.



Indexes: Overview

• The index file usually occupies considerably 

less disk blocks than the data file because its 

entries are much smaller

• A binary search on the index yields a pointer to 

the file record

• Indexes can also be characterized as dense or 

sparse 

Dense Index Files

• Dense index — Index record appears for every 

search-key value in the file. 



Sparse Index Files
• Sparse Index:  contains index records for only some 

search-key values.

§ Applicable when records are sequentially ordered on search-
key

• To locate a record with search-key value K we:
§ Find index record with largest search-key value < K
§ Search file sequentially starting at the record to which the 

index record points

Multilevel Index (Cont.)



Basic Concepts
• Indexing mechanisms used to speed up access to 

desired data.

§ E.g., author catalog in library
• Search Key - attribute to set of attributes used to 

look up records in a file.

• An index file consists of records (called index 
entries) of the form

• Index files are typically much smaller than the 
original file 

• Two basic kinds of indices:
§ Ordered indices:  search keys are stored in sorted 

order
§ Hash indices: search keys are distributed uniformly 

across “buckets” using a “hash function”. 

search-key pointer

Index Classification

1. Selections (lookups) supported

2. Representation of data entries in index

§ what kind of info is the index actually 
storing?

§ 3 alternatives here
3. Clustered vs. Unclustered Indexes

4. Single Key vs. Composite Indexes

5. Tree-based, hash-based, other



Indexes: Selections supported

field <op> constant

• Equality selections (op is =)

§ Either “tree” or “hash” indexes help here.
• Range selections (op is one of <, >, <=, >=, BETWEEN)

§ “Hash” indexes don’t work for these.

More exotic selections

§ multi-dimensional ranges (“east of Berkeley and west of 
Truckee and North of Fresno and South of Eureka”)

§ multi-dimensional distances (“within 2 miles of Soda Hall”)
§ Ranking queries (“10 restaurants closest to Berkeley”)
§ Regular expression matches, genome string matches, etc.
§ Keyword/Web search - includes “importance” of words in 

documents, link structure, …

Tree Index: Example
• Index entries:<search key value, page id>                 

they direct search for data entries in leaves.
• In example: Fanout (F) = 3 (note: unrealistic!)

§ more typical: 16KB page, 67% full, 32Byte entries         
= approx 300 

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Leaf Level:
Nodes contain
“Data Entries”

Index Levels:
Nodes contain

“Index Entries”



What’s in a “Data Entry”?

• Question: What is actually stored in the leaves of 
the index for key value “k”?   (a data entry for key 
“k” is denoted “k*” in book and examples)

• Three alternatives:

1. Actual data record(s) with key value k

2. {<k, rid of a matching data record>}
3. <k, {rids of all matching data records}>

• Choice is orthogonal to the indexing technique.

§ e.g., B+ trees, hash-based structures, R trees, …

Alt 1= “Index-Organized File”

• Actual data records are stored in leaves.

• If this is used, index structure becomes a file 
organization for data records (e.g., a sorted file).

• At most one index on a given collection of data 
records can use Alternative 1. 

• This alternative saves pointer lookups but can be 
expensive to maintain with insertions and 
deletions. 



Index-Organized File

Leaf Pages

Non-leaf Pages

Keys and pointers 
to next level

Actual 
Records

Actual 
Records

Actual 
Records

Q: How many 
levels if B leaf 
blocks and a 
fanout of F?

A: logF B

# Leaf Blocks Fanout Levels
1,000 300 3

10,000 300 3
100,000 300 4

1,000,000 300 4
10,000,000 300 4

100,000,000 300 5

16KB pages, 67%full and 
100 byte records = approx 100 recs/page.

so, can store 10B rows with 5 levels.

Note: All pages at 

all levels are:

“Slotted Pages”

Operation Cost
Heap File Sorted File

(100% 

Occupancy)

Index-Organized 
File

(67% Occupancy)

Scan all 
records

BD BD

Equality 
Search 
unique  
key

0.5 BD
(log2 B) * D

Range 
Search

BD [(log2 B) +

#match pg]*D

Insert 2D ((log2B)+B)D

Delete (0.5B+1) 
D

((log2B)+B)D  
(because rd,wrt 0.5 
file)

B:  The size of the data (in pages)
R:  Number of records per page
D:  (Average) time to read or write disk page

1.5 BD (bcos 67% full)

(logF 1.5B) * D

((logF 1.5B) +

#match pg)*D

((logF 1.5B)+1)D

((logF 1.5B)+1)D



Alternatives for Data Entries (Contd.)
Alternative 2

{<k, rid of a matching data record>}

and Alternative 3

<k, {rids of all matching data records}>

• Easier to maintain than Index-Organized.
• On the other hand: Index-organized could be faster for 

reads.
• If more than one index is required on a given file, at 

most one index can use Alt 1; rest must use 2 or 3.
• Alt 3 more compact than Alt 2, but has variable sized 

data entries even with fixed-length search keys 
• Even worse, for large rid lists the data entry would 

have to span multiple blocks!

Clustered vs. Unclustered Index
“Clustered” Index: the order of data records is 

the same as, or `close to’, the order of index 
data entries.

• A file can be clustered on at most one search 
key.

• Cost of retrieving data records through index 
varies greatly based on whether index is 
clustered or not!

• Index-organized implies clustered                            
but not vice-versa.

• In other words, alt-1 is always clustered
• alt 2 and alt 3 may or may not be clustered.



Example: Alt 2 index for a Heap File

Index entries

Data entries

direct search for 

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

For alts 2 or 3, typically two files – one for data 

records and one for the index.

For an unclustered index, the order of data records 

in the data file is unrelated to the order of the data 

entries in the leaf level of the index.

Example: Alt 2 index for a Heap File
For a clustered index:

• Sort the heap file on the search key column(s)

§ Leave some free space on pages for future inserts
• Build the index

• Use overflow pages in data file if necessary

§ Thus, clustering is only approximate – data records may not 
be exactly in sort order (can clean up later)

Index entries

Data entries

direct search for 

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED



Unclustered vs. Clustered Indexes

• What are the tradeoffs????

• Clustered Pros

§ Efficient for range searches
§ May be able to do some types of compression
§ Possible locality benefits (related data?)
§ ???

• Clustered Cons

§ Maintenance cost (pay on the fly or be lazy with 
reorganization)

§ Can only cluster according to a single order

Operation Cost
Unclustered Alt-2 Tree Idx

(Index file: 67% occupancy)

(Data file: 100% occupancy)

Clustered Alt-2 Tree Idx

(Index and Data files:

67% occupancy)

Scan all 
records

BD

(ignore index)

Equality 
Search 
unique  
key

(1+ logF 0.5 B) *D

assume an index entry is 1/3 the 

size of a record so index leaf level 
= .33 * 1.5B = 0.5B

Range 
Search

[(logF 0.5B) +

#matching_leaf_pages – 1 

+ #match records]*D

Insert ((logF 0.5B)+3)D

Delete same as insert

B:  The size of the data (in pages)
D:  (Avg) time to read or write disk page

1.5 BD

(ignore index)

(1+ logF 0.5B) * D

((logF 0.5B) +

#match pages)*D

((logF 0.5B)+3)D

same as insert



Composite Search Keys

• Search on a combination of 
fields.

§ Equality query: Every field value 
is equal to a constant value. E.g. 
wrt <age,sal> index:

• age=20 and sal =75
§ Range query: Some field value is 

not a constant. E.g.:
• age > 20; or age=20 and sal > 

10
• Data entries in index sorted by 

search key to support range 

queries.

§ Lexicographic order 
§ Like the dictionary, but on fields, 

not letters!

sue 13 20

bob

cal

joe 12

10

20

8011

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20

12,10

11,80

13,20

20,12

10,12

20,13

80,11

11

12

12

13

10

20

20

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key
indexes using lexicographic order.

Index Classification Revisited

1. Selections (lookups) supported

2. Representation of data entries in index

§ what kind of info is the index actually 
storing?

§ 3 alternatives here
3. Clustered vs. Unclustered Indexes

4. Single Key vs. Composite Indexes

5. Tree-based, hash-based, other



Tree-Structured Indexes

• Tree-structured indexing techniques support 

both range searches and equality searches.

• Two examples:

§ ISAM:  static structure; early index technology.

§ B+ tree:  dynamic, adjusts gracefully under inserts 
and deletes.

ISAM = Indexed Sequential Access
Method
• ISAM is an old-fashioned idea

§ B+ trees are usually better, as we’ll see
• Though not always

• But, it’s a good place to start

§ Simpler than B+ tree, but many of the same ideas

• Upshot

§ Don’t brag about being an ISAM expert on your 
resume

§ Do understand how they work, and tradeoffs with 
B+ trees



Range Searches
• ``Find all students with gpa > 3.0’’

§ If data is in sorted file, do binary search to find 
first such student, then scan to find others.

§ Cost of binary search on disk is still quite high. 
• Simple idea:  Create an `index’ file.

! Can do binary search on (smaller) index file!

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1
Index File

!But what if index doesn’t fit easily in memory?

ISAM

• We can apply the idea repeatedly!

P
0

K
1

P
1

K
2 P

2
K

m
P m

index entry

Non-leaf

Pages

Pages

Overflow 
page

Primary pages

Leaf



Example ISAM Tree

• Index entries:<search key value, page id>
they direct search for data entries in leaves.

• Example where each node can hold 2 entries;

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Data Pages

ISAM has a STATIC Index Structure
File creation:  
1. Allocate leaf (data) pages sequentially
2. Sort records by search key 
3. Allocate index pages
4. Allocate overflow pages

Static tree structure:  inserts/deletes affect only leaf pages.

ISAM File Layout

Index Pages

Overflow pages



ISAM (continued)
Search: Start at root; use key                 
comparisons to navigate to leaf.  

Cost = log F N           
F = # entries/pg (i.e., fanout)
N = # leaf pgs

§ no need for `next-leaf-page’ pointers.  (Why?)

Insert: Find leaf that data entry belongs to, 
and put it there.  Overflow page if necessary.

Delete: Find; remove from leaf; if empty de-
allocate. 

Data Pages

Index Pages

Overflow pages

Example: Insert 23*, 48*, 41*, 42*

48*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

23* 41*

42*



48*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

23* 41*

42*

... then Deleting 42*, 51*, 97*

! Note that 51* appears in index levels, but  not in leaf!

ISAM ---- Issues?

• Pros

§ ????

• Cons

§ ????



B+ Tree:  The Most Widely Used Index
• Insert/delete at log F N cost;                                     

keep tree height-balanced. 
N = # leaf pages

Index Entries

Data Entries

("Sequence set")

(Direct search)

• Each node (except for root) contains m entries:
d <= m <= 2d entries. 

• “d” is called the order of the tree.  
(maintain 50% min occupancy)

• Supports equality and range-searches efficiently.

• As in ISAM, all searches go from root to leaves, 
but structure is dynamic.

B+ Tree:  The Most Widely Used Index



Example B+ Tree

• Search begins at root page, and key 

comparisons direct it to a leaf (as in ISAM).

• Search for 5*, 15*, all data entries >= 24* ...

! Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

A Note on Terminology
• The “+” in B+Tree indicates that it is a special 

kind of “B Tree” in which all the data entries 
reside in leaf pages.
§ In a vanilla “B Tree”, data entries are sprinkled 

throughout the tree.

• B+Trees are in many ways simpler to 
implement than B Trees. 
§ And since we have a large fanout, the upper levels 

comprise only a tiny fraction of the total storage 
space in the tree.

• To confuse matters, most database people 
call B+Trees “B Trees”!!!



B+ Trees in Practice

• Remember = Index nodes are disk pages 

§ e.g., fixed length unit of communication with disk
• Typical order: 100.  Typical fill-factor: 67%.

§ average fanout = 133
• Typical capacities:

§ Height 3: 1333 =     2,352,637 entries
§ Height 4: 1334 = 312,900,700 entries

• Can often hold top levels in buffer pool:

§ Level 1 =           1 page  =     8 Kbytes
§ Level 2 =      133 pages =     1 Mbyte
§ Level 3 = 17,689 pages = 133 MBytes

Inserting a Data Entry into a B+ Tree

• Find correct leaf L.

• Put data entry onto L.

§ If L has enough space, done!
§ Else, must split L (into L and a new node L2)

• Redistribute entries evenly, copy up middle key.
• Insert index entry pointing to L2 into parent of L.

• This can happen recursively

§ To split index node, redistribute entries evenly, but 
push up middle key.  (Contrast with leaf splits.)

• Splits “grow” tree; root split increases height.  

§ Tree growth: gets wider or one level taller at top.



Example B+ Tree – Inserting 23*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

23*

Example B+ Tree - Inserting 8*

" Notice that root was split, leading to increase in height.

" In this example, we could avoid split by re-distributing             
entries; however, this is not done in practice.

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

2* 3* 5* 7* 8*

2* 3* 7*5* 8*

5

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

2* 3* 7*5* 8*

Root

17



Leaf vs. Index Page Split 
(from previous example of inserting “8”)

• Observe how 
minimum 

occupancy is 

guaranteed in 
both leaf and 

index pg 
splits.

• Note 

difference 
between copy-
up and push-
up; be sure 
you 
understand 

the reasons 

for this.

5

Entry to be inserted in parent node.

(Note that 5 is
continues to appear in the leaf.)

s copied up and

2* 3* 5* 7* 8* …
Leaf 
Page 
Split

2* 3* 5* 7* 8*

5 24 3013

appears once in the index. Contrast
17

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

this with a leaf split.)

17 24 3013Index 
Page 
Split

5

Deleting a Data Entry from a B+ Tree

• Start at root, find leaf L where entry belongs.

• Remove the entry.

§ If L is at least half-full, done! 
§ If L has only d-1 entries,

• Try to re-distribute, borrowing from sibling
(adjacent node with same parent as L).

• If re-distribution fails, merge L and sibling.
• If merge occurred, must delete entry (pointing 

to L or sibling) from parent of L.

• Merge could propagate to root, decreasing 

height.



Root

17

24 30

19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

Example Tree - Delete 19*

���

5 13

Root

17

24 30

20* 22* 24* 27* 29* 33* 34* 38* 39*

Example Tree - Delete 19*

������

5 13



Root

17

24 30

20* 22* 24* 27* 29* 33* 34* 38* 39*

Example Tree – Now, Delete 20*

������

5 13

Redistribute

Root

17

27 30

22* 24* 27* 29* 33* 34* 38* 39*

Example Tree – Then Delete 20*

������

5 13



Root

17

27 30

22* 27* 29* 33* 34* 38* 39*

Example Tree – Then Delete 24*

���
Underflow!

24*

Can’t redistribute,
must Merge…

���

5 13

Root

17

30

22* 27* 29* 33* 34* 38* 39*

Example Tree – Then Delete 24*

���

Underflow!

���

5 13

Root

30135 17

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*



Example of Non-leaf Re-distribution

• Tree is shown below during deletion of 24*

• In contrast to previous example, can re-

distribute entry from left child of root to right 

child.  

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*

After Re-distribution

• Intuitively, entries are re-distributed by 

`pushing through’ the splitting entry in the 

parent node.

• It suffices to re-distribute index entry with key 

20; we’ve re-distributed 17 as well for 

illustration.

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22



A Note on `Order’
• Order (d) concept replaced by physical space 

criterion in practice (`at least half-full’).

§ Index pages can typically hold many more entries 
than leaf pages.

§ Variable sized records and search keys mean 
different nodes will contain different numbers of 
entries.

§ Even with fixed length fields, multiple records with 
the same search key value (duplicates) can lead to 
variable-sized data entries (if we use Alternative 
(3)).

• Many real systems are even sloppier than this -

-- only reclaim space when a page is 

completely empty.

Introduction to Hash-based Indexes

• Hash-based indexes are best for equality selections. 

Cannot support range searches.

• Static and dynamic hashing techniques exist; trade-

offs similar to ISAM vs. B+ trees.



Static Hashing

• # primary pages fixed, allocated sequentially, 

never de-allocated; overflow pages if needed.

• A simple hash function (for N buckets):
h(k) = k MOD N

is bucket # where data entry with key k belongs.
h(key)

h
key

Primary bucket pages Overflow pages

1
0

N-1

Static Hashing (Contd.)
• Buckets contain data entries.
• Hash fn works on search key field of record r.  Use MOD 

N to distribute values over range 0 ... N-1.

§ h(key) = key MOD N works well for uniformly distributed 
data.  

• h(key) = (a * key + b).
• a and b are constants;  lots known about how to tune h.

§ various ways to tune h for non-uniform (checksums, crypto, 
etc.).

• Buckets contain data entries.

• As with any static structure: Long overflow chains can 
develop and degrade performance.  

§ Extendible and Linear Hashing: Dynamic techniques to fix 
this problem.



Extendible Hashing
• Situation: Bucket (primary page) becomes full.

§ Want to avoid overflow pages

• How about we add more buckets (i.e., increase “N”)?

§ Okay, but need a new hash function!

• Doubling # of buckets makes this easier

§ Say N values are powers of 2 – how to do “mod N”?
§ What happens to hash function when you double “N”?

• Problems with Doubling

§ Don’t want to have to double the size of the file.
§ Don’t want to have to move all the data.

Extendible Hashing (continued)
• Idea: Add a level of indirection!  

• Use directory of pointers to buckets,

• Double # of buckets by doubling the directory

§ Directory much smaller than file, so doubling it is much 
cheaper. 

• Split only the bucket that just overflowed!

§ No overflow pages!
§ Trick lies in how hash function is adjusted!



Extendible Hashing – How it Works

00
01
10
11

2
GLOBAL DEPTH

DIRECTORY

13*

2

1

2

LOCAL DEPTH Bucket A

Bucket B

Bucket C10*

1* 7*

4* 12* 32* 16*

5*

• Directory is array of size 4, so 2 bits needed.

• Bucket for record r has entry with index = 
`global depth’ least significant bits of h(r);

– If h(r) = 5 = binary 101,  it is in bucket pointed to by 01.
– If h(r) = 7 = binary 111,  it is in bucket pointed to by 11.

Handling Inserts

• Find bucket where record belongs.
• If there’s room, put it there.
• Else, if bucket is full, split it:

§ increment local depth of original page
§ allocate new page with new local depth
§ re-distribute records from original page.
§ add entry for the new page to the directory



Example: Insert 21, then 19, 15

13*00
01
10
11

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

2
Bucket D

DATA PAGES

10*

1* 7*

2
4* 12* 32* 16*

15*7* 19*

5*

we denote key r by h(r).

• 21 = 10101

• 19 = 10011

• 15 = 01111

12
21*

2
4* 12* 32*16*

Insert h(r)=20 (Causes Doubling)

00
01
10
11

2 2

2

2

LOCAL DEPTH

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

1* 5* 21*13*

10*

15* 7* 19*

(`split image'
of Bucket A)

20*

3
Bucket A24* 12*

of Bucket A)

3
Bucket A2

(`split image'
4* 20*12*

2

Bucket B1* 5* 21*13*

10*

2

19*
2

Bucket D15* 7*

3
32*16*

LOCAL DEPTH

000
001
010
011
100
101
110
111

3
GLOBAL DEPTH

3

32*16*

Bucket C

Bucket A



Points to Note

• 20 = binary 10100.  Last 2 bits (00) tell us r belongs 

in either A or A2.  Last 3 bits needed to tell which.

§ Global depth of directory:  Max # of  bits needed to tell 
which bucket an entry belongs to.

§ Local depth of a bucket: # of bits used to determine if an 
entry belongs to this bucket.

• When does bucket split cause directory doubling?

§ Before insert, local depth of bucket = global depth.  Insert 
causes local depth to become > global depth; directory is 
doubled by copying it over and `fixing’ pointer to split 
image page.  

Use of Extendible Hash Structure:  Example 

Initial Hash structure, bucket size = 2



Example (Cont.)
• Hash structure after  insertion of one Brighton 

and two Downtown records

Example (Cont.)
Hash structure after insertion of Mianus record



Example (Cont.)

Hash structure after insertion of  three Perryridge records

Example (Cont.)

• Hash structure after insertion of Redwood and 

Round Hill records



Directory Doubling

00

01
10

11

2

Why use least significant bits in directory
(instead of the most significant ones)?

vs.

0

1

1

0

1

1

Least Significant Most Significant

0, 2

1, 3

1

1

0, 2

1, 3

1

1

0, 1

2, 3

1

1

00

01
10

11

2

0, 1

2, 3

1

1

Allows for doubling by copying the 
directory and appending the new copy 
to the original.

Q: Any other reasons?

Comments on Extendible Hashing
• If directory fits in memory, equality search 

answered with one disk access; else two.

§ 100MB file, 100 bytes/rec, 4K pages contains 1,000,000 
records (as data entries) and 25,000 directory elements; 
chances are high that directory will fit in memory.

§ Directory grows in spurts, and, if the distribution of hash 
values is skewed, directory can grow large.

§ Multiple entries with same hash value cause problems!

• Delete:  If removal of data entry makes bucket 

empty, can be merged with `split image’.  If each 

directory element points to same bucket as its split 

image, can halve directory. 



Summary

• Tree-structured indexes are ideal for range-

searches, also good for equality searches.

• ISAM is a static structure.

§ Only leaf pages modified; overflow pages needed.
§ Overflow chains can degrade performance unless size of 

data set and data distribution stay constant.
• B+ tree is a dynamic structure.

§ Inserts/deletes leave tree height-balanced; log F N cost.
§ High fanout (F) means depth rarely more than 3 or 4.
§ Almost always better than maintaining a sorted file.

Summary (Contd.)

§ Typically, 67% occupancy on average.
§ Usually preferable to ISAM, modulo locking

considerations; adjusts to growth gracefully.
§ If data entries are data records, splits can change 

rids!
• Other topics:

§ Key compression increases fanout, reduces height.
§ Bulk loading can be much faster than repeated inserts 

for creating a B+ tree on a large data set.
• Most widely used index in database management 

systems because of its versatility.  One of the 

most optimized components of a DBMS.



Summary – Hash Indexes
• Hash-based indexes: best for equality searches, 

cannot support range searches.

• Static Hashing can lead to long overflow chains.

• Extendible Hashing avoids overflow pages by splitting 

a full bucket when a new data entry is to be added to 

it.  (Duplicates may require overflow pages.)

§ Directory to keep track of buckets, doubles periodically.
§ Can get large with skewed data; additional I/O if this does 

not fit in main memory.
• “Linear hashing” solves some problems of Extendible 

hashing – not covered in this course, but check out 

book section 11.3 – it’s very cool!

Summary

• Index Definition in SQL

• Create an index
§ create index <index-name> on <relation-name>

(<attribute-list>)

§ E.g.:  create index  b-index on branch (branch_name)
• Use create unique index to indirectly specify and 

enforce the condition that the search key is a 
candidate key is a candidate key.

§ Not really required if SQL unique integrity constraint is 
supported

• To drop an index 

§ drop index <index-name>
• Most database systems allow specification of type 

of index, and clustering.


